土壤中手性环境污染物的分离及其对映体选择性降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,手性农药的对映体的分离及对映体选择性降解行为研究,一直是环境化学研究的热点之一。建立简便、快捷、准确、灵敏的对映体分离分析方法具有非常重要的学术意义和应用价值。由于手性农药的生物活性存在显著的立体特异性,其活性往往只存在于一个或少数几个异构体中。目前绝大多数手性农药仍然作为外消旋体生产和使用,在对映体水平上研究手性农药的环境行为有着重要的理论和实际应用价值。本研究围绕着农药的手性分离、提纯和对映体选择性降解开展相关研究。本论文共分为四章,分述如下:
     第一章介绍了手性环境污染物的研究历史,研究方法、影响手性环境污染物对应体选择性降解的因素和最新进展,以阐述本论文的目的和意义。
     第二章以毛细管电泳法,通过添加手性选择剂,成功分离了手性农药咪唑乙烟酸对映体。本章以羟丙基-β-环糊精(HP-β-CD)为手性选择剂,对咪唑乙烟酸对映体进行手性拆分,实验考察了手性添加剂种类、缓冲溶液pH值、手性添加剂浓度、堆积效应的影响;并就拆分机理进行了初步探讨。
     第三章应用毛细管电泳法分析环境土样中咪唑乙烟酸手性对映体进行分析检测,并研究了咪唑乙烟酸的对映体选择性降解情况。对大豆田中的咪唑乙烟酸对映体经行了为期30天的实时监测。咪唑乙烟酸对映体的对映体比率由最初的0.97变为0.58。实验结果表明,咪唑乙烟酸对映体在狗尾草的土壤环境中有选择性降解差异,存在生物活性差异。咪唑乙烟酸的对映体咪唑乙烟酸-I比咪唑乙烟酸-II比的降解速率要快的多,在土壤中的降解半衰期分别为6.8天和7.4天。本实验还从动力学角度对咪唑乙烟酸对映体的降解行为做了进一步研究,探讨了导致咪唑乙烟酸对映体降解差异的可能原因。
     第四章采用表面分子印迹技术合成了对除草剂咪唑乙烟酸具有较好选择性的表面分子印迹聚合物(MIP)。用IR和SEM测试技术分别对表面印迹聚合物进行了结构表征和表面形貌观察;静态吸附平衡实验和Scatchard分析结果表明,该印迹聚合物中存在着2类不同的结合位点。与化学组成相同的非印迹聚合物(NIP)相比,MIP对咪唑乙烟酸有较高的选择性和吸附性。
Chiral separation and enantioselective degradation of chiral pesticides become an important and fascinating research field in environment chemistry. It has momentous academic and practice significance to develop simple, fast, sensitive methods for the separation of the enantiomers. Many pesticides are chiral compounds and consist of two or more stereoisomers, which might differ in biological activity, toxicity on beneficial and non-target organisms, and environmental fate. Thus, it is necessary to obtain information on the toxicity and biotransformation of the chiral pollutants by developing a suitable method for the chiral resolution of the environmental pollutants. The dissertation consists of for chapters.
     Chapter 1 The enantioselective degradation of chiral environment pollution was reviewed. The objective and significance of this dissertation were described in brief.
     Chapter 2 The method for the separation of imazethapyer enantiomers was developed by using hydroxypropyl-β-cyclodextrin-modified modified capillary electrophoresis. The types and concentration of the chiral selectors, pH were investigated.
     Chapter 3 Enantioselective degradation of imazethapyer in field soil was investigated by capillary electrophoresis. The enantiomeric ratio values of the two enantiomeric pairs changed from initial about 0.97 to 0.58, respectively. As for enantioselective analysis, the two enantiomers were degraded with half-lives of 6.8 and 7.4 days respectively, indicating an obvious enantioselectivity.
     Chapter 4 A molecular imprinting polymer (MIP) using imazethapyer as temp late molecule synthesized on the surface of silica. The MIP was characterized by IR spectroscopy and SEM. The static adsorption equilibrium experiments and the Scatchard analysis show that there were two kinds of binding sites. The MIP exhibited better adsorption properties and selectivity compared with the corresponding non-imprinted polymers.
引文
1. Elisabet B, Lennart T. New methods for determination of glyphosate and (aminomethy) phosphonic acid in water and soil (J). J. Chromatogr. A, 2000,886, 207-216.
