肿瘤抑制蛋白p53DNA结合结构域与靶基因相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤抑制蛋白p53是一个广泛分布的磷蛋白,其具备维持基因组完整的功能。野生型的p53主要由三个功能结构域组成:C端四聚化结构域、N端转录激活结构域和一个中心DNA结合结构域(p53DBD),其包含96-308氨基酸。p53被细胞压力激活以后,作为一个转录因子进一步激活下游基因,参与包括细胞周期调控、DNA修复、血管形成抑制、肿瘤转移抑制、细胞凋亡等生物学过程。所有这些已知的生物学功能都依赖于其DNA结合特性。野生型的p53通过序列特异性的DNA结合结构域(p53DBD)结合DNA。p53基因在50%的肿瘤当中发生突变,而这些突变主要发生在序列特异性的DNA结合结构域,突变的p53不能激活下游基因转录。因此,序列特异性的DNA结合和转录激活活性是p53最关键的生物学功能。
     p53DBD的晶体结构表明:p53核心结构域结构为:一个β-三明治结构形成脚手架,支撑两个大环和一个环-片层-螺旋模序。p53DBD上的三个半胱氨酸(Cys176、Cys238和Cys242)和一个组氨酸(His179)结合一个锌离子。锌离子的结合被认为是p53转录激活所必需的,去除锌离子将会使p53DBD降低DNA结合特异性。不过,镉离子、汞离子和铜离子结合p53蛋白,却导致p53构象和DNA结合活性的破坏。不同金属离子对p53DBD蛋白截然相反的作用可以预计:存在其他的金属离子或细胞因子能够结合并影响p53DBD。
     在本论文中,我们利用荧光滴定法研究了9种金属离子与p53DBD的结合反应,其结合能力依次为Fe~(3+)>Zn~(2+)>Cu~(2+)>Ca~(2+)>Mg~(2+)>Ba~(2+)>Mn~(2+)>Ni~(2+)>Co~(2+)。圆二色谱研究结果表明,Ba~(2+)、Ca~(2+)、Co~(2+)、Mn~(2+)、Ni~(2+)这些离子并未引起蛋白二级结构变化,Zn~(2+)、Mg~(2+)、Fe~(3+)这三种离子诱导蛋白结构细微调整,而Cu~(2+)离子结合导致蛋白螺旋结构大量丢失。ANS结合研究结果表明,Mg~(2+)与Zn~(2+)相似,诱导p53DBD蛋白表面疏水性增强,而Fe~(3+)引起p53DBD蛋白表面疏水性降低。因此,Mg~(2+)和Fe~(3+)可能是潜在的影响或调节p53活性的因子之一。
     接着,我们研究了Mg~(2+)对p53DBD与DNA结合的影响。竞争结合分析表明镁离子与锌离子竞争结合p53DBD。圆二色谱分析表明镁离子结合诱导蛋白结构发生细微的改变而不是激烈的变化。基于电泳迁移分析和荧光分析实验,我们推断:Mg~(2+)以一种非序列特异性的方式刺激p53DBD蛋白结合DNA,这与Zn~(2+)特异性的方式不同。基于细胞内镁离子浓度相对较高并且能够影响胞内酶的活性的事实,我们认为:镁离子是潜在的影响或调节p53转录激活活性的因子之一。
     金属离子对p53DBD结构稳定性影响研究表明:金属离子结合能增加p53DBD的结构稳定性和热稳定性。分析丙烯酰胺淬灭实验表明:金属离子结合p53DBD诱导蛋白结构发生变化,并且这种变化给蛋白提供一个保护作用,防止丙烯酰胺淬灭。综合起来,我们认为:p53DBD作为一个转录因子起作用的过程中,金属离子起到双重调节作用。金属离子不仅支持DNA结合活性,而且稳定蛋白结构。
     荧光共振能量转移(FRET)研究p53DBD与DNA的相互作用表明:p53DBD蛋白结合一个半位点p21启动子诱导DNA弯曲角度为23.6°。
     本论文关于肿瘤抑制蛋白p53DBD与靶基因相互作用的研究,为我们认识p53DBD蛋白与靶基因相互作用提供了更精确的单分子水平的信息,可以更深层次地认识肿瘤细胞的发生机制,为药物研究和设计提供帮助。
The tumor suppressor protein p53 is a widely distributed phosphoprotein which functions to maintain the integrity of the genome. Wild-type p53 consists of three major functional domains, the C-terminal tetramerization domain, the N-terminal transactivation domain and the central DNA binding domain (p53DBD) encompassing amino acid residues from 96 to 308. It acts as a sequence-specific transcription factor to transactivate the downstream target genes which is activated in response to a variety of cell stress, and involves in many biological processes, such as cell cycle arrest, DNA repair, inhibition of angiogenesis, inhibition of metastasis and apoptosis. All of these presently known biological functions of p53 depend critically upon its DNA binding properties. Wild type p53 binds DNA through a sequence-specific DNA binding domain (p53DBD). p53 is mutated in more than half of the human cancers. The overwhelming majority of these mutations occurs in the sequence-specific DNA binding domain and result in the loss of its DNA binding activity. Therefore, site-specific recognition and DNA-binding activity of p53 are crucial for its tumor suppressor function.
