Fe_3O_4纳米颗粒的制备、修饰与细胞转染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米颗粒由于表现出超顺磁性和良好的生物相容性,因而在生物医用领域有着广阔的应用前景,例如可用作细胞标记物、磁共振造影剂、靶向药物载体或热疗介质等。随着这些领域的发展,对磁性纳米颗粒的制备、修饰等方面的要求也越来越高。因此本文选择了磁性纳米颗粒中应用最为广泛的Fe3O4纳米颗粒,从制备与修饰两个方面进行了研究,并初步证实了经修饰的Fe3O4纳米颗粒对细胞转染的可行性。对这一方向的研究不仅为应用打下了基础,也具有重要的科学意义。
     首先,本文提出了并验证了制备水溶性Fe3O4纳米颗粒的一种新型界面共沉淀方法。在这一方法中,将二价与三价铁盐按比例溶解于水中,同时将二正丙胺溶于环己烷中作为铁离子的沉淀剂。由于二正丙胺很难溶于水,因此共沉淀反应被限制在水/环己烷界面上进行,能够制备大小为5-15nm的Fe3O4纳米颗粒,这种纳米颗粒被证实表面吸附有铵盐,因而具有良好的亲水性,能够在纯水中长时间保持稳定。此方法简单、易操作,使之有可能进行规模化生产。
     研究结果表明:界面共沉淀法与经典共沉淀法一样,都有一反应物浓度的临界值,当反应物浓度低于此值时,将不会生成Fe3O4纳米颗粒。但是,界面共沉淀法表现出一些特性,例如,能够获得Fe3O4的浓度范围变小;反应温度和浓度并不对产物的粒径产生明显影响,但通过温度的改变可调节产物在水中的稳定性及磁性能。实验结果揭示了界面共沉淀法与经典共沉淀法的异同点,证实了该反应在水/油界面上进行,据此我们提出了界面共沉淀法的机理。
     在上述工作基础上,本文将界面共沉淀法进一步拓展用于制备葡聚糖修饰的Fe3O4纳米颗粒,并研究了葡聚糖用量、分子量对产物性能的影响。相较于经典共沉淀法,在加入相同量的葡聚糖及相同的反应条件下时,界面共沉淀法能够获得粒径较大、葡聚糖的含量较少、饱和磁化强度更高的纳米颗粒。通过对形核理论的探讨我们认为,在葡聚糖存在的环境下制备四氧化三铁时,其颗粒优先在葡聚糖分子链上以及分子链的缠结处形核,并相互缠结而团簇结构;另一部分葡聚糖将包裹在团聚体外使之稳定。基于这一结构模型,界面共沉淀法产物性能的提高被认为是反应在界面上进行所导致的。
     然而,采用共沉淀法制备的葡聚糖/Fe3O4纳米颗粒在水中分散稳定性、结晶度等方面仍然不能满足生物医用的需要,因此本文采用了二甘醇作为反应溶剂,由于其具有较高沸点(245℃)而使反应可在相对较高的温度下进行。从而能够使产物结晶性得以提高,同时,产物在水中具有更高的分散稳定性,并被证实来源于二甘醇在纳米颗粒与大分子杂化后在表面的进一步吸附。另外,这种方法能够在制备不同种类的水溶性大分子修饰Fe3O4纳米颗粒中具有良好的普适性。
     本文采用了微乳液法对Fe3O4纳米颗粒进行了SiO2包裹的初步研究,证实包裹层的厚度能随着Fe3O4纳米颗粒的加入量及SiO2的加入量的改变而改变,产物具有较高的饱和磁化强度。但目前对包裹后产物的粒径及形貌的控制还不理想,有待进一步的研究。
     本文还对葡聚糖/Fe3O4纳米颗粒进行了骨髓基质干细胞的转染的初步研究,普鲁士蓝染色观察证实了这种纳米颗粒可以成功转染至骨髓基质干细胞中,并发现当Fe3O4浓度小于32μg/ml时,对细胞的繁殖几乎不产生不良作用;而浓度在32μg/ml以上时,则将抑制细胞的生长和繁殖。这一探索为进一步的分子影像学及细胞示踪研究打下了良好的基础。
Magnetic nanoparticles, which display superparamagnetic property and biocompatibil-ity, have been found wide potential applications in biomedical fields. For example, theycan be used as magnetic resonance image (MRI) agents, drug delivery carrier, and used inhyperthermia, DNA and protein bioseparation, etc. Along with the development in thesebiomedical fields, the requirements for the synthesis and modification of magnetic nanopar-ticles are improving. Therefore, the Fe3O4 nanoparticles (MNPs), which were researchedmost intensively, were chosen in this thesis.