    2. Mohammad B,Yaduraju N T, Gita K. Analysis of flufenacet in soil, wheat grain and straw by gas chromatography [J]. J. Chromatogr. A, 2000, 886, 319-22.
    3. Bidleman, Tery F, Andi D, Soil-air exchange of organochlore pesticide transport in field soils [J]]. Adv. Environ. Res., 2004, 4, 57-65.
    4.刘长江,门万杰,刘彦军等.农药对土壤的污染及污染土壤的生物修复,农药系统科学与综合研究,2002, 18, 21-24.
    5. Williams, A. Opportunities for chiral agrochemicals. Pesti. Sci., 1996, 46, 3-9.
    6.王险峰,进口农药应用手册。北京,农业出版社,2000.
    7. Buser H R, Muller M D, Poiger T, Balmer M E, Environmental behavior of the chiral acetamide pesticide metalaxyl:enantioselective degradation and chiral stability in soil. Environ. Sci. Technol. 2002, 36, 221-226.
    8. Liu W P, Gan J, Lee S, Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin.J. Agri. Food Chem., 2004, 52, 6233-6238.
    9. Liu W P.Gan J,Qin S J,Isolation,Identification and Aqueous Toxicity of Enantiomers of Cypermethrin and Cynuthrin.Chirality., 2005, 17, 127-133.
    10. Liu W P, Gan J, Lee S J et a1, Isomer Selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin. Environ. Toxi. Chem., 2005, 24, l86l-l866.
    11. Romero E, Matallo M B, Pena, A, Sanchez-Rasero, F, Schmitt-Kopplin, P, Dios, G., Environ. Poll. 2001, 111, 209-215.
    12. Liu W P, Gan J Y, Daniel S, and William A, Enantioselectivity in environmental safety of current chiral insecticides. PNAS. 2005, 102,701–706.
    13. Kallenborn R, Huhnerfuus H, Chiral Environmental Pollutants, Springer, Berlin, 2001, 5-10.
    14. Lewis D L, Garrison A W, Wommack K E. Influnce of environmental changes on degradation of chiral pllutants in soils. Nature, 1999, 273, 15035-15044.
    15. Buerge I. J., Poiger T., Muller M. D., Buser, H-R. Enantioselective degradation of metalaxyl in soils: chiral preference changes with soil pH., Environ. Sci. Technol., 2003, 37,2668-2674.
    16. Buerge I J, Poiger T, Muller M D. Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Environ. Sci. Technol. 2006, 40, 5443-5450.
    17. Wang X Q, Jia G F, Qiu J, Diao J L, Zhu W T, Lv C G, Zhou Z Q, Stereoselective Degradation of Fungicide Benalaxyl in Soils and Cucumber. Plants. Chiralty., 2007, 19, 300-306.
    18. Müller, T. A.; Kohler, H.-P. E. Chirality of pollutants - effects on metabolism and fate. Appl. Microbiol. Biotechnol. 2004, 64, 300-316.
    19. Romreo E, Matatallo M B, Pena A, Sanchez-Rasero F, Schmitt-Koplin Ph, Dois G. Dissipation of racemic mecprop and dichlorprop and their pure R-enantiomers in there calcareous soils with and without peat addition. Environ. Poll., 2001, 111, 209-215.
    20.李志洪,赵兰坡,窦森.土壤学.北京,化学工业出版社,2005.
    21. Singh N, Factors affecting triadimefon degradation in soils. J. .Agri. Food Chem., 2005, 53, 70-75.
    22.陈坚,环境生物技术.北京,中国轻工业出版社, 1999.
    23.孔繁翔,尹大强,严国安,环境生物学,北京,高等教育出版社, 2000.
    24. Juteau P,Larocque R,Rho D,et al.Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl. Microbil Biotechnol, 1999, 52, 863-868.
    25. Potter C L,Glaser J A, Chang L W, Degradation of polynuclear armotic hydrocarbons under bench-scale compost conditions. Environ. Sci. Technol., 1999, 33, 1717-1725.
    26. Hundt K,Wagner M,Becher D, Effect of selected environmental factors on degradation and mineralization of biaryl compounds by bacterium ralstonia pickettii in soil and compost, Chemosphere,1998, 36, 2321-2335.
    27. SabatéJ,Grifool M,ViňM,. Isolation and characterization of a 2- methyphenantherne utilizing bacterium: identification of ring cleavage metabolites. Appl. Microbil Biotechnol, 1999, 52, 704-712.
