大分子印迹聚乙烯基吡咯烷酮基/海藻酸钙聚合物微球的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以海藻酸钠和聚乙烯基吡咯烷酮为原料,采用反相悬浮钙离子交联的方法,分别设计和制备了粒径约为200-300μm的聚乙烯基吡咯烷酮/海藻酸钙(PVP/CA)、水解聚乙烯基吡咯烷酮/海藻酸钙(CHPVP/CA)聚合物微球。用光学显微镜观测了微球的形貌,并讨论了影响微球粒径大小、分布和形态的各种因素:分散剂的种类及用量、水油比、搅拌速度以及单独影响CHPVP/CA聚合物微球的HPVP的水解度等。用紫外分光光度计和电导率仪等分析微球的重结合行为。探讨了各种操作手段如洗脱过程、洗脱时间等对微球的重结合量和印迹效率的影响,以及外部条件如交联剂CaCl2的浓度、BSA溶液pH值、离子强度(NaCl和CaCl2)等的影响。
     重结合热力学和动力学表明,两种印迹微球均比非印迹微球对目标蛋白质表现出更高的重结合量和特异性。同时发现,由于CHPVP/CA聚合物微球和PVP/CA聚合物微球交联方式上的差别,CHPVP/CA聚合物微球的互穿网络结构比PVP/CA的半互穿网络结构更加稳定和致密。CHPVP/CA聚合物基材与BSA结合的孔穴和官能团位点具有更好的特异重结合性。所以CHPVP/CA聚合物微球的稳定性和印迹效率要高于PVP/CA聚合物微球,但是重结合量却低于PVP/CA聚合物微球,而且CHPVP/CA聚合物微球的重结合效果对离子强度的敏感性要比PVP/CA高。
Calcium polyvinylpyrrolidone/alginate polymer microspheres (PVP/CA MIPMs) and calcium hydrolyzed polyvinylpyrrolidone/alginate polymer microspheres (PVP/CA MIPMs) macromolecularly imprinted hybrid polymer microspheres were firstly designed and prepared with sodium alginate (SA) and polyvinylpyrrolidone (PVP) by using CaCl2 as gelling agent in inverse-phase suspension. Morphology of BSA imprinted PVP-based hybrid polymer microspheres was observed by optical microscopy. The effect of the kind and quantity of the stabilizers, the ratio between the continuous phase and the disperse phase, the stiring speed, the percent of hydrolyzed PVP on the size, size distribution and morphology of the hybrid polymer microspheres. The rebinding capacity of the imprinted and non-imprinded microspheres is determined by UV spectrophotometry and conductivity meter. The processing methods such as eluting progress and time are inspected as impacting factors towards rebinding quantity and imprinting efficiency. The effects of extra stimulation like concentration of crosslinking agent (CaCl2), pH of the BSA solution and the ionic strength of Na+ and Ca2+ are also studied.
     Rebinding dynamic and thermodynamic behaviors of the two imprinted microspheres were evaluated, resulting in a higher affinity for imprinted microspheres relative to non-imprinted ones. CHPVP/CA MIPMs possess an interpenetrating network (IPNs) that is more stable and compact than the semi-IPNs of the PVP/CA due to the difference in their crosslinking manners. The cavities and functional sites of CHPVP/CA MIPMs are more facilitate in the specific rebinding process. Higher stability and imprinting efficiency are found in CHPVP/CA MIPMs rather than in the PVP/CA MIPMs, however the rebinding quantity is lower than the latter. Meanwhile, the rebinding behavior of the CHPVP/CA MIPMs is more sensitive to ionic strength than PVP/CA MIPMs.
