膜蛋白跨膜区相互作用的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分化抗原36(CD36),血小板膜糖蛋白(Glycoprotein,GP),DNAX激活蛋白12(DAP12)都是本实验室研究的膜蛋白,它们在细胞膜上具有多种功能,作用十分关键。课题组使用多种生化实验的方法来研究这些其跨膜区相互作用,已经得到了很多有重要意义的实验数据。发现其跨膜区部分能通过相互作用在膜内发生寡聚现象,调控了膜内外的信号传导。因此,使用分子动力学模拟方法来进一步研究跨膜螺旋如何在双层膜中自组装,并形成具有生物功能的寡聚复合物。
     首先,使用全原子模拟的方法研究了CD36跨膜区1野生型和突变型G16I的装配特性。发现G8对装配影响非常低;G12对装配影响略高于G8;G16和A20还有G23等3组氨基酸之间有强烈相互作用,对二聚装配有关键作用。其突变体G16I不能形成稳定二聚体。
     接着,通过全原子模拟方法观察了GPIB-IX复合物跨膜区的装配过程。发现复合物跨膜区中的几个极性氨基酸的确主导了的寡聚。IB通过靠近N端的Y492,C端的A502和S503来与IBβN端的Q129和C端的H139装配,而IX通过靠近N端的D135和C端的多个疏水氨基酸来与IBβN端的Q129和C端的疏水氨基酸装配。
     最后,多次粗粒化模拟了DAP12跨膜区的二聚装配过程,获得了量化的结果。发现在交叉角分布图中,V42野生型的左手装配出现的次数高于右手装配,而且2个跨膜螺旋之间的接触区域是很集中的,在随后的全原子模拟结果中也证明了左手装配是稳定的装配方式。非破坏性突变的确能够加强二聚的强度,交叉角分布图和螺旋接触图都与V42非常相似。破坏性突变不能产生稳定的装配,其交叉角分布图上左手装配的数量大大降低了,在螺旋接触图上它们产生了与V42完全不同的装配方式。
     使用全原子模拟和粗粒化模拟2种分子动力学模拟方法研究了跨膜区相互作用,获得了生化分子的结构信息,验证了生化实验结果,在氨基酸分子层面上解释其相互作用机制。并且预测了新的跨膜螺旋相互作用位点,指导未来的生化实验。
CD36, GP, DAP12were well researched in our lab, they aremultifunctional and play a vital role on the cell membrane. Our group has usedvarious biochemistry methods to study their transmembrane(TM) domaininteractions. We found that their TM domains could self-assemble intooligomerization and regulate signaling transmission. We used to study deeplyon how these TM domains interact with each other in the bilayer and integrateinto oligomer by molecular dynamics simulation.
     First, atomatics simulation(AT-MD) was applied to study the features ofCD36TM1WT and its mutant G16I. We found that G8has little effect andG12has small effect on dimerizaton. G16, A20, G23pairs have stronginteraction driving the2TM helices into dimer. When G16was mutate into I,the2TM helice could not self-assemble into dimer.
     Second, AT-MD was used to study the packing course of the GPIB-IXcomplex and found that several polar residues have dominant role in complexoligomerization. These residues are Y492, A502, S503of IB, Q129, H139ofIBβ, D135and some hydrophobic residues of IX.
     Finally, coarse-grained simulation(CG-MD) was utilized to study DAP12.V42WT generate a bimodal packing dimer in crossing angle distribution, andthe left-handed(LH) packing had higher peek than right-handed(RH), LH andRH packing both shared same concentrated helix spatial contact area. Inadditional, LH packing was more stable dimer proved by the following AT-MD. All the non-disruptive mutants had similar crossing angle distributionsand helix spatial contacts with V42WT. In contrast, all the disruptive mutantscould not form stable dimmers and had fewer LH paking dimers than V42, andshow scattered helix spatial contacts area.