    28.张宏军,崔海兰,周志强,等,莠去津微生物降解的研究进展,农药学报, 2002, 4, 10-16.
    29.刘维屏,徐超,周珊珊,环境化学, 2006, 25, 247-251.
    30. Müller R H,Kleinsteuber S,Babel W. Physiological and Genetic Characteristics of Two Bacterial Strains Utilizing Phenoxypropionate and Phenoxyacetate Herbicides. Microbial Res., 2001, 156, l2l-l3l.
    31. Westendorf , Benndorf D, Müller R H, Babel W. The twe enantiospecific dichloroprop/α-ketoglutarate-dioxygenases from Delftia acidovorans MC1-protein and sequnce date of RdpA and SdpA. Microbial Res, 2002, 157, 1-6.
    32. Westendorf A, Müller R H, Babel W. Purification and characterization of the enantionspecific dioxygenases from Delftia acidovorans MCI initiating the degradation of phenoxypropionate and phenoxyacetate herbicides. Acta Biotechnol, 2003, 23, 3-17.
    33. Nagata Y,Imai R,Sakai A, Isolation and characterization of Tn5-Induced mutants of pseudomonas paucimobilis UT26 defective in Y-Hexachlorocyclohexane Dehydrochlorinase (LinA).Biosci. Biotechnol Biochem.,l993, 57, 703-709.
    34. Nagata Y,Nariya T,Ohtomo R,Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of Y-hexachlorocyclohexane in pseudomonas paucimobilis, J. Bacteria1., 1993, 175, 6403-6410.
    35. Trantirek L, Hynkova K, Nagata Y, Murzin A, Ansorgova A,Sklenar V,Damborsky J. Reaction mechanism and stereochemistry ofγ-hexachlorocyclohexane dehydrochlorinase LinA. J. Biol. Chem., 2001, 276, 7734-7740.
    36. Hudlicky T, Gonzales D, Gibson D T, Enzymatic dihydroxylation of aromatics in enantioselective synthesis: expandingasymmetric methodlogy. Aldrichim Acta, 1999, 32, 53-62.
    37. Karlsson A, Parales R E, Gibson D T, Eklund H, Ramaswamy S. Structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science, 2003, 299, 1039-1042.
    38. Parales R E, Lee K, Rsnick S M, Jiang H, Lessner D J, Gibson D T. Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol., 2000a, 182, 1641-1649
    39. Parales R E, Resnick S M, Yu C L, Boyd D R, Sharma N D, Gibson D T. Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cis-dihydroxylation: control by phenylalanine 352 in theα-subuniy. J. Bacteriol., 2000b, 182, 5495-5504.
    40. Müller, M. D., Buser, H. R. Environ. Sci. Technol., 1995, 29, 2031-2037.
    41. Li S., Purdy W. C., Cyclodextrins and their applications in analytical chemistry, Chem. Rev., 1992, 92, 1457-1470.
    42. Maruszak W, Trojanowicz M, Margasinska M, Engelhardt H., Application of carboxymethyl-β-cyclodextrin as a chiral selector in capillary electrophoresis for enantiomer separation of selected neurotransmitters, J. Chromatogr. A, 2001, 926, 327-336.
    43.李桦,罗维,肖登勇,张华山,胡先明,卡替诺尔和氟西汀对映体的高效毛细管电泳分离,分析测试学报,2001, 20, 32-35.
    44.王建军,郑国钧,沙倩,杨柳,吴襟,孙万儒,利用磺酰化-β-环糊精的手性化合物毛细管电泳拆分,分析测试学报,2001, 20, 28-31.
    45.游静,陆豪杰,姜廷福,欧庆瑜,杀鼠灵对映体的高效毛细管电泳手性拆分,分析测试学报, 2001, 20, 59-61.
    46. Liu Q F, Inoue T, Kirchhoff J R, Huang C, Tillekeratne L M V, Olmstead K, Hudson R A,Chiral separation of highly negatively charged enantiomers by capillary electrophoresis,J. Chromatogr. A, 2004, 1033, 349-356.
    47. Lurie I S, Klein R F X, Dal Cason T A, LeBelle M J, Brenneisen R, Weinberger R.E., Chiral resolution of cationic drugs of forensic interest capillary electrophoresis with mixtures of neutral and anionic cyclodextrins, Anal. Chem., 1994, 66, 4019-4026.