引文
[1] Markowitz M A, Kust P R, Deng G, Catalytic silica particles via template-directed molecular imprinting, Langmuir, 2000, 16(4): 1759-1765
    [2] Vidyasankar S, Arnold F H, Molecular imprinting: selective materials for separations, sens -ors and catalysis, Current Opinion in Biotechnology, 1995, 6(2): 218-224
    [3] Polyakov, Loisil P, Gallezot P, Preparation and utilization of molecularly imprinted silicas, Advanced Materials, 1997, 9(7): 582-585
    [4] Wulff G, Molecular Recognition In Polymers Prepared By Imprinting With Templates, ACS Symposium Series, Sponsored by ACS, Div of Organic Chemistry, Washington, DC, USA: ACS, Div of Polymer Chemistry, Washington, DC: ACS, 1986, 186-230
    [5] Wulff G, Dhal P K, Template monomer control of the chirality induction in the polymer backbone during asymmetric vinyl polymerization, Macromolecules, 1990, 23(21): 4525-4527
    [6] Vlatakis G, Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361(3): 645-647
    [7] Huang J J, Zhao K Y, Gao N, et al. Preparation of macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. J Hebei University of Technology (in Chinese), 2007, 36: 21-25
    [8] Wizeman, W J, Kofinas, P. Molecularly imprinted polymer hydrogels displaying isomeri -cally resolved glucose binding. Biomaterials 2001, 22:1485-91
    [9] Rong F, Feng X G, Li P, et al. Preparation of molecularly imprinted microspheres by photo-grafting on supports modified with iniferter. Chin Sci Bull, 2006, 51(21): 2566-2571
    [10] By Feng Shi, Zan Liu, GuangluWu, et al. Surface Imprinting in Layer-by-Layer Nanostructured Films. Adv Funct Mater, 2007, 17(11): 1821-1827
    [11] Jia Niu, Feng Shi, Zan Liu, et al. Reversible Disulfide Cross-Linking in Layer-by-Layer Films: Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release. Langmuir, 2007, 23(11): 6377-6384
    [12] Pang X S, Cheng G X, Lu S L. Syn sis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin. Anal Bioanal Chem, 2006, 384(1): 225-330
    [13] X. S. Pang, G. X. Cheng, R. S. Li, Y. H. Zhang, Analytica Chimica Acta 550, 2005: 13-17
    [14] Parmpi P, Kofinas P. Biomimetic glucose recognition using molecularly imprinted polymer hydrogels. Biomaterials, 2004, 25:1969-73
    [15] Nicholas W T, Christopher W J, Keith R B, et al. From 3D to 2D: A Review of the Molecular Imprinting of Proteins, Biotechnol Prog 2006, 22, 1474-1489
    [16] Zhang F J, Cheng G X, Ying X G. Emulsion and macromolecules templated alginate basedpolymer microspheres. React Funct Polym, 2006, 66: 712-719
    [17] Pang X S, Cheng G X, Zhang Y H, Lu S L. Soft-wet polyacrylamide gel beads with the imprinting of bovine serum albumin. React Funct Polym, 2006, 66, 1182-1188
    [18] Ye L, Mosbach K. Molecularly imprinted microspheres as antibody binding mimics. React. Funct. Polym, 2001, 48(1-3): 149-157
    [19] Cameron Alexander, Hakan S. Andersson, Lars I. Andersson, et al, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J. Mol. Recogni, 2006, (19): 106-180
    [20] Pang X S, Cheng G X. Polymer Research Developments, New York. Nova Science Publishers Inc. 2006, 91-106
    [21] Zhang L Y, Cheng G X, Fu C. Molecular selectivity of tyrosine- imprinted polymers prepared by seed swelling and suspension polymerization, Poly Int, 2002,51(8): 687-692
    [22] Khotimchenko, Yu S, Koatev, V V, Savchenko, O V, et al. Physical-chemical properties, Physiological Activity, and Usage of Alginates, the Polysacarides of Brown Algae. Russian journal of marine biology, 2001, 27 (1) 53-64
    [23] M.Komigmma etal,Molecular imprinting:From Furdamented to Aprlucatim, Wilry, 2003
    [24] Go?khan Demirel, Go?kc.en O?zc.etin, Eylem Turan, et al, pH/Temperature-Sensitive Imprinted Ionic Poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) Hydrogels for Bovine Serum Albumin, Macromol. Biosci. 2005, (5): 1032-1037
    [25] Byrne M E, Park K, Peppas N A. Molecular imprinting within hydrogels. Adv Drug Deliver Rev, 2002, 54: 149-161
    [26] Rachkov A, Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach, Biochimica et Biophysica Acta, 2001, 1544: 255-266
    [27] S. Hjerten, J.-L. Liao, K. Nakazato, Byrne M E, G. Zamaratskaina, H.-Y. Zhang, Gels mimicking antibodies in their selective recognition of proteins, Chromatographia , 1997,44: 227-234
    [28] Ekberg B, Mosbach K, Molecular imprinting: A technique for producing specific separation materials, Trends in Biotechnology, 1989, 7(4): 92-96
    [29] Haupt K, Mosbach K, Molecularly imprinted polymers and their use in biomimetic sensors, Chemical Reviews, 2000, 100(7): 2495-2504
    [30]孙瑞丰,罗晖,于慧敏等,人血红蛋白质分子印迹聚合物的制备及分子识别性能,过程工程学报2005,15,341-344