     The crystal structure of p53DBD reveals that the p53 core domain structure consists of a beta sandwich that serves as a scaffold for two large loops and a loop-sheet-helix motif. Zn~(2+) is coordinated to three Cys (C176, C238 and C242) and a His (H179) in p53DBD. Zinc coordination is thought to be necessary for transcriptional activation and removal of zinc reduces the DNA-binding specificity. Nevertheless, the binding of mercury, cadmium and copper to the protein results in disrupting the p53 conformation and the DNA-binding activity. The opposite effects of metal ions on p53 support the notion that additional metal ions or cellular factors can affect specific recognition.
     In this paper, we investigated the binding reaction between p53DBD and nine kinds of metal ions by fluorescence titration method, the binding affinity of metal ions to p53DBD is Fe~(3+)>Zn~(2+)>Cu~(2+)>Ca~(2+)>Mg~(2+)>Ba~(2+)>Mn~(2+)>Ni~(2+)>Co~(2+). Analysis of the far-UV CD data clearly suggested that the binding of Ba~(2+), Ca~(2+), Co~(2+), Mn and Ni did not induce changes in protein secondary structure. The binding of Zn~(2+), Mg~(2+) and Fe~(~(3+)) induced a subtle conformational change, while the binding of Cu~(2+) resulted in a lot of loss in its helical content. Analysis of ANS binding data showed that the binding of Mg~(2+) enhanced hydrophobic exposure on protein surface like Zn~(2+), while Fe~(3+) decreased the hydrophobic exposure. Therefore, Mg~(2+) and Fe~(3+) may be one of potential factors to affect or regulate the transactivation of p53.
     Then, we investigated the influence of Mg~(2+) on the Binding of p53DBD to DNA. Analysis of competitive binding revealed that magnesium competed with zinc for binding to p53DBD. Analysis of the CD data clearly suggested that the binding of magnesium ion induced a subtle conformational change rather than a radical modification of the overall protein architecture. Based on the results of electrophoretic mobility shift assays and fluorescence experiments, we concluded that the binding of Mg~(2+) stimulated the binding of the protein to DNA in a sequence-independent manner, which differed from that of zinc ions in a sequence-specific manner. Based on the facts that Mg~(2+) exists at relatively high concentration in the cell and several cellular enzymes can be regulated by Mg~(2+), we propose that Mg~(2+) is one of potential factors to affect or regulate the transactivation of p53.
     Studies on the effect of metal ions on the structural stability of p53DBD showed that the binding of metal ions increased the structural and thermal stability. Analysis of acrylamide quenching experiments revealed that the binding of metal ions to p53DBD induced a structural modification of the protein and this change provided significant protection against acrylamide quenching. Overall, we propose that metal ions play a dual modulatory role in the process of p53DBD functioning as a transcription factor. The metal ions not only support the DNA-binding affinity of p53DBD, but also stabilize the structure of the protein.