    48. D’Hulst A, Verbeke N, Chiral separation by capillary electrophoresis with oligosaccharides, J. Chromatogr. A, 1992, 608, 257-287.
    49. Stalcup A M, Agyei N M, Heparin: a chiral mobile-phase additive for capillary electrophoresis, Anal. Chem., 1994, 66, 3054-3059.
    50. Jin Y. K., Stalcup A.M., Application of heparin to chiral separation of antihistamines by capillary electrophoresis, Electrophoresis, 1998, 19, 2119-2123.
    51. Nishi H, Nakamura K, Nakai H, Sato T, Enantiomeric separation of drugs by mucopolysaccaride-mediated electrokinetic chromatography, Anal. Chem., 1995, 67, 2334-2341.
    52. Nishi H, Enantiomer separation of basic drugs by capillary electrophoresis using ionic and neutral polysaccharides as chiral selectors, J. Chromatogr. A, 1996, 735, 345-351.
    53. Gotti R, Cavrini V, Andrisano V, Mascellani G, Dermatan sulfate as useful chiral selector in capillary electrophoresis, J. Chromatogr. A, 1998, 814, 205-211.
    54. Gotti R., Furlanetto S., Andrisano V., Cavrini V., Pinzauti S., Design of experiments for capillary electrophoretic enantioresolution of salbutanol using dermatan sulfate, J. Chromatogr. A, 2000, 875, 411-422.
    55. Tsuyoshi T, Takanori U, Jun H, Chiral separation of basic drugs by capillaryelectrophoresis with new glysaminoglycans, J. Chromatogr. A, 1999, 864, 163-171.
    56. Takatomo H, Takashi A, Yoshimoto S, New amphilic aminosaccharide derivatives as chiral selectors in capillary electrophoresis, J. Chromatogr. A, 2000, 875, 295-305.
    57. Kuhn R.,Stoeckin F.,Erni F, Chiral separations by host-guest complexation with cyclodextrin and crown ether in capillary zone electrophoresis, Chromatographia, 1992, 33, 32-36.
    58. Gübitz G, Schimid M G, Chiral separation principles in capillary electrophoresis, J. Chromatogr. A, 1997, 792, 179-225.
    59.冷桃花,郭伟强,王成云,任一平,磺化-b-环糊精及手性冠醚在毛细管电泳手性拆分中的应用,浙江大学学报(理学版),2003, 30, 5, 550-553.
    60. Mori Y., Ueno K., Umeda T., Enantiomeric separations of primary amino compounds by non-aqueous capillary zone electrophoresis with a chiral crown ether, J. Chromatogr. A, 1997, 757, 328-332.
    61. Nishi H., Nakamura K., Nakai H., Sato T., Separation of enantiomers and isomers of amino compounds by capillary electrophoresis and high-performance liquid chromatography utilizing crown ethers, J. Chromatogr. A, 1997, 757:225-235.
    62. Riester D, Wiesmüller K H, Stoll D, Kuhn R, Racemization of amino acids in Solidphase peptide synthesis investigated by capillary electrophoresis, Anal. Chem., 1996, 68, 2361-2365.
    63. Iványi T., Pál K., Lázár I., Massart D.L., Heyden Y.V., Application of tetraoxadiazacrown ether derivatives as chiral selector modifiers in capillary electrophoresis,J. Chromatogr. A, 2004, 1028, 325-332.
    64. Brunnkvist Brunnkvist H, Karlberg B, Granelli I,Enantiomeric separation of TAPP, H–Tyr–(D)Ala–Phe–Phe–NH2 by capillary electrophoresis using 18-crown-6-tetracarboxylic acid as a chiral selector,J. Chromatogr. B., 2003, 793, 343-350.
    65. Tanaka Y., Otsuka K., Terabe S, Separation of enantiomers by capillaryelectrophoresis–mass spectrometry employing a partial filling technique with a chiral crown ether,J. Chromatogr. A, 2000, 875, 323-330.
    66. Armstrong D W, Rundlett K L, Reid G L, Use of a macrocyclic antibiotic, rifamycin B, and indirect detection for the resolution of racemic amino alcohols by CE, Anal.Chem., 1994, 66, 1690-1695.