     A novel interfacial coprecipitation method was proposed to prepare MNPs. In thisapproach, ferrous and ferric precursors were solved in water, while di-n-propylamine wasdiluted by cyclohexane to be used as precipitation agent. Therefore, the coprecipitationreaction was confined to the interface between water and oil because dipropylamine can notbe solved in water. MNPs were nucleated on the interface and move toward water phase,after they immersed in water completely, they would stop growing because of the absence ofalkali. As a result, about 10±5nm-sized MNPs can be prepared, and they possess relativelygood hydrophicility and stability in water. It is confirmed that the resultant MNPs possessnot only relatively narrow size distribution but also a hydrophilic amine-decorated surface,which provides them with the capability of being further modified.
     Consequently, we studied the interfacial coprecipitation mechanism by evaluating theeffects of the concentration of precursors and the temperature in preparation. If the concen-tration of Fe2+ is lower than about 7.5 mmol/L, no matter what concentration of the amine is,Fe3O4 would not be synthesized. The interfacial coprecipitation follows the mechanism ofseparated two steps, which is similar to the coprecipitation happens in homogeneous aque-ous medium. When the concentration of iron salt is higher than the critical limit, the sizeof the resultant nanoparticles would not change significantly. The effect of preparation tem-perature is totally different from the coprecipitation in aqueous medium, especially on thesize. In the interfacial coprecipitation, the size would not increase and dispersibility would be modified with the temperature increasing, which is caused by the mechanism of the for-mation of MNPs and their surface chemistry. Our efforts further confirmed the mechanismof formation of the nanoparticles in interfacial coprecipitation method, and the reaction pro-cedures of the coprecipitation, which maybe helpful for the phase control in the preparationof MNPs.
     Dextran, which is a kind of biocompatible macromolecule was chosen to modify MNPs.Both classical and interfacial coprecipitation were utilized to prepared dextran/MNPs hybridnanoparticles. The in?uences of the mass and molecular weight of dextran on the interfacialcoprecipitation were evaluated, and the comparison of two methods were carried out. Basedon the classical theory of nucleation, it is believed that the macromolecular chains can playthe role as a substrate for the nucleation of magnetite, thus to make the nanoparticles grow ona dextran chain just like pearls on a necklace. Furthermore, these”necklaces”can aggregateas clusters. The classical nucleation theory also shows that the shape and size of nanoparticlecould be affected by the shape of macromolecular chains and the interface tension betweenmacromolecule and MNPs. It was found that the content of dextran of resultant sampleprepared by interfacial coprecipitation is less than that prepared by the classical coprecipi-tation. Meanwhile, the saturation magnetization of nanoparticles prepared by the interfacialcoprecipitation is much higher than those prepared by the classical coprecipitation, which ismainly caused by their difference in dextran percentage.
     However, some drawbacks were found in the coprecipitation strategy, such as the dis-persibility, crystallinity, etc. Therefore a novel method were put forward for overcomingthese drawbacks, in which diethylene glycol was used as solvent to partly reduce ferrousion. Because of the relative high reaction temperature (about 220℃), the crystallinity of as-prepared nanoparticles was improved. Meanwhile, the dispersibility was also improved orig-inated from diethylene glycol absorbing on nanoparticles surface. In addition, this method isgeneral for many kinds of water-soluble macromolecules to modify the magnetite nanopar-ticles.
     Microemulsion method was utilized to coat a large mount of MNPs by silica layer.The thickness of coating layer can be easily tuned by the amount of Fe3O4 and silica, andthe resultant particles possess a relative high supersaturation magnetization. However, thecontrol of the size and shape of nanoparticles is difficult, which needs further studies.
     The transfection of magnetite nanoparticles to cell was evaluated and the results showsthat dextran/magnetite hybrid nanoparticles can be successfully transfected to bone marrowstem cells. When the concentration of magnetite is below 3232μg/ml, they almost have no in?uence on the differentiation of cells. This experiment identify the possibility of furtherresearch on the molecule and cell image and tracking.
引文
[1]张立德,牟季美,纳米材料与纳米结构,北京:科学出版社, 2001.
    [2] J. L. Kirschvink, J. L. Gould, Biogenic magnetite as a basis for magnetic field detection in animals,BioSystems, 1981, 13: 181-201.
    [3] D. A. Kuterbach, B. Walcott, R. J. Reeder, R. B. Frankel, Iron-containing cells in the honey bee (Apismellifera), Science, 1982, 218: 695-697.