     Overall,2kinds of molecular dynamics simulation method (AT-MD andCG-MD) were used to research TM domain interactions. The simulation datasverified the biochemical test results and explained the interaction mechanismsat the amino acid molecular level. Moreover, the datas could forecast somenew TM peptide interaction sites and guide future biochemical experiments.
引文
[1] Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterialarchean and eukaryotic organisms [J]. Protein Sci,1998,7(4):1029-1038
    [2]左利民. CD36跨膜多肽的合成及其跨膜区相互作用机理研究[D].北京:北京化工大学,2011
    [3] Yildirim M A, Goh K I, Cusick M E, et al. Drug-target network [J]. Nat Biotechnol,2007,25(10):1119-1126
    [4]Tusnády G E, Dosztányi Z, Simon I. Transmembrane proteins in the Protein Data Bank:identification and classification [J]. Bioinformatics,2004,20(17):2964-2972
    [5]Cuthbertson J M, Bond P J, Sansom M S P. Transmembrane Helix-Helix Interactions:Comparative Simulations of the Glycophorin A Dimer[J]. Biochemistry,2006,45:14298-14310
    [6] Tomita M, Furthmayr H, Marchesi V T. Primary structure of human erythrocyte glycophorin A.Isolation and characterization of peptides and complete amino acid sequence[J]. Biochemistry.1978,17:4756-4770
    [7] Engelman D M, Adair B D, Brunger A. Dimerization of glycophorin A transmembrane helices:mutagenesis and modeling[J]. Society of General Physiologists series,1993,48:11-21
    [8] Lemmon M A, Flanagan J M, Treutlein H R, et al. Sequence specificity in the dimerisation oftransmembrane a-helices [J]. Biochemistry,1992,31:12719-12725
    [9] MacKenzie K R, Prestegard J H, Engelman D M. A transmembrane helix dimer: structure andimplications [J]. Science,1997,276:131-133
    [10] Fisher L E, Engelman D M, Sturgis J N. Detergents modulate dimerization, but not helicity, ofthe glyco-phorin A transmembrane domain[J]. J Mol Biol.1999,293:639-651
    [11]. Fisher L E, Engelman D M, Sturgis J N. Effect of detergents on the association of theglycophorin a transmem-brane helix[J]. Biophys J.2003,85:3097-3105
    [12] Langosch D, Brosig B, Kolmar H, et al. Dimerisation of the glycophorin A transmembranesegment in membranes probed with the ToxR transcription activator[J]. J Mol Biol.1996,263:525-530
    [13] Russ W P, Engelman D M. TOXCAT: a measure of transmembrane helix association in abiological membrane[J]. Proc Natl Acad Sci USA.1999,96:863-868.
    [14] Smith S O, Song D, Shekar S, et al. Structure of the transmembrane dimer interface ofglycophorin A in membrane bilayers [J]. Biochemistry.2001,40:6553-6558
    [15] Gratkowski H, Lear J D, DeGrado W F. Polar side chains drive the association of modeltransmembrane peptides[J]. Proc Natl Acad Sci USA,2001,98:880-885
    [16] Call M E, Schnell J R, Xu C, et al. The structure of the ζζ transmembrane dimer reveals featuresessential for its assembly with the T cell receptor [J]. Cell,2006,127:355-368
    [17] Faham S, Yang D, Bare E, et al. Side-chain contributions to membrane protein structure andstability [J]. J Mol Biol,2004,335,297-305
    [18] Partridge A W, Therien A G, Deber C M. Polar mutations in membrane proteins as a biophysicalbasis for disease [J]. Biopolymers,2002,66:350-358
    [19] Kim C, Schmidt T, Cho E G, et al. Basic amino-acid side chains regulate transmembraneintegrin signaling[J]. Nature,2011,481:209-213