     Studies on the interaction between p53DBD and DNA by FRET showed that the bend angle of a half-site of p21 promoter induced by the binding of p53DBD was 23.6°.
     Studies on the interaction between p53DBD and the target genes in this paper provide us more precise information to understand the interaction between p53 and DNA on the single molecule lever. It is helpful to understand the mechanism of carcinogenesis of tumor cells and provide a help to the study and design of medicine.
引文
[1] DeLeo A B, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl. Acad. Sci. USA, 1979, 76: 2420-2424
    
    [2] Lane, D P and Crawford, L V. T antigen is bound to a host protein in SV40-transformed cells. Nature, 1979, 278: 261-263
    [3] Linzer, D I and Levine, A J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell, 1979, 17: 43-52
    [4] Benchimol S, Lamb P, Crawford L V, et al. Transformation associated p53 protein is encoded by a gene on human chromosome 17. Somar. Cell Mol. Genet., 1985, 11: 505—510
    [5] McBride O W, Merry D and Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc. Natl. Acad. Sci. USA, 1986, 83: 130— 134
    [6] Miller C, Mohandas T, Wolf D, et al. Human p53 gene localized to short arm of chromosome 17. Nature, 1986, 319: 783-784
    [7] Oren M. The p53 cellular tumor antigen: gene structure, expression and protein properties. Biochim.Biophys.Acta, 1985, 823: 67—78
    [8] Fields S and Jang S K. Presence of a potent transcription activating sequence in the p53 protein. Science, 1990, 249: 1046—1049
    [9] Horikoshi N, Usheva A, Chen J, et al. Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53- mediated transcriptional repression. Mol. Cell. Biol., 1995, 15: 227—234
    [10] Yew P R and Berk A J. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature, 1992, 357: 82—85
    
    [11] Lin J, Chen J, Elenbaas V, et al. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev., 1994, 8: 1235-1246
    
    [12] Haupt Y, Maya R, Kazaz A et al. Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387: 296-299
    [13] Kubbutat M H G, Ludwig R L, Ashcroft M et al. Regulation of Mdm2-Directed Degradation by the C Terminus of p53. Mol. Cell, Biol., 1998, 18: 5690-5698
    
    [14] Murphy M, Hinman A and Levine A J. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev., 1996, 10: 2971—2980
    [15] Walker K K. and Levine A J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. USA., 1996, 93: 15335—15340
    [16] Venot C, Maratrat M, Dureuil C, et al. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J., 1998, 17: 4668-4679
    [17] Storey A, Thomas M, Kalita A. etal. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature. 1998. 393: 229-234
    [18] Bargonetti J, Manfredi J J, Chen X, et al. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev.. 1993. 7: 2565-2574
    [19] Hainaut P and Milner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res., 1993, 53: 4469-4473
    [20] Hainaut P and Milner J. A structural role for metal ions in the "wild-type" conformation of the tumor suppressor protein p53. CancerRes., 1993, 53: 1739-1742
    [21] Lakin N D and Jackson S P. Regulation of p53 in response to DNA damage. Oncogene, 1999, 18: 7644-7655
    [22] Gannon J V, Greaves R, Iggo R, et al. Activating mutations in p53 produce a common conformational effect - A monoclonal antibody specific for the mutant form. EMBO J., 1990,9: 1595-1602