    [4] J. S. Miller, M. Drillon, Magnetism: Molecules to Materials: Nanosized magnetic materials,Chichestor: Wiley-VCH Verlag, 2003.
    [5]姜寿亭,李卫,凝聚态磁性物理,北京:科学出版社, 2003.
    [6] D. Jiles, Introduction to magnetism and magnetic materials, New York : Chapman and Hall, 1991.
    [7] W. F. Jr. Brown, Thermal ?uctuations of a single-domain particle Phys. Rev. 1963, 130: 1677-86.
    [8] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, Applications of magnetic nanoparticles inbiomedicine, J. Phys. D: Appl. Phys, 2003, 36: R167-181.
    [9] H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional magnetic nanoparticles for protein separation andpathogen detection, Chem. Commun., 2006, 941-949.
    [10] C. Sestier, M. F. Da-Silva, D. Sabolovic, J. Roger, J. N. Pons, Surface modification of superpara-magnetic nanoparticles (Ferro?uid) studied with particle electrophoresis: Application to the specifictargeting of cells, Electophoresis, 1998, 19: 1220-1226.
    [11] A. K. Gupta, A. S. G. Curtis, Lactoferrin and ceruloplasmin derivatized superparamagnetic ironoxide nanoparticles for targeting cell surface receptors, Biomaterials, 2004, 25: 3029-3040.
    [12] P. S. Doyle, J. Bibette, A. Bancaud, J. L. Viovy, Self-assembled magnetic matrices for DNA separa-tion chips, Science, 2002, 295: 2237-2238.
    [13] F. Patolsky, Y. Weizmann, E. Katz, I. Willner, Magnetically amplified DNA assays (MADA): Sens-ing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles,Angew. Chem., Int. Ed., 2003, 42: 2372-2376.
    [14] E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, andapplications, Angew. Chem., Int. Ed., 2004, 43: 6042-6108.
    [15] S. Aime, M. Botta, M. Fasano, Lanthanide(III) chelates for NMR biomedical applications, Chem.Soc. Rev., 1998, 27: 19 29.
    [16] P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Gadolinium(III) chelates as MRI contrastagents: structure, dynamics, and applications, Chem. Rev., 1999, 99: 2293 2352.
    [17] S. Kubaska, D. V. Sahani, S. Saini, Dual contrast enhanced magnetic resonance imaging of the liverwith supermagnetic iron oxide followed by gadolinium for lesion detection and characterization. Clin.Radiol., 2001, 56: 410 415.
    [18] A. Jasanoff, Functional MRI using molecular imaging agents, Trends in Neurosciences, 2005, 28:120 126.
    [19] J. Rogers, J. Lewis, L. Josephson, The use of AMI-227 as an oral contrast agent for MRI, Invest.Radiol., 1994, 29: S81-82.
    [20] J. W. M. Bulte, T. Douglas, B. Witwer, S. C. Zhang, E. Strable, B. K. Lewis, H. Zywicke, B. Miller,P. van Gelderen, B. M. Moskowitz, I. D. Duncan, J. A. Frank, Magnetodendrimers allow endosomalmagnetic labeling and in vivo tracking of stem cells, Nat. Biotech., 2001, 19: 1141-1147.
    [21]俞耀庭,张兴栋,生物医用材料,天津:天津大学出版社, 2000.
    [22] K. Mossbach, U. Schro¨der, Preparation and application of magnetic polymers for targeting of drugs,FEBS Lett., 1979, 102: 112-116.
    [23] A. S. Lu¨bbe, C. Alexiou, C. Bergemann, Clinical applications of magnetic drug targeting, J. Surg.Res., 2001, 95: 200-206.
    [24] S. Rudge, C. Peterson, C. Vessely, J. Koda, S. Stevens and L. Catterall, Adsorption and desorptionof chemotherapeutic drugs from a magnetically targeted carrier (MTC), J. Contr. Rel., 2001, 74: 335-340.
    [25] Z. G. M. Lacava, R. B. Azevedo, E. V. Martins, L. M. Lacava, M. L. L. Freitas, V. A. P. Garcia, C. A.Rébula, A. P. C. Lemos, M. H. Sousa, F. A. Tourinho, Biological effects of magnetic ?uids: toxicitystudies, J. Magn. Magn. Mater., 1999, 201: 431-434.
    [26] K. J. Widder, R. M. Morris, G. A. Poore, D. P. Howard, A. E. Senyei, Selective targeting of magneticalbumin microspheres containing low-dose doxorubicin: Total remission in Yoshida sarcoma-bearingrats, Eur. J. Cancer Clin. Oncol., 1983, 19: 135-139.