    [20] Harmon C M, Abumrad N A. Binding of sulfosuccinimidyl fatty acids to adipocyte membraneproteins: isolation and amino-terminal sequence of an88-kD protein implicated in transport oflong-chain fatty acids [J]. J Membr Biol,1993,133:43-49
    [21] Abumrad N A, el-Maghrabi M R, Amri E Z, et al. Cloning of a rat adipocyte membrane proteinimplicated in binding or transport of long-chain fatty acids that is induced during preadipocytedifferentiation Homology with human CD36[J]. J Biol Chem,1993,268:17665-17668
    [22] Endemann G, Stanton L W, Madden K S, et al. CD36is a receptor for oxidized low densitylipoprotein[J]. J Biol Chem,1993,268:11811-11816
    [23]Tandon N N, Kralisz U, Jamieson G A. Identification of glycoprotein IV (CD36) as a primaryreceptor for platelet-collagen adhesion[J]. J Biol Chem,1989,264:7576-7583
    [24] Silverstein R L, Asch A S, Nachman R L. Glycoprotein IV mediates thrombospondin-dependentplatelet-monocyte and platelet-U937cell adhesion [J]. J Clin Invest,1989,84:546-552
    [25]Sampson M J, Davies I R, Braschi S, et al. Increased expression of a scavenger receptor (CD36)in monocytes from subjects with type diabetes[J]. Atherosclerosis,2003,167:129-134
    [26]Laugerette F, Passilly-Degrace P, Patris B, et al. CD36involvement in orosensory detection ofdietary lipids, spontaneous fat preference, and digestive secretions[J]. J Clin Invest,2005,115:3177-3184
    [27] Luo S Z, Mo X, López J A, et al. Role of the transmembrane domain of glycoprotein IX inassembly of the glycoprotein IB-IX complex[J]. J Thromb Haemost,2007,5:2494-2502
    [28] Berndt M C, Shen Y, Dopheide S M, et al. The vascular biology of the glycoprotein IB-IX-Vcomplex [J]. Thromb Haemost,2001,86:178-188
    [29] Andrews R K, Harris S J, McNally T, et al. Binding of purified14-3-3ξsignaling protein todiscrete amino acid sequences within the cyto-plasmic domain of the platelet membraneglycoprotein IB-IX-V complex[J]. Biochemistry,1998,37:638-647
    [30] Andrews R K, Gardiner E E, Shen Y, et al. Glycoprotein IB-IX-V[J]. Int J Biochem Cell Biol,2003,35:1170-1174
    [31] Kahn M L, Diacovo T G, Bainton D F. Glycoprotein V efficient platelets have undiminishedthromb in responsiveness and do not exhibit a Bernard-Soulier phenotype [J]. Blood,1999,94:4112-4121
    [32] Dong J F, Gao S, Lopez J A. Synthesis, assembly, and intracellular transport of the plateletglycoprotein IB-IX-V complex[J]. J Biol Chem,1998,273:31449-31454
    [33] Olcese L, Cambiaggi A, Semenzato G, et al. Human killer cell activatory receptors for MHCclass I molecules are included in a multimeric complex expressed by natural killer cells[J]. JImmunol,1997,158:5083-5086
    [34] Tomasello E, Olcese L, Vély F. Gene structure, expression pattern, and biological activity ofmouse killer cell activating receptor-associated protein (KARAP)/DAP-12[J]. J BiolChem,1998,273:34115-34119
    [35] Bouchon A, Hernández-Munain C, Cella M, et al. A DAP12-mediated pathway regulatesexpression of CC chemokine receptor7and maturation of human dendritic cells[J]. J ExpMed,2001,194:1111-1122
    [36] Lanier L L. DAP10and DAP12associated receptors in innate immunity [J]. Immunol Rev,2009,227:150-160
    [37] Ivashkiv L B.Cross-regulation of signaling by ITAM-associated receptors [J]. Nat Immunol,2009,10:340-347
    [38] Case D A, Cheatham T E, Darden T. The Amber biomolecular simulation programs[J]. JComput Chem,2005,26:1668-1688