    [31] Hishiya T, Shibata M, Kakazu M, et al, Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules, 1999, 32(7): 2265-2269
    [32] Cameron Alexander, Hakan S. Andersson, Lars I. Andersson, et al, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J. Mol. Recogni, 2006, (19): 106-180
    [33]崔英德,易国斌,廖列文,聚乙烯吡咯烷酮的合成与应用,北京:科学出版社, 2001,10-11
    [34]赵孔银,大分子表面印迹海藻酸盐基杂化聚合物微球的制备与特性, [博士学位论文],天津大学, 2007
    [35] Guo, T. Y.; Xia, Y. Q.; Wang, J.; Song, et al, Chitosan beads as molecularly imprinted polymer matrix for selective seperation of proteins. Biomaterials 2005, 26: 5737-5745
    [36] Mosbach K, Toward the next generation of molecular imprinting with emphasis on the formation, by direct molding, of compounds with biological activity (biomimetics), Analytica Chimica Acta, 2001, 435: 3-8
    [37] Sellergren B, Lepisteo M, Mosbach K, Highly enantio- and substrate-selective polymers obtained by molecular imprinting based on non-covalent interactions, Reactive Polymers, 1989, 10: 306-312
    [38] Andersson H S, Karlsson J G, Piletsky S A, et al, Study of the nature of recognition in molecularly imprinted polymers, II: Influence of monomer–template ratio and Sample load on retention and selectivity, J. Chromatogr. A, 1999, 848: 39-49
    [39]成国祥,陆书来,庞兴收等,生物大分子模板印迹凝胶磁性复合微球及其反相悬浮聚合制备方法,中国专利, 02121485. 9
    [40] Wizeman W J, Kofinas P, Molecularly imprinted polymer hydrogels displaying isomericaly resolved glucose binding, Biomaterials, 2001, 22: 1485-1491
    [41]陆书来,成国祥,蔡志江等.蛋白质模板印迹法制备纳米"孔穴"结构特异性生物材料.中国医学科学院学报, 2003, 25(5): 640-644
    [42]庞兴收,蛋白质印迹软湿凝胶聚合物微球的研究, [博士学位论文],天津大学, 2005
    [43] Draget KI, Skjak-Brak G, Christensen BE, et al, Swelling and partial solubilization of alginic acid gel beads in acidic buffer. Carbohydr. Polym., 1996, 29: 209-215
    [44] Nicholas W, Turner, Bryon E. Wright, Vladimir Hlady, et al, Formation of protein molecular imprints within Langmuir monolayers: A quartz crystal icrobalance study. Journal of Colloid and Interface Science, 2007, 308: 71-80
    [45] Parmpi, P.; Kofinas, P. Biomimetic glucose recognition using molecularly imprinted polymer hydrogels. Biomaterials 2004, 25: 1969-1973
    [46] Amrita Mohan, Christopher J. Oldfield. Analysis of Molecular Recognition Features (MoRFs). J. Mol. Biol. 2006, 362: 1043-1059
    [47] Shulai Lu, Guoxiang Cheng, Xingshou Pang. Protein-Imprinted Soft-Wet Gel Composite Microspheres with Magnetic Susceptibility. II. Characteristics. Journal of Applied Polymer Science. 2006, 99: 2401-2407
    [48] Nicholas W. Turner, Christopher W. Jeans, Keith R. Brain, et al, From 3D to 2D: A Review of the Molecular Imprinting of Proteins, Biotechnol. Prog. 2006, 22: 1474-1489
    [49] Ye L, Mosbach K. Molecularly imprinted microspheres as antibody binding mimics. React. Funct. Polym, 2001, 48(1-3): 149-157
    [50]张凤菊,乳液及蛋白质双模板印迹法海藻酸盐基微球的研究, [博士学位论文],天津大学,2006
    [51]李长伟,大分子印迹交联聚乙烯基吡咯烷酮微球的制备与特性研究,[硕士学位论文],天津大学,2007
    [52] Liu Y, Layrolle P, van Blitterswijk C A, et al, Biomimetic co-precipitation of calcium phosphate and bovine serum albumin on titanium-alloy, J. Biomed. Mater. Res., 2001, 57(3): 327-35
    [53] Liu Y, Hunziker E B, Randall N X, et al, Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate, Bioma -terials, 2003(24): 65-70
    [54] Draget KI, Skjak-Brak G, Christensen BE, et al, Swelling and partial solubilization of alginic acid gel beads in acidic buffer. Carbohydr. Polym., 1996, 29: 209-215
    [55] Park J M, Muhoberac B B, Dubin P L, et al, Effects of protein charge heterogeneity in protein-polyelectrolyte complexation, Macromolecules, 1992, 25: 290-295
    [56]黄建军,蛋白质印迹磷酸/海藻酸钙杂化微球的制备及特性研究, [硕士学位论文],天津大学, 2007
    [57] Hunnius M, Rufinska A, Maier W F, Selective surface rebinding versus imprinting in amorphous microporous silicas, Microporous and Mesoporous Materials, 1999, 29(3): 389-403
    [58] Hongping Ye, Simultaneous determination of protein aggregation, degradation, and absolute molecular weight by size exclusion chromatography–multiangle laser light scattering. Analytical Biochemistry, 2006 (356) 76-85
    [59]严瑞瑄,水溶性高分子,北京:化工工业出版社,1998, 587-593
    [60] Breitenbach J W. Popcorn polymerization. Advan Macromol Chem, 1968, 1: 139-167
    [61] Daniel H, Milan J. Bene?, Macroporous poly (vinylpyrrolidone-co- ethylene dimethacrylate) beads by suspension polymerization, Reactive & Functional Polymers, 2000, 45: 189-195
    [62]崔英德,黎新明, PVP水凝胶的应用与制备研究进展,化工科技, 2002, 10(2): 43-47
    [63] Hong Y, Chirila T V. Effect of crosslinked polyvinylpyrrolidone gels on cell growth in static cell cultures. Bio Med Mater Eng, 1997, 7 (11): 35 - 47.