    [27] S. Goodwin, C. Peterson, C. Hoh, C. Bittner, Targeting and retention of magnetic targeted carriers(MTCs) enhancing intra-arterial chemotherapy, J. Magn. Magn. Mater., 1999, 194: 132-139.
    [28] C. Alexiou, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil,A. S. Lu¨bbe, Locoregional cancer treatment with magnetic drug targeting, Cancer Res., 2000, 60:6641-6648.
    [29] S. K. Pulfer, S. L. Ciccotto, J. M. Gallo, Distribution of small magnetic particles in brain tumor-bearing rats, J. Neuro. Oncol. 1999, 41: 99-105
    [30] A. S. Lu¨bbe, C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B.Dorken, F. Herrmann, R. Gurtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A. J. Lemke, D.Ohlendorf, W. Huhnt, D. Huhn, Clinical experiences with magnetic drug targeting: a phase I studywith 4’-epidoxorubicin in 14 patients with advanced solid tumors, Cancer Res., 1996, 56: 4686-4693.
    [31] M. Shinkai, Functional magnetic particles for medical application, J. Biosci. Bioeng., 2002, 94:606-613.
    [32] A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, R. Felix, Endocytosis of dex-tran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on humanmammary carcinoma cells in vitro, J. Magn. Magn. Mater. 1999, 194: 185-196.
    [33] T. A. Ring, Fundamentals of ceramic powder processing and synthesis, San Diego: Academic Press,1996.
    [34] A. E. Nielsen, Kinetics of precipitation, Oxford: Pergamon Press, 1964.
    [35] J. A. Dirksen, T. A. Ring, Fundamentals of crystallization: Kinetic effects on particle size distribu-tions and morphology, Chem. Eng. Sci, 1991, 46: 2389-2427.
    [36] R. M. Tromp, J. B. Hannon, Themodynamics of nucleation and growth, Surf. Rev. Lett, 2002, 9,1565-1593.
    [37] B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, Recent advances in the liquid-phase synthesesof inorganic nanoparticles, Chem. Rev., 2004, 104, 3893-3946.
    [38] R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Trans. onMagnetics, 1981, MAG-17: 1247-1248.
    [39] Y. S. Kang, S. Risbud, J. F. Rabolt, P.Stroeve, Synthesis and characterization of nanometer-sizeFe3O4 andγ-Fe2O3 particles, Chem. Mater., 1996, 8: 2209-2211.
    [40] T. Fried, G. Shemer, G. Markovich, Ordered two-dimensional arrays of ferrite nanoparticles, Adv.Mater., 2001, 13: 1158-1161.
    [41] T. Suginmoto, E. Matijevic′, Formation of uniform spherical magnetite particles by crystallizationfrom ferrous hydroxide gels, J. Colloid Interface Sci., 1980, 74: 227-243.
    [42] J. P. Jolivet, Metal Oxide Chemistry and Synthesis. From Solution to Solid State, Chichester: Wiley-VCH, 2000.
    [43] E. Tronc, P. Belleville, J. P. Jolivet, J. Livage, Transformation of ferric hydroxide into spinel byFe(II) adsoption, Langmuir, 1992, 8: 313-319.
    [44] D. K. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed, Protective coating of superparamagnetic ironoxide nanoparticles, Chem. Mater., 2003, 15: 1617-1627.
    [45] M. Boutonnet, J. Kizling, P. Stenius, Preparation of monodisperse colloidal metal particles frommicroemulsions, Colloids and Surfaces, 1982, 5: 209-225.
    [46] P. A. Dresco, V. S. Zaitsev, B. Chu, Preparation and properties of magnetite and polymer magnetitenanoparticles, Langmuir, 1999, 15: 1945-1951.
    [47] Y. Lee, J. Lee, C. J. Bae, J. G. Park, H. J. Noh, J. H. Park, T. Hyeon, Large-scale synthesis ofuniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under re?uxconditions, Adv. Fun. Mater., 2005, 3: 503-509.
    [48] M. P. Pileni, Nanosized particles made in colloidal assemblies, Langmuir, 1997, 13: 3266-3276.
    [49] Z. H. Zhou, J. Wang, X. Liu, H. S. O. Chan, Synthesis of Fe3O4 nanoparticles from emulsions, J.Mater. Chem., 2001, 11: 1704-1709.
    [50] T. Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun. 2003: 927-934.
    [51] C. M. Donega′, P. Liljeroth, D. Vanmaekelbergh, Physicochemical evaluation of the hot-injectionmethod, a synthesis route for monodisperse nanocrystals, Small, 2005, 1: 1152-1162.