    67. Sharp V., Enantiomeric separation of flubiprofen with macrocyclic antibiotic of LY307559 as chiral additive by capillary electrophoresis,J. Liq. Chromatogr. & Rel. Technol., 1997, 20, 6, 887-898.
    68. Kang J.W., Wistuba D., Schurig V., Fast enantiomeric separation with vancomycin as chiral additive by co-electroosmotic flow capillary electrophoresis: Increase of thedetection sensitivity by the partial filling technique, Electrophoresis, 2003, 24, 2674-2679.
    69.叶晓霞,俞雄,以万古霉素为流动相添加剂的高效液相色谱法手性分析系统的建立,分析化学,2003, 31, 522-526.
    70. Ward T. J., Alton B. Farris III, Chiral separations using the macrocyclic antibiotics: a review, J.Chromatogr. A, 2001, 906, 73-89.。
    71. Pena M S, Zhang Y, L, Warner I M, Enantiomeric separations by use of calixarene electrokinetic chromatography, Anal. Chem., 1997, 69, 16, 3239-3242.
    72. Haginaka J., Enantiomer separation fo drugs by capillary electrophoresis using proteins as chiral selectors, J. Chromatogr. A, 2000, 875, 235-254.
    73.韦寿莲,莫金垣,李风屏,牛血清蛋白对手性物质的毛细管电泳拆分,分析化学,2003, 8, 972-975.
    74. Guo L, Lin S J, Dai D S, Yang Y F, Qi L, Wang M X, Chen Y., Enantioseparation ofα-quaternary amino amides by capillary electrophoresis with human serum albumin, Anal. Lett., 2003, 36, 1451-1462.
    75. Martinez-Pla J J, Martín-Biosca Y, Sagrado S, Villanueva-Caman~as R.M., Medina-Hernández M.J., Fast enantiomeric separation of propranolol by affinity capillary electrophoresis using human serum albumin as chiral selector: application to quality control of pharmaceuticals, Anal. Chim. Acta, 2004, 507, 175-182.
    1. Garcia J C, Takashima K. Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide. J Photochem Photobiol A: Chem, 2003, 155, 215?226.
    2. Anderson P C, Hibberd K A, Evidence for the interaction of an imidazolinone herbicide with the leucine, valine and isoleucine metabolism, Weed Sci., 1985, 33, 479-483.
    3. Lao W J, Jay G, High-performance liquid chromatographic separation of imidazolinone herbicide enantiomers and their methyl derivatives on polysaccharide-coated chiral stationary phases, J. Chromatogr. A, 2006, 1117, 184–193.
    4. Lao W J, Jay G, Responses of enantioselective characteristics of imidazolinone herbicides and Chiralcel OJ column to temperature variations, J. Chromatogr. A, 2006, 1131 74–84.
    5. Zhou Q Y, Xu C, Zhang Y S, Liu W P, Enantioselectivity in the Phytotoxicity of Herbicide Imazethapyr, J. Agri. Food Chem., 2009, 57, 1624–1631.
    6. Kannan R, Gerald W S, Direct NMR determination of optical purity of nicotinic and quinolinic carboxylic acid compounds using 1,2-diphenylethane-1,2-diamine as a chiral solvating agent. Spectroscopy Letters, 2001, 34, 255–266.
    7. Klein C, Schneider R J, Meyer M T, Aga D S, Enantiomeric separation of metolachlor and its metabolites using LC-MS and CZE, Chemosphere, 2006, 62, 1591-1599.
    8. Liu W P, Gan J J, Lee S, Werner I, Isomer selectivity inaquatic toxicity and biodegradation of cypermethrin, J Agri. Food Chem., 2004, 52, 6233-6238.
    9. Abushoffa A M, Fillet M, Servais A C, Hubert P, and Crommen J, Enhancement of selectivity and resolution in the enantioseparation of uncharged compounds using oppositelt chargeed cyclodextrin in cappilary electrophoresis, Electrophoresis, 2003, 24, 343-350.
    10. Tanaka Y, Terabe S, Enantiomer separation of acidic racemates by capillary electrophoresis using cationic and amphoteric beta-cyclodextrins as chiral selectors, J. Chrom. A, 1997, 781, 151–160.
    1. Bidleman, Tery F, ANdi D, Soil-air exchange of organochlore pesticide transport in field soils [J]]. Adv. Environ. Res., 2004,4, 57-65
    2.刘长江,门万杰,刘彦军等.农药对土壤的污染及污染土壤的生物修复,农药系统科学与综合研究,2002, 18, 21-24.