    [23] Yewdell J W, Gannon J V and Lane D P. Monoclonal antibody analysis of p53 expression in normal and transformed cells. J.Virol., 1986, 59: 444-452
    [24] Pietenpol J A, Tokino T, Thiagalingam S, et al. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA, 1994, 91: 1998-2002
    [25] Shaulsky G, Goldfinger N, Ben-Ze'ev A, et al. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell,Biol., 1990, 10: 6565-6577
    [26] Selivanova G. Ryabchenko L, Jansson E, et al. Reactivation of mutant p53 through interaction of aC-terminalpeptide with the core domain. Mol. Cell Biol., 1999, 19: 3395-3402
    [27] Hupp T R, Sparks A and Land D P. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell, 1995, 83: 237-245
    [28] Wang X W, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat. Genet., 1995, 10: 188-195
    [29] Martinez J D, Craven M T, Joseloff E, et al. Regulation of DNA binding and transactivation in P53 by nuclear localization and phosphorylation. Oncogene, 1997, 14: 2511-2520
    [30] Hecker D, Page G, Lohrum M, et al. Complex regulation of the DNA-binding activity of p53 by phosphorylation: differential effects of individual phosphorylation sites on the interaction with different binding motifs. Oncogene, 1996, 12: 953-961
    [31] 马煜,钱德芳,曹利平.p53蛋白研究进展.国外医学临床生物化学与检验学分册,2002,23:41-42
    [32] Schneider E, Montenarh M, Wagner P. Regulation of CAK kinase activity by p53. Oncogene, 1998, 17: 2733-2741
    [33] Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol, 2000, 33: 1-6
    [34] 克劳斯G著.信号传导与调控的生物化学.孙超,刘景生译.北京:化学工业出社,2005.373-374
    [35] Jayaraman L, Prives C. Covalent and noncovalent modifiers of the p53 protein. Cell Mol Life Sci., 1999, 55: 76-87
    [36] Garkavtsev I, Grigorian IA, Ossovskaya VS, et al. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature, 1998, 391: 295-298
    [37] Kim E, Albrechtsen N and Deppert W. DNA conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53. Oncogene, 1997, 15: 857-869
    [38] Kim E, Rohaly G, Heinrichs S, et al. Influence of promoter DNA topology on sequence-specific DNA binding and transactivation by tumor suppressor p53. Oncogene,1998, 18: 7310-7318
    [39] Lambert P F, Kashanchi F, Radonovich M F, et al. Phosphorylation of p53 serine 15 increases interaction with CBP. JBiolChem., 1998, 273: 33048-33053
    [40] Liu Y, Li M, Lee EY, et al. Localization and dynamic relocalization of mammalian Rad 52 during the cell cycle and in response to DNA damage. Current Biol., 1999, 9: 975-978
    [41] Hoogervorst E M, Steeg H and Vries A. Nucleotide excision repair- and p53-deficient mouse models in cancer research. Mutation Research, 2005, 574: 3-21
    [42] 徐镔蕊,董卫星,何召庆,等.突变型抑癌基因p53在蛋鸡J亚群禽白血病中的表达.农业生物技术学报,2003,11:276-279
    [43] 龙塔,余锐萍,潘耀谦,等.流行性牛白血病肿瘤组织p53表达和分布研究.河南科技大学学报,2004,24:48-52
    [44] Leeuwena I S, Cornelisse C J, MisdorpaW, et al. P53 gene mutations in osteosarcomas in the dog. Cancer Letters, 1997, 111:173-178
    [45] Haga S, Nakayama M, Tatsumi K, et al. Overexpression of the p53 gene product in canine mammary tumors. Oncol Rep., 2001, 8: 1215-1219
    [46] Brazda V, Muller P, Brozkova K, et al. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem Biophys Res Commun., 2006, 351: 499-506
    [47] Riley T, Sontag E, Chen P, et al. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol, 2008, 9: 402-412
    [48] Soussi T and Wiman K. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell, 2007, 12: 303-312
    [49] Bullock A N and Fersht A R. Rescuing the function of mutant p53. Nat Rev Cancer, 2001,1: 68-76