    [52] J. Rockenberger, E. C. Scher, A. P. Alivisatos, A new nonhydrolytic single-precursor approach tosurfactant-capped nanocrystals of transition metal oxides, J. Am. Chem. Soc., 1999, 121: 11595-11596.
    [53] T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, Synthesis of highly crystalline and monodispersemaghemite nanocrystallites without a size-selection process, J. Am. Chem. Soc., 2001, 123: 12798-12801.
    [54] S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc., 2002,124: 8204-8205.
    [55] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, MonodisperseMFe2O4(M = Fe,Co,Mn) nanoparticles, J. Am. Chem. Soc., 2004, 126: 273-279.
    [56] J. Park, E. Lee, N. M. Hwang, M. Kang, S. C. Kim, J. Y. Kim, J. H. Park, T. Hyeon, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles, Angew. Chem.,Int. Ed., 2005, 44: 2872-2877.
    [57] W. W. Yu, X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals innoncoordinating solvents: Tunable reactivity of monomers, Angew. Chem., Int. Ed., 2002, 41: 2368-2371.
    [58] W. W. Yu, Y. A. Wang, X. Peng, Formation and stability of size-, shape-, and structure-controlledCdTe nanocrystals: ligand effects on monomers and nanocrystals, Chem. Mater., 2003, 15: 4300-4308.
    [59] W. W. Yu, J. C. Falkner, C. T. Yavuz, V. L. Colvin, Synthesis of monodisperse iron oxide nanocrys-tals by thermal decomposition of iron carboxylate salts, Chem. Commun., 2004: 2306-2307.
    [60] J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, T. Hyeon,Ultra-large-scale synthesis of monodisperse nanocrystals, Nat. Mater., 2004, 3: 891-895.
    [61] Z. Li, H. Chen, H. Bao, M. Gao, One-pot reaction to synthesize water-soluble magnetite nanocrys-tals, Chem. Mater., 2004, 16: 1391-1393.
    [62] Z. Li, Q. Sun, M. Gao, Preparation of water-soluble magnetite nanocrystals from hydrated ferricsalts in 2-pyrrolidone: Mechanism leading to Fe3O4, Angew. Chem., Int. Ed., 2005, 44: 123-126.
    [63] N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, M. Niederberger, Magnetite nanocrys-tals: Nonaqueous synthesis, characterization, and solubility, Chem. Mater., 2005, 17: 3044-3049.
    [64] N. Pinna, G. Garnweitner, M. Antonietti, M. Niederberger, A general nonaqueous route to binarymetal oxide nanocrystals involving a C-C bond cleavage, J. Am. Chem. Soc., 2005, 127: 5608-5612.
    [65] D. Caruntu, G. Caruntu, Y. Chen, C. J. O’Connor, G. Goloverda, V. L. Kolesnichenko, Synthesisof variable-sized nanocrystals of Fe3O4 with high surface reactivity, Chem. Mater., 2004, 16: 5527-5534.
    [66] V. K. LaMer, R. H. Dinegar, Theory, production and mechanism of formation of monodispersedhydrosols, J. Am. Chem. Soc., 1950, 72: 4847-4854.
    [67] C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and characterization of monodispersenanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci., 2000, 30: 545-610.
    [68] Y. Yin, A. P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature,2005, 437: 664-670.
    [69] H. Reiss, The growth of uniform colloidal dispersions, J. Chem. Phys., 1951, 19: 482-487.
    [70] A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedicalapplications, Biomaterials, 2005, 26: 3995-4021.
    [71] A. B. Bourlinos, A. Bakandritsos, V. Georgakilas, D. Petridis, Surface modification of ultrafinemagnetic iron oxide particles, Chem. Mater., 2002, 14: 3226-3228.
    [72] S. Y. Lee, M. T. Harris, Surface modification of magnetic nanoparticles capped by oleic acids:Characterization and colloidal stability in polar solvents, J. Colloid Interface Sci., 2006, 293: 401-408.
    [73] H. Fan, E. Leve, J. Gabaldon, A. Wright, R. E. Haddad, C. J. Brinker, Ordered two- and three-dimensional arrays self-assembled from water-soluble nanocrystal-micelles, Adv. Mater., 2005, 17:2587-2590.
    [74] H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. Lo′pez, C. J. Brinker, Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays, Science, 2004, 304:567-571.
    [75] H. Fan, E. W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M. C. Wilson, C.J. Brinker, Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantumdot micelles, Nano. Lett., 2005, 5: 645-648.
    [76] I. Koh, X. Wang, B. Varughese, L. Isaacs, S. H. Ehrman, D. S. English, Magnetic iron oxide nanopar-ticles for biorecognition: evaluation of surface coverage and activity, J. Phys. Chem. B, 2006, 110:1553-1558.