    [64] Kulkarni A B, Skover G. Stable complexes of crosslinked polyvinyl- pyrrolidone and iodine and methods of making the same. Eur Pat Appl EP: 747062, 1996-12-11.
    [65] Uezu K, Nakamura H, Kanno J-I, et al, Metal ion-imprinted polymer prepared by the combina -tion of sueface template polymerization with postirradiation byγ-rays, Macromolecules, 1997, 30(13): 3888-3891
    [66] Guo, T. Y.; Xia, Y. Q.; Hao, G. J.; et al, Adsorptive seperation of hemoglobin by molecularly imprinted polymers. Biomaterials 2004, 25: 5905-5912
    [67]李仁胜,含吡咯烷酮基团的蛋白质印迹聚合物微球的研究: [天津大学硕士学位论文],天津大学, 2005
    [68]张怡华,蛋白质印迹丙烯酰胺-乙烯基吡咯烷酮共聚物微球的研究: [天津大学硕士学位论文,天津大学, 2006
    [69]马娟娟,王新龙,许兴友,以N-乙烯基吡咯烷酮为功能单体的S-萘普生印迹聚合物材料的合成及性能研究,功能高分子学报, 2005, 18(1): 145-148
    [70] Ye L, Pinel, Mosbach K, Synthesis and characterization of molecularly imprinted micro -spheres, Macromolecules, 2000, 33 (22): 8239-8245
    [71] Theodoridis G, Manesiotis P, Selective solid-phase extraction sorbent for caffeine made by molecular imprinting,Journal of Chromatography A, 2002, 948: 163-169
    [72]何天白,胡汉杰,海外高分子科学的新进展,北京:化学工业出版社, 1997, 193-214
    [73] Slade C J, Molecular (or bio-) imprinting of bovine serum albumin,Journal of Molecular Catalysis B: Enzymatic, 2000, 9: 97-105
    [74] Glad M, Reinholdsson P, Mosbach K, Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations, Reactive Polymers, 1995, 25(1): 47-54
    [75] Haginaka J, Takehira H, Hosoya K, et al. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer,Journal of Chromatogra -phy A, 1999, 849: 331-339
    [76]黄建军,赵孔银,高宁,成国祥.一种新型蛋白质大分子印迹杂化聚合物微球的制备.河北工业大学学报, 2007,36: 21-25
    [77]成国祥,李长伟,赵孔银,张立广.大分子印迹交联聚乙烯基吡咯烷酮微球及低温悬浮聚合制备方法,中国发明专利,申请号200710057858.1
    [78] Alvarez-Lorenzo C, Hiratani H, Tanaka K, et al, Simultaneous multiple-point rebinding of aluminum ions and charged molecules by a polyDAPholyte thermo-sensitive gel: controlling frustrations in a heteropolymer gel, Langmuir, 2001, 17: 3616-3622
    [79] S.K. Bajpai, Shubhra Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions, Reactive & Functional Polymers 59, 2004, 129-140
    [80] Genhua Wu, Zhuqing Wang, Jie Wang, Chiyang Hea. Hierarchically imprinted organic–inorganic hybrid sorbent for selective separation of mercury ion from aqueous solution. Analytica Chimica Acta, 2007, 582: 304-310
    [81] Feng Li, Hongquan Jiang, Shusheng Zhang. An ion-imprinted silica-supported organic–inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium(II) from aqueous solution. Talanta, 2007, 71: 1487-1493
    [82]程晋生,海藻酸盐和明胶/海藻酸钠混合凝胶,明胶科学与技术, 2004, 24: 169-177
    [83]英晓光,蛋白质及乳液印迹海藻酸盐基微球的特异重结合行为的研究, [硕士学位论文],天津大学, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700