    [50] 李大虎,张令强,贺福初.突变体p53研究进展.遗传,2008,30:697-703
    [51] Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res., 2000, 60: 6788~6793
    [52]Weisz L, Oren M and Rotter V. Transcription regulation by mutant p53. Oncogene, 2007, 26: 2202-2211
    [53] Kastan M B and Berkovich E. p53: a two-faced cancer gene. Nat Cell Biol., 2007, 9: 489— 491
    [54] Soussi T. Analysis of p53 Gene Alterations in Cancer: A Critical View. 25 Years of p53 Research. Springer: Dordrecht, 2005, 255—262
    [55] Moll U M, Erster S and Zaika A. p53, p53, p63 and p73--solos, alliances and feuds among family members. Biochem Biophys Acta., 2001, 1552: 47—59
    [56]StammS, Ben-Ari S, Rafalska I, et al. Function of alternative splicing. Gene, 2005, 344: 1-20
    [57] Lena AM, Shalom-Feuerstein R, Rivetti di Val C P, et al. miR-203 represses'sternness'by repressing DeltaNp63. Cell Death Differ., 2008, 15: 1187—1195
    [58] Meletis K, Wirta V, Hede S M, et al. p53 suppresses the self-renewal of adult neural stem cells. Development, 2006, 133: 363—369
    [59] Pellegrini G, Dellambra E, Golisano O, et al. p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. USA, 2001, 98: 3156-3161
    [60] Petrenko O, Zaika A and Moll U M. Delta Np73 facilitates cell immortalization and cooperates with oncogenic ras in cellular transformation in vivo. Mol. Cell. Biol., 2003, 23: 5540-5555
    [61] Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol., 2005, 7: 165—171
    [62] Bourdon JC. p53 and its isoforms in cancer. BrJ Cancer, 2007, 97: 277—282
    
    [63] Agami R, Blandino G, Oren M, et al. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature, 1999, 399: 809—813
    [64] Gaiddon C, Lokshin M, Ahn J, et al. A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain. Mol Cell Biol., 2001, 21: 1874-1887
    [65] Olive K P, Tuveson D A, Ruhe Z C, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell, 2004, 119: 847—860
    [66] Lang G A, IwakumaT, Suh Y A, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell, 2004, 119: 861—872
    [67]Irwin M S, Kondo K, Marin M C. Chemosensitivity linked to p73 function. Cancer Cell, 2003, 3: 403-410
    [68] Yang A and McKeon F. p63 and p73: p53 mimics, menaces and more. Nat Rev Mol Cell Biol., 2002, 1: 199-207
    [69] Strano S and Blandino G. p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle, 2003, 2: 348—349
    [70] Marin M C, Jost C A, Brooks L A, et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet.. 2000, 25: 47-54
    [71] Tada M, Furuuchi K, Kaneda M, et al. Inactivate the remaining p53 allele or the alternate p73? Preferential selection of the Arg72 polymorphism in cancers with recessive p53 mutants but not transdominant mutants. Carcinogenesis, 2001, 22: 515-517
    [72] Bergamaschi D, GascoM, HillerL, etal. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell, 2003, 3: 387-402
    [73] 吴忧,白澎.p53与人类肺癌关系研究的进展.国际呼吸杂志,2006,26:99-102
    [74] 李爱武,易祥华,周彩存,等.p53、C-erbB-2和nm23基因表达在非小细胞肺癌中的临床意义.临床肿瘤学杂志,2005,10:349-352
    [75] Cascallo M, Calbo J, Gelpi J L, et al. Modulation of drug cytotoxicity by reintroduction of wild-type p53 gene (Ad5CMV-p53) in human pancreatic cancer. Cancer Gene Ther., 2000,7: 545-556
    [76] Balagurumoorthy P, Sakamoto H, Lewis M S, et al. Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. Proc. Natl. Acad. Sci. USA, 1995,92: 8591-8595
    [77] Nagaich A K, Appella E and Harrington R E. DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J. Biol. Chem., 1997, 272: 14842-14849