    [77] H. T. Song, J. Choi, Y. M. Huh, S. Kim, Y. Jun, J. S. Suh, J. Cheon, Surface modulation of mag-netic nanocrystals in the development of highly efficient magnetic resonance probes for intracellularlabelling, J. Am. Chem. Soc., 2005, 127: 9992-9993.
    [78] R. S. Molday, Magnetic iron-dextran microspheres, US. Patent, 4,452,773, 1984.
    [79] H. Pardoe, W. Chua-anusorn, T. G. St. Pierre, J. Dobson, Structural and magnetic properties ofnanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol, J. Magn.Magn. Mater., 2001, 225: 41-46.
    [80] A. Ditsch, P. E. Laibinis, D. I. C. Wang, T. A. Hatton, Controlled clustering and enhanced stabilityof polymer-coated magnetic nanoparticles, Langmuir, 2005, 21, 6006-6018.
    [81] S. Si, A. Kotal, T. K. Mandal, S. Giri, H. Nakamura, T. Kohara, Size-controlled synthesis of mag-netite nanoparticles in the presence of polyelectrolytes, Chem. Mater., 2004, 16: 3489-3496.
    [82] A. M. Schmidt, The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-openpolymerization ofε-caprolactone, Macromol. Rapid Commun., 2005, 26: 93-97.
    [83] C. R. Vestal, Z. J. Zhang, Atom transfer radical polymerization synthesis and magnetic characteriza-tion of MnFe2O4/polystyrene core/shell nanoparticles, J. Am. Chem. Soc., 2002, 124: 14312-14313.
    [84] L. E. Euliss, S. G. Grancharov, S. O’Brien, T. J. Deming, G. D. Stucky, C. B. Murray, G. A. Held,Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media, Nano.Lett., 2003, 3: 1489-1493.
    [85] B. S. Kim, J. M. Qiu, J. P. Wang, T. A. Taton, Magnetomicelles: Composite nanostructures frommagnetic nanoparticles and cross-linked amphiphilic block copolymers, Nano. Lett., 2005, 5, 1987-1991.
    [86] S. Lecommandoux, O. Sandre, F. Che′cot, J. Rodriguez-Hernandez, R. Perzynski, Magneticnanocomposite micelles and vesicles, Adv. Mater., 2005, 17: 712-718.
    [87] H. Ai, C. Flask, B. Weinberg, X. Shuai, M. D. Pagel, D. Farrell, J. Duerk, J. Gao, Magnetite-loadedpolymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater., 2005, 17: 1949-1952.
    [88] R. S. Underhill, G. Liu, Triblock nanospheres and their use as templates for inorganic nanoparticlepreparation, Chem. Mater., 2000, 12: 2082-2091.
    [89] D. G. Shchukin, G. B. Sukhorukov, Nanoparticle synthesis in engineered organic nanoscale reactors,Adv. Mater., 2004, 16: 671-682.
    [90] D. G. Shchukin, I. L. Radtchenko, G. B. Sukhorukov, Micron-scale hollow polyelectrolyte capsuleswith nanosized magnetic Fe3O4 inside, Mater. Lett., 2003, 57: 1743-1747.
    [91] O. Masala, R. Seshadri, Spinel ferrite/MnO core/shell nanoparticles: Chemical synthesis of all-oxideexchange biased architectures, J. Am. Chem. Soc., 2005, 127: 9354-9355.
    [92] S. Kang, G. X. Miao, S. Shi, Z. Jia, D. E. Nikles, J. W. Harrell, Enhanced magnetic properties ofself-assembled FePt Nanoparticles with MnO shell, J. Am. Chem. Soc., 2006, 128: 1042-1043.
    [93] U. Jeong, T. Herricks, E. Shahar, Y. Xia, Amorphous Se: A new platform for synthesizing super-paramagnetic colloids with controllable surfaces, J. Am. Chem. Soc., 2005, 127: 1098-1099.
    [94] J. Lai, K. V. P. M. Shafi, A. Ulman, K. Loos, R. Popovitz-Biro, Y. Lee, T. Vogt, C. Estourne`s, One-step synthesis of core(Cr)/shell(γ-Fe2O3) nanoparticles, J. Am. Chem. Soc., 2005, 127: 5730-5731.
    [95] W. Sto¨ber, A. Fink, Controlled growth of monodisperse silica spheres in the micron size range, J.Colloid Interface Sci., 1968, 26: 62-69.