    [39] MacKerellj A D,Bashford,Bellott D D,et al. All-atom empirical potential for molecularmodeling and dynamics studies of proteins[J], J Phys Chem B,1998,102:3586-3616
    [40] Scott W R P, Hunenberger P H, Tironi I G, et al. The GROMOS biomolecular simulationprogram package[J]. J Phys Chem A,1999,103:3596-3607
    [41] Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atomforce field on conformational energetics and properties of organic liquids[J]. J Am ChemSoc,1996,118:11225-11236
    [42] Kaminski G A, Friesner R A, Tirado-Rives J, et al. Evaluation and reparametrization of theOPLS-AA force field for proteins via comparison with accurate quantum chemical calculationson peptides[J]. J Phys Chem. B,2001,105:6474-6487
    [43] Hall G G. The Lennard-Jones paper of1929and the foundations of molecular orbitaltheory[J].Adv Quant Chem,1991,22:1-6
    [44] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling toan external bath[J]. J Chem Phys,1984,81:3684-3690
    [45] Jorgensen W L, Chandrasekhar J, Madura J D. Comparison of simple potential functions forsimulating liquid water [J]. J Chem Phys,1983,79:926-935
    [46] Klauda J B, Brooks B R, MacKerell A D, et al. An ab initio study on the torsional surface ofalkanes and its effect on molecular simulations of alkanes and a DPPC bilayer[J]. J Phys ChemB,2005,109(11):5300-5311
    [47] Feller S E, MacKerell A D. An improved empirical potential energy function for molecularsimulations of Phospholipids [J]. J Phys Chem B,2000,104(31):7510-7515
    [48] Sonne J, Jensen M, Hansen F Y, et al. Reparameterization of All-AtomDipalmitoylphosphatidylcholine Lipid Parameters Enables Simulation of Fluid Bilayers at ZeroTension[J]. Biophys J,2007,92(12):4157-4167
    [49] Hogberg C J, Alexei M, Nikitin A M,et al. Modification of the CHARMM force field for DMPClipid bilayer[J]. J Comput Chem,2008,29(14):2359-2369
    [50] Berger O, Edholm O, J hnig F. Molecular dynamics simulations of a fluid bilayer ofdipalmitoylphosphatidylcholine at full hydration, constant pressure and constant temperature[J].biophysical journal,1997,72(5):2002-2013
    [51] Chandrasekhar I, Kastenholz M, Lins R D, et al. A consistent potential energy parameter set forlipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS9645A3forcefield[J].Eur Biophys J,2003,32(1):67-77
    [52] Siu S W I, Vacha R, Jungwirth P,et al. Biomolecular simulations of membranes: Physicalproperties from different force fields[J].J Chem Phys,2008,128(12):125103-125112
    [53] Davis J E, Rahaman O, Patel S. Molecular dynamics simulations of a DMPC bilayer usingnonadditive interaction models[J]. Biophys. J.2009,96(2),385-402
    [54] Chakrabarti N, Neale C, Payandeh J,et al. An iris-like mechanism of pore dilation in the CorAmagnesium transport system[J]. Biophys J,2010,98(5):784-792
    [55] Cuesta-Seijo J, Neale C, Khan M A, et al. Prive GG PagP Crystallized from SDS/CosolventReveals the Route for Phospholipid Access to the Hydrocarbon Ruler [J]. Structure,2010,18(9):1210-1219
    [56] Ulmschneider J P, Ulmschneider M B. United Atom Lipid Parameters for Combination with theOptimized Potentials for Liquid Simulations All-Atom Force Field[J]. J Chem Theory Comput.2009,5:1803-1813
    [57] Ulmschneider M B, Doux J P F, Killian J A, et al. Mechanism and Kinetics of PeptidePartitioning into Membranes from All-Atom Simulations of Thermostable Peptides[J]. J AMCHEM SOC,2010,132,3452-3460