    3. Williams A, opportunities for chiral agrochemicals. Pestic. Sci. 1996, 46, 3-9.
    4. Hans R, Environmental behavior of the chiral acetamide pesticide metalaxyl:enantioselective degradation and chiral stability in soil. Environ. Sci. Technol. 2002, 36, 221-226.
    5. Liu W P, Gan J Y, Daniel S, William A, Enantioselectivity in environmental safety of current chiral insecticides. PNAS. 2005, 102,701–706.
    6. Kallenborn R, Huhnerfuus H, Chiral Environmental Pollutants, Springer, Berlin, 2001, 8, 5-10.
    7. Lewis D L, Garrison A W, Wommack K E, Influnce of environmental changes on degradation of chiral pllutants in soils. Nature, 1999, 273, 15035-15044.
    8. Peoples T R, Wang T, Fine R R, Orwick P L, A new broad-spectrum herbicide for use in soybean and other legunes, Br. Crop Prot. Conf. Weeds, 1985, 1, 99-106.
    9. Elazzouzi M, Mekkaoui M, Zaza S, Madani M, Zrineh A, Chovelon J M, Abiotic Degradation of Imazethapr in Aqueous Solution, Journal of Environmental Science and Health, Part B. 2002, 5, 445-451.
    10. Renner, K A, Meggitt, W F, Penner, D, Effect of soil pH on imazaquin and imazethapyr adsorption to soil and phytotoxicity to corn (Zea mays). Weed Sci. 1988, 36, 78-83.
    11. Stougaard R N, Shea P J, Martin A R, Effect of soil type and pH on adsorption, mobility, and efficacy of imazaquin and imazethapyr. Weed Sci., 1990, 38, 67-73.
    12. Gennari M, Ne′gre M, Vidrola D, Adsorption of the herbicides imazapyr, imazethapyr, and imazaquin on soils and humic acids. J. EnViron. Sci. Health, Part B 1998, 33, 547-567.
    13. Loux, M M, Liebl, R A, Slife, F W, Adsorption of imazaquin and imazethapyr on soils, sediments, and selected adsorbents. Weed Sci., 1989, 37, 712-718.
    14. Zhou Q Y, Xu C, Zhang Y S, Liu W P, Enantioselectivity in the Phytotoxicity of HerbicideImazethapyr. J. Agri. Food Chem., 2009, 57, 1624–1631.
    15. Zhou Q Y, Xu C, Zhang Y S, Liu W P, Enantioselectivity in the Phytotoxicity of Herbicide Imazethapyr, J. Agri. Food Chem., 2009, 57, 1624–1631.
    1. Brüggemann O, Visnjevski A , Burch R , et al . Selective ext raction of antioxidant s with molecularly imprinted polymers [J], Anal. Chim. Acta., 2004, 504, 81-88.
    2. Vallano P T, Remcho V T. Highly selective separations by capillary elect rochromatography : Molecular imprint polymer sorbent s[J], J. Chromatogr. A, 2000, 887 : 1252135.
    3. Araki K, Maruyama T, Kamiya N , et al . Metal ion2selective membrane prepared by surface molecular imprinting [J].Journal of Chromatography B , 2005 , 818, 141-145.
    4. Shinkai S , Takeuchi M. Molecular design of synthetic receptors with dynamic , imprinting , and allosteric functions [J] Biosensors and Bioelect ronics , 2004 , 20, 1250-1259.
    5. Kubo T , Hosoya K, Watabe Y, et al . Polymer2based adsorption medium prepared using a f ragment imprinting technique for homologues of chlorinated bisphenol a produced in the environment [J]. J. Chromatogr. A, 2004, 1029, 37-41.
    6. Lu C H, Zhou W H, Han B, Yang H H, Chen X, Wang X R, Surface-imprinted core-shell nanoparticles for sorbent assays, Anal. Chem., 2007, 79, 5457-5461.
    7. Anderson P C, Hibberd K A, Evidence for the interaction of an imidazolinone herbicide with leucine, valine, and isoleucine metabolism. Weed Sci., 1985, 33, 479–483.
    8. Shaner D L, Robson P A, Absorption, translocation, and metabolism of AC 252214 in soybean. (Glycine max), com-mon cock lebur, Weed Sci., 1985, 33, 469-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700