    [96] A. P. Philipse, M. P. B. van Bruggen, C. Pathmamanoharan, Magnetic silica dispersions: Preparationand stability of surface-modified siilca particles with a magnetic core, Langmuir, 1994, 10: 92-99.
    [97] Y. Lu, J. McLellan, Y. Xia, Synthesis and crystallization of hybrid spherical colloids composed ofpolystyrene cores and silica shells, Langmuir, 2004, 20: 3464-3470.
    [98] Y. Lu, Y. Yin, B. T. Mayers, Y. Xia, Modifying the surface properties of superparamagnetic ironoxide nanoparticles through a sol-gel approach, Nano. Lett., 2002, 2: 183-186.
    [99] Y. H. Deng, C. C. Wang, J. H. Hu, W. L. Yang, S. K. Fu, Investigation of formation of silica-coatedmagnetite nanoparticles via sol-gel approach, Colloids Surf. A, 2005, 262: 87-93.
    [100] W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, Fabrication of uniform magnetic nanocomposite sphereswith a magnetic core/mesoporous silica shell structure, J. Am. Chem. Soc., 2005, 127: 8916-8917.
    [101] C. R. Vestal, Z. J. Zhang, Synthesis and magnetic characterization of Mn and Co spinel ferrite-silicananoparticles with tunable magnetic core, Nano. Lett., 2003, 3: 1739-1743.
    [102] S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, W. Tan, Synthesis and characteri-zation of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants,Langmuir, 2001, 17: 2900-2906.
    [103] T. Tago, T. Hatsuta, K. Miyajima, M. Kishida, S. Tashiro, K. Wakabayashi, Novel synthesis ofsilica-coated ferrite nanoparticles prepared using water-in-oil microemulsion, J. Am. Ceram. Soc.,2002, 85: 2188-2194.
    [104] D. K. Yi, S. S. Lee, G. C. Papaefthymiou, J. Y. Ying, Nanoparticle architectures templated bySiO2/Fe2O3 nanocomposites, Chem. Mater., 2006, 18: 614-619.
    [105] D. C. Lee, F. V. Mikulec, J. M. Pelaez, B. Koo, B. A. Korgel, Synthesis and magnetic properties ofsilica-coated FePt nanocrystals, J. Phys. Chem. B, 2006, 110: 11160-11166.
    [106] P. K. Jal, S. Patel, B. K. Mishra, Chemical modification of silica surface by immobilization offunctional groups for extractive concentration of metal ions, Talanta, 2004, 62: 1005-1028.
    [107] T. Pellegrino, S. Kudera, T. Liedl, A. M. Javier, L. Manna, W. J. Parak, On the developmentof colloidal nanoparticles towards multifunctional structures and their possible use for biologicalapplications, small, 2005, 1: 48-63.
    [108] M. Green, The organometallic synthesis of bifunctional core/shell nanoparticles, small, 2005, 1:684-686.
    [109] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen,M. G. Bawendi, (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size seriesof highly luminescent nanocrystallites, J. Phys. Chem. B, 1997, 101: 9463-9475.
    [110] L. Wang, J. Luo, M. M. Maye, Q. Fan, Q. Rendeng, M. H. Engelhard, C. Wang, Y. Lin, C. J.Zhong, Iron oxide-gold core-shell nanoparticles and thin film assembly, J. Mater. Chem., 2005, 15:1821-1832.
    [111] L. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. Lin, N. Kim, J. Q. Wang, C.J. Zhong, Monodispersed core-shell Fe3O4@Au nanoparticles, J. Phys. Chem. B, 2005, 109: 21593-21601.
    [112] J. L. Lyon, D. A. Fleming, M. B. Stone, P. Schiffer, M. E. Williams, Synthesis of Fe oxide core/AuShell nanoparticles by iterative hydroxylamine seeding, Nano. Lett., 2004, 4: 719-723.
    [113] H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun, Dumbbell-like bifunctionalAu ? Fe3O4 nanoparticles, Nano. Lett., 2005, 5, 379-382.
    [114] H. Gu, R. Zheng, X. Zhang, B. Xu, Facile one-pot synthesis of bifunctional heterodimers ofnanoparticles: A conjugate of quantum dot and magnetic nanoparticles, J. Am. Chem. Soc., 2004,126: 5664-5665.
    [115] J. Yang, H. I. Elim, Q. Zhang, J. Y. Lee, W. Ji, Rational synthesis, self-assembly, and opticalproperties of PbS-Au heterogeneous nanostructures via preferential deposition, J. Am. Chem. Soc.,2006, 128: 11921-11926.