    [58] Ulmschneider J P, Smith J C,White S H, et al. In Silico Partitioning and TransmembraneInsertion of Hydrophobic Peptides under Equilibrium Conditions[J]. J Am Chem Soc,2011,133:15487-15495
    [59] Ayton G S, Lyman E, Krishna V, et al. New insights into BAR domain-induced membraneremodeling [J]. Biophysical Journal,2009,97(6):1616-1625
    [60] Izvekov S, Voth G A. A multiscale coarse-graining method for biomolecular systems [J]. J PhysChem B,2005,109(7):2469-2473
    [61] Izvekov S, Voth G A. Multisc ale coarse-graining of mixed phospholipid/cholesterol bilayers[J]. J Chem Theory Comp,2006,2(3):637-648
    [62] Noid W G, Chu J W, Ayton G S, et al. The multiscale coarse-grainin gmethod. I: A rigorousbridge between atomistic and Coarse-Grained models [J]. J Chem Phys,2008,128(24):244114
    [63] Noid W G, Liu P, Wang Y, et al. The multiscale coarse-graining method. II: Numericalimplementation for Coarse-Grained molecular models [J]. J Chem Phys,2008,128(24):244115
    [64] Noid W G, Chu J W, Ayton G S, et al. Multiscale coarse-graining and structural correlations:connections to liquid state theory [J]. J Phys Chem B,2007,111(16):4116-4127
    [65] Marrink S J, Risselada J, Yefimov S, et al. The MART INI forcefield: coarse grained model forbiomolecular simulations [J]. J Phys Chem B,2007,111(27):7812-7824
    [66] Marrink S J, de Vries A H, Mark A E. Coarse grained model for semiquantitative lipidsimulations [J]. J Phys Chem B,2004,108(2):750-760
    [67] Monticelli L, Kandasamy S K, Periole X, et al. The MARTINI Coarse-Grained force field:extension to proteins [J]. J Chem Theory Comput,2008,4(5):819-834
    [68] Bond P J, Holyoake J, Ivetac A, et al. Coarse-Grained molecular dynamics simulations ofmembrane proteins and peptides [J]. J Struct Biol,2007,157(3):593-605
    [69] Bond P J, Wee C L, Sansom M S P. Coarse-Grained molecular dynamics simulatio ns of theenergetics of helix insertion into a lipid bilayer [J]. Biochemistry,2008,47(43):11321-11331
    [70] Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the cartesian equations ofmotion of a system with constraints; molecular dynamics of n-alkanes[J]. J CompPhys,1977,23:327-341
    [71] Gether U, Andersen P H, Larsson O M, et al. Neurotransmitter trans-porters: molecular functionof important drug targets[J]. Trends Pharmacol Sci,2006,27:375-383
    [72] Grossfield A, Pitman M C, Feller S E, et al. Internal hydration increases during activation of th eG-protein-coupled receptor rhodopsin [J]. J Mol Biol,2008,381(2):478-486
    [73] Romo T D, Grossfield A, Pitman M C. Concerted interconversion between ionic lock substatesof the beta2adrenergic receptor revealed by microsecond timescale molecular dynamics [J].Biophysical Journal,2010,98(1):76-84
    [74] Dror R O, Arlow D H, Borhani D W, et al. Identification of two distinct inactive conformationsof the beta2adrenergic receptor reconciles structural and biochemical observations [J]. ProcNatl Acad Sci USA,2009,106(12):4689-4694
    [75] Ulmschneider M B, Ulmschneider J P. Folding peptides into lipid bilayer membranes. J ChemTheory Comput[J],2008,4:1807-1809
    [76] Nymeyer H, Woolf T B, Garcia A E. Folding is not required for bilayer insertion: Replicaexchange simulations of an-helical peptide with an explicit lipid bilayer[J]. Proteins,2005,59(4):783-790
    [77] Kruger J, Fischer W B. Exploring the Conformational Space of Vpu from HIV-1:A VersatileAdaptable Protein[J]. J Comput Chem,2008,29:2416-2424