    [78] Balagurumoorthy P, Lindsay S M and Harrington R E. Atomic force microscopy reveals kinks in the p53 response element DNA. Biophysical Chemistry, 2002, 102: 611-623
    [79] Zhou H J, Zhang Y, Ou-Yang Z C, et al. Conformation and rigidity of DNA microcircles containing wafl response element for p53 regulatory protein. J. Mol. Biol., 306: 227-238
    [80] Weinberg R L, Veprintsev D B, Bycroft M, et al. Comparative binding of p53 to its promoter and DNA recognition elements. J. Mol. Biol., 2005, 348: 589-596
    [81] LaVallie E R, DiBlasio E A, Kovacic S, et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology, 1993,11: 187-193
    [82] 王守业,徐小龙,刘清亮,等.荧光光谱在蛋白质分子构象研究中的应用.化学进展,2001,13:257-260
    [83] 许金钩,王尊本.荧光分析法.北京:科学出版社,2006
    [84] Feng XZ, Lin Z, YangL J, et al. Investigation of the interaction between acridine orange and bovine serum albumin. Talanta, 1998, 47: 1223-1229
    [85] Rosenzweig, AC. Metallochaperones: Bind and deliver. Chem. Biol., 2002, 9: 673-677
    [86] Ferrer M, Golyshina O V, Beloqui A, et al. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature, 2007, 445: 91-94
    [87] Tottey S, Waldron K J, Firbank, S J, et al. Protein-folding location can regulate manganesebinding versus copper-or zinc-binding. Nature, 2008, 455: 1138-1142
    [88] Glusker J P, Katz A K and Bock C W. Metal ions in biological systems. The Rigaku Journal, 1999, 16: 8—16
    
    [89] Lane DP. p53, guardian of the genome. Nature, 1992, 358: 15—16
    [90] Levine A J. The tumor suppressor genes. Annu Rev Biochem, 1993, 62: 623—651
    [91]Ko L J and Prives C. p53: puzzle and paradigm. Genes Dev, 1996, 10: 1054-1072
    [92] Levine A J. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88: 323 ~ 331
    [93] Ding H F and Fisher D E. Mechanisms of p53-mediated apoptosis. Crit Rev Oncog, 1998, 9: 83-98
    [94]Prives C. How loops, β sheets, and α helices help us to understand p53. Cell, 1994, 78: 543-546
    
    [95]Milner J. Forms and functions of p53. Semin. Cancer Biol., 1994, 5: 211—219
    [96] Anderson M E and Tegtmeyer P. Giant leap for p53, small step for drug design. BioEssays, 1995, 17: 3-7
    
    [97] Hainaut P, Soussi T, Shomer B, et al. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucl Acids Res., 1997, 25: 151-157
    [98] Hollenstein M, Shomer B, Greenblatt M S, et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucl Acids Res., 1996, 24: 141 — 146
    [99] Cho Y, Gorina S, Jeffrey P D, et al. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 1994, 265: 346—355
    [100] Verhaegh G W, Parat M O, Richard M J, et al. Modulation of p53 protein conformation and DNA-binding activity by intracellular chelation of zinc. Mol Carcinog, 1998, 21: 205— 214
    
    [101] Meplan C, Richard M J and Hainaut P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene, 2000, 19: 5227-5236
    [102] Butler J S and Loh S N. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry, 2003, 42: 2396—2403
    
    [103] Hainaut P, Rolley N, Davies M, et al. Modulation by copper of p53 conformation and sequence-specific DNA binding: role for Cu(II)/Cu(I) redox mechanism. Oncogene, 1995, 10: 27-32
    
    [104] Verhaegh G W, Richard M J, Hainaut P. Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol Cell Biol, 1997, 17: 5699—5706
    [105] Burstein E A, Vedenkina N S and Ivkova M N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol., 1973, 18: 263—275