    [116] K. K. Kwon, M. Shim,γ-Fe2O3/II-VI sulfide nanocrystal heterojunctions, J. Am. Chem. Soc.,2005, 127: 10269-10275.
    [117] D. Caruntu, B. L. Cushing, G. Caruntu, C. J. O’Connor, Attachment of gold nanograins onto col-loidal magnetite nanocrystals, Chem. Mater., 2005, 17: 3398-3402.
    [118] D. Wang, J. He, N. Rosenzweig, Z. Rosenzweig, Superparamagnetic Fe2O3 beads-CdSe/ZnS quan-tum dots core-shell nanocomposite particles for cell separation. Nano. Lett., 2004, 4: 409-413.
    [119] E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, H. Mo¨hwald, Angew. Chem., Int. Ed., 1998,37: 2202-2205.
    [120] G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, H. Mo¨hwald, Polym.Adv. Technol., 1998, 9: 759-767.
    [121] N. Gaponik, I. L. Radtchenko, G. B. Sukhorukov, A. L. Rogach, Langmuir, 2004, 20: 1449-1452.
    [122] V. Salgueirin?o-Maceira, M. A. Correa-Duarte, M. Spasova, L. M. Liz-Marza′n, M. Farle, Compositesilica spheres with magnetic and luminescent functionalities, Adv. Funct. Mater., 2006, 16: 509-514.
    [123] V. Salgueirin?o-Maceira, M. A. Correa-Duarte, M. Farle, A. Lo′pez-Quintela, K. Sieradzki, R. Diaz,Bifunctinoal gold-coated magnetic silica spheres. Chem. Mater., 2006, 18: 2701- 2706.
    [124] D. K. Yi, S. S. Lee, J. Y. Ying, Synthesis and applications of magnetic nanocomposite catalysts,Chem. Mater., 2006, 18: 2459-2461.
    [125] S. I. Stoeva, F. Huo, J. S. Lee, C. A. Mirkin, Three-layer composite magnetic nanoparticle probesfor DNA, J. Am. Chem. Soc., 2005, 127: 15362-15363.
    [126] J. Kim, J. E. Lee, J. Lee, Y. Jiang, S. W. Kim, K. An, J. H. Yu, T. Hyeon, Generalized fabricationof multifunctional nanoparticle assemblies on silica spheres, Angew. Chem., Int. Ed., 2006, 45: 4789-4793.
    [127] M. F. Casula, Y. W. Jun, D. J. Zaziski, E. M. Chan, A. Corrias, A. P. Alivisatos, The concept ofdelayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks, J. Am.Chem. Soc., 2006, 128: 1675-1682.
    [128] J. Cheon, N-J. Kang, S-M. Lee, J-H. Lee, J-H. Yoon, S. J. Oh, Shape evolution of single-crystallineiron oxide nanocrystals, J. Am. Chem. Soc., 2004, 126: 1950-1951.
    [129] N. R. Jana, Y. Chen, X. Peng, Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxidenanocrystals via a simple and general approach, Chem. Mater., 2004, 16: 3931-3935.
    [130] L. Vayssie′res, C. Chane′ac, E. Tronc, J. P. Jolivet, Size tailoring of magnetite particles formedby aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles, J.Colloid Interf. Sci., 1998, 205: 205-212.
    [131] A. Wooding, M. Kilner, D. B. Lambrick, Studies of the double surfactant layer stabilization ofwater-based magnetic ?uids, J. Colloid Interf. Sci., 1991, 144: 236-242.
    [132] G. D. Moeser, K. A. Roach, W. H. Green, P. E. Laibinis, T. A. Hatton. Water-based magnetic ?uidsas extractants for synthetic organic compounds, Ind. Eng. Chem. Res., 2001, 41: 4739-4749.
    [133] G. D. Mendenhall, Y. P. Geng, J. Hwang, Optimization of long-term stability of magnetic ?uidsfrom magnetite and synthetic polyelectrolytes, J. Colloid. Interface. Sci., 1996, 184: 519-526.
    [134] F. Caruso, Nanoengineering of particle surfaces, Adv. Mater., 2001, 13: 11-22.
    [135] L. Shen, P. E. Laibinis, T. A. Hatton, Bilayer surfactant stabilized magnetic ?uids: synthesis andinteractions at interfaces, Langmuir, 1999, 15: 447-453.
    [136] Y. Sahoo, A. Goodarzi, M. T. Swihart, T. Y. Ohulchanskyy, N. Kaur, E. P. Furlani, P. N. Prasad,Aqueous ferro?uid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control,J. Phys. Chem. B, 2005, 109: 3879-3885.
    [137] A. L. Willis, N. J. Turro, S. O’