    [78] Bond P J, Parton D L, Clark J F, et al. Coarse-Grained simulations of the membrane-activeantimicro bialpeptide maculatin1.1[J]. Biophysical Journal,2008,95(8):3802-3815
    [79] Leonov H, Astrahan P, Krugliak M, et al. How do aminoadamantanes block the influenza M2channel, and how does resistance develop?[J]. J Am Chem Soc,2011,133:9903–9911
    [80] Im W, Brooks C L. Interfacial folding and membrane insertion of designed peptides studied bymolecular dynamics simulations[J]. Proc Natl Acad Sci USA,2005,102(19):6771-6776
    [81] Gkeka P, Sarkisov L. Interactions of phospholipid bilayers with several classes of amphiphilic-Helical peptides: Insights from Coarse-Grained molecular dynamics simulations [J]. J PhysChem B,2010,114(2):826-839
    [82] Vanni S, Neri M, Tavernelli I, et al. Observation of “Ionic Lock” Formation in MolecularDynamics Simulations of Wild-Type β1and β2Adrenergic Receptors[J]. Biochemistry,2009,48:4789-4797
    [83] Kandt C, Ash W L, Tieleman D P. Setting up and running molecular dynamics simulations ofmembra ne proteins[J]. Methods,2007,41:475-488
    [84] GruarinP R F, Thorne D J, Dorahy G F, et al. CD36is a ditopic glycoprotein with the N-terminaldomain implicated in intracellular transport [J]. Biochem Biophys Res Commun,2000,275:446-454
    [85] Hess B, Kutzner C, van der Spoel D, et al. GROMACS4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. J Chem Theory Comput,2008,4:435-447
    [86] van Gunsteren W F, Billeter S R, Eising A A. Biomolecular Simulation: The GROMOS96manual anduser guide[M]. Hochschulverlag AG an der ETH Zurich: Switzerland,1996
    [87] Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. J ChemPhys,1995103:8577-8593
    [88] Miyamoto S, Kollman P A. SETTLE: An Analytical Version of the SHAKE and RATTLEAlgorithm for Rigid Water Models[J]. J Comput Chem,1992,13:952-962
    [89] Hess B, Bekker H, Berendsen H J C, et al. LINCS: A linear constraint solver for molecularsimulation[J]. J Comp Chem,1997,18:1463-472
    [90] Baron R, de Vries A H, Hünenberger P H, et al. Configurational Entropies of Lipids in Pureand Mixed Bilayers from Atomic-Level and Coarse-Grained Molecular DynamicsSimulations[J]. J Phys Chem B,2006,110:15602-15614
    [91] Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition ofhydrogen-bonded and geometrical features[J]. Biopolymers,1983,22:2577-2637
    [92] Humphrey W, Dalke A, Schulten K. VMD-Visual molecular dynamics[J]. J MolGraph,1996,14:33-38
    [93] Senes A, Gerstein M, Engelman D M. Statistical analysis of amino acid patterns intransmembrane helices: The GxxxG motif occurs frequently and in association with β-branchedresidues at neighboring positions[J]. J Mol Biol,2000,296:921-936
    [94] Russ W P, Engelman D M. The GxxxG motif: A framework for transmembrane helix-helixassociation[J]. J Mol Biol,2000,25:911-919
    [95] Schneider D, Engelman D M. Motifs of Two Small Residues can Assist but are not Sufficient toMediate Transmembrane Helix Interactions[J]. J Mol Biol,2004,343:799-804
    [96] Luo S Z, Li R. Specific Heteromeric Association of Four Transmembrane Peptides Derived fromPlatelet Glycoprotein IB-IX Complex[J]. J Mol Biol,2008,382:448-457
    [97] Mo X, Lu N, Padilla A, et al. The transmembrane domain of glycoprotein IBβ is critical toefcient expression of glycoprotein IB-IX complex in the plasma membrane [J]. J BiolChem,2006,281:23050-23059