    [106] Bougie I, Charpentier S and Bisaillon M. Characterization of the metal ion binding properties of the hepatitis C virus RNA polymerase. J. Biol. Chem., 2003, 278: 3868— 3875
    [107] Lakowicz J R. Principles of Fluorescence Spectroscopy. Second edition. New York: Plenum Press, 1999. 237-265
    [108] Lakowicz J R and Weber G. Quenching of fluorescence by oxygen-probe for structural fluctuations in macromolecules. Biochemistry, 1973, 12: 4161-4170
    [109] Slavik, J. Anilinonaphtalene sulfonate as a probe of membrane composition and function. Biochim.Biophys.Acta, 1982, 694: 1-25
    [110] 沈星灿,梁宏,何锡文,等.圆二色光谱分析蛋白质构象的方法及研究进展.分析化学,2004,32:388-394
    [111] Rogers D M and Hirst J D. Calculations of protein circular dichroism from first principles. Chirality, 2004, 16: 234-243
    [112] El-Deiry W S, Kern S E, Pietenpol J A, et al. Definition of a consensus binding site for p53. Nat. Genet, 1992, 1: 45-49
    [113] Halazonetis T D and Kandil AN. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBOJ., 1993, 12: 5057-5064
    [114] Friedman PN, Chen X B, Bargonetti J, et al. The p53 Protein is an Unusually Shaped Tetramer that Binds Directly to DNA. Proc. Natl. Acad. Sci. USA, 1993, 90: 3319-3323
    [115] Stenger J E, Tegtmeyer P, Mayr G A, et al. p53 oligomerization and DNA looping are linked with transcriptional activation. EMBOJ., 1994, 13: 6011-6020
    [116] Tokino T, Thiagalingam S, El-Deiry W S, et al. p53 tagged sites from human genomic DNA. Hum. Mol.Genet., 1994, 3: 1537-1542
    [117] Waterman J L, Shenk J L and Halazonetis T D. The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. EMBO J.,1995, 14: 512-519
    [118] McNamara P T, Bolshoy A, Trifonov, E N, et al. Sequence-dependent kinks induced in curved DNA. J. Biomol. Struct. Dyn., 1990, 8: 529-538
    [119] Zhurkin V B, Ulyanov N B, Gorin A A, et al. Static and statistical bending of DNA evaluated by Monte Carlo simulations. Proc. Natl. Acad. Sci. USA., 1991, 88: 7046-7050
    [120] Nagaich A K, Bhattacharyya D, Brahmachari S K, et al. CA/TG sequence at the 5'end of oligo(A)-tracts strongly modulates DNA curvature. J. Biol. Chem., 1994, 269: 7824-7833
    [121] Werner M H, Gronenborn A M and.Clore G M. Intercalation, DNA kinking, and the control of transcription. Science, 1996, 271: 778-784
    [122] Dickerson R E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res., 1998, 26: 1906-1926
    [123] Olson W K, Gorin A A, Lu X J, et al. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. USA., 1998, 95: 11163-11168
    [124] Painter G R, Wright L L, Hopkins S, et al. Initial binding of 2'-deoxynucleoside 5'-triphosphates to human immunodeficiency virus type 1 reverse transcriptase. J. Biol.Chem., 1991, 15: 19362-19368
    [125] NambaH, HaraT, TukazakiT, et al. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/Cip1 pathway in human thyroid cells. Cancer Res., 1995, 55: 2075-2080
    [126] Bargonetti J, Reynisdottir I, Friedman PN, et al. Wild-type p53 site specific binding to cellular DNA is regulated by SV40T antigen and mutant p53. Genes Dev., 1992,6:1886-1898
    [127] Maret W. Zinc and sulfur: A critical biological partnership. Biochemistry, 2004, 43:3301-3309
    [128] Coleman J E. Zinc proteins: Enzymes, storage proteins, transcription factors, and replication proteins. Annu.Rev. Biochem., 1992, 61: 897-946
    [129] Christianson D W. Structural biology of zinc. Adv. Protein Chem., 1991, 42: 281-355
    [130] Lee, M S, Gippert G P, Soman K V, et al. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science, 1989, 245: 635-637.