    [98] Mo X, Luo S Z, López J A, et al. Juxtamembrane basic residues in glycoprotein IBβ cytoplasmicdomain are required for assembly and surface expression of glycoprotein IB-IX complex[J].FEBS Letters,2008,582(23-24):3270-3274
    [99] Luo S Z, Mo X, Afshar-Kharghan V, et al. Glycoprotein Ib forms disulfide bonds with2glycoprotein Ib subunits in the resting platelet[J]. Blood,2007,109(2):603-609
    [100] Acharya R, Carnevale V, Fiorin G, et al. Structure and mechanism of proton transport throughthe transmembrane tetrameric M2protein bundle of the influenza A virus[J]. Proc Natl Acad SciUSA,2010,107(34):15075-15080
    [101] Gordon J C, Myers J B, Folta T, et al."H++: a server for estimating pKas and adding missinghydrogens to macromolecules"[J]. Nucleic Acids Res,2005,33:368-371
    [102] Myers J, Grothaus G, Narayanan S, Onufriev A,"A simple clustering algorithm can be accurateenough for use in calculations of pKs in macromolecules"[J]. Proteins,2006,63,928-938
    [103] Anezo C, de Vries A H, Hoeltje H D, et al. Method-ological issues in lipid bilayer simulations[J]. J Phys Chem B,2003,107,9424-9433
    [104] Tieleman D P, Forrest L, Sansom M S P, et al. Lipid properties and the orientation of aromaticresidues in OmpF, Influenza M2and Alamethicin systems: Molecular dynamics simulations[J].Biochemistry,1998,37:17554-17561
    [105] Zhou F X, Merianos H J, Brunger A T, et al. Polar residues drive association of polyleucinetransmembrane helices[J]. Proc Natl Acad Sci USA,2001,98:2250–2255
    [106] Gratkowski H, Lear J D, DeGrado W F. Polar side chains drive the association of modeltransmembrane peptides[J]. Proc Natl Acad Sci USA,2001,98:880-885
    [107] Joh N H, Min A, Faham S,et al. Modest stabilization by most hydrogen-bonded side-chaininteractions in membrane proteins[J].2008,453(26):1226-1270
    [108] Wei P, Liu X, Zuo L M, et al. The dimerization interface of the glycoprotein IBβ transmembranedomain corresponds to polar residues within a leucine zipper motif [J]. Protein Science2011(11):1814-1823
    [109] Simmerman H K, Kobayashi Y M, Autry J M, et al. A leucine zipper stabilizes the pentamericmembrane domain of phospholamban and forms a coiled-coil pore structure[J]. J Biol Chem,1996,271:5941-5946
    [110] Call M E, Wucherpfennig K W, Chou J J. The structural basis for intramembrane assembly of anactivating immunoreceptor complex[J]. Nat Immunol.2010,11(11):1023-1029
    [111] Nagle J F. Area/lipid of bilayers from NMR[J]. Biophys J,1993,64:1476-1481
    [112] Psachoulia E, Marshall D P, Sansom M S P. Molecular dynamics simulations of the dimerizationof transmembrane a-helices[J]. Acc Chem Res,2010,43:388-396
    [113] Psachoulia E, Fowler P W, Bond P J, et al. Helix-helix interactions in membrane proteins:coarse-grained simulations of glycophorina helix dimerization[J]. Biochemistry,2008,47:10503-10512
    [114] Wee C L, Ulmschneider M B, Sansom M S P. Membrane/Toxin Interaction Energetics via SerialMultiscale Molecular Dynamics Simulations [J]. J Chem Theory Comput,2010,6(3):966-976
    [115] Kalli A C, Campbell I D, Sansom M S P. Multiscale simulations suggest a mechanism forintegrin inside-out activation[J]. PNAS,2011,108(29):11890-11895
    [116] Cojocaru V, Balali-Mood K, Sansom M S P, et al. Structure and Dynamics of the Membrane-Bound Cytochrome P4502C9. PLoS Comput Biol,2011,7(8): e1002152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700