    [131] Ber J M. Proposed structure for the zinc-binding domains for transcription factor ⅢA and related proteins. Proc.Nati. Acad. Sci. USA., 1988, 85: 99-102
    [132] Duan J X. and Nilsson L. Effect of Zn~(2+) on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry, 2006, 45: 7483-7492
    [133] De A, Ramesh V, Mahadevan S, et al. Mg~(2+) Mediated Sequence-Specific Binding of Transcriptional Activator Protein C of Bacteriophage Mu to DNA. Biochemistry, 1998,37: 3831-3838
    [134] Romani, AM and Scarpa A. Regulation of cellular magnesium. Front Biosci, 2000, 5:D720-D734
    [135] RomaniA M. Magnesium homeostasis in mammalian cells. Front Biosci, 2007, 12: 308-331
    [136] 易薇,胡一桥.差示扫描量热法在蛋白质热变性研究中的应用.中国药学杂志,2004,39:401-403
    [137] Eftink M R and Ghiron C A. Exposure of tryptophanyl residues in proteins, quantitative determination by fluorescence quenching studies. Biochemistry, 1976, 15: 672-680
    [138] Eftink M R and Ghiron C A. Fluorescence quenching studies with proteins. Anal.Biochem., 1981, 114: 199-227
    [139] Chang, HC, Chou WY and Chang GG. Effect of metal binding on the structural stability of pigeon liver malic enzyme. J. Biol. Chem., 2002, 277: 4663-4671
    [140] Benzaghou I, Bougie I and Bisaillon M. Effect of metal ion binding on the structural stability of the hepatitis C virus RNA polymerase. J. Biol. Chem., 2004, 279: 49755-49761
    [141] Calhoun D B, Vanderkooi J M and Englander S W. Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry, 1983, 22: 1533-1539
    [142] Berg J M and Godwin H A. Lessons from zinc-binding peptides. Annu. Rev. Biophys.Biomol. Struct., 1997, 26: 357-371
    [143] Thomson A J and Gray HB. Bio-inorganic chemistry. Curr.Opin.Chem.Biol., 1998, 2:155-158
    [144] Clegg R M. Fluorescence Resonance Energy Transfer and Nucleic Acids. Methods in enzymology, 1992, 18: 353-388
    [145] PerrinJ. C. R.Acad. Sci. (Paris), 1927, 184: 7
    [146] Forster T. Intramolecular energy migration and fluorescence. Ann. Phys., 1948, 2: 55-75
    [147] 房喻.时间分辩(荧光)各向异性及其在高分子科学研究中的应用.感光科学和光化学,1998,16:274-288
    [148] Phillips D. Luminescence lifetimes in biological systems. Analyst, 1994, 119:: 543-550
    [149] Ware W R, Doemeny L J and Nemzek T L. Deconvolution of fluorescence and phosphorescence decay curves. Least-squares method. J. Phys. Chem., 1973, 77: 2038-2048
    [150] Isenberg I, Dyson R D, Hanson R. Studies on the Analysis of Fluorescence Decay Data by the Method of Moments. J. Biophys., 1973, 13: 1090-1115
    [151] Ameloot M. Laplace deconvolution of fluorescence decay surfaces. Methods Enzymol.,1992, 210: 279-304
    [152] Brochom J C . Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol., 1994, 240: 262-311
    [153] Lopez R J, Gonzalez F and Moreno F. Application of a sine transform method to experiments of single-photon-decay spectroscopy: Single exponential decay signals. Rev.Sci.Instrum., 1992, 63: 3268-3273
    [154] Wu J, Parkhurst K M, Powell R M, et al. DNA bends in TATA-binding protein·TATA complexes in solution are DNA sequence-dependent. J. Biol. Chem., 2001, 276: 14614-14622
    [155] Wu J, Parkhurst K M, Powell R M, et al. DNA sequence-dependent differences in TATA-binding protein-induced DNA bending in solution are highly sensitive to osmolytes. J. Biol. Chem., 2001, 276: 14623-14627
    [156] Powell R M, Parkhurst K M and Parkhurst L J. Comparison of TATA-binding protein recognition of a variant and consensus DNA promoters. J. Biol. Chem., 2002, 277: 7776-7784
    [157] Ho W C, Fitzgerald M X and Marmorstein R. Structure of the p53 core domain dimer bound to DNA. J. Biol. Chem., 2006, 281: 20494-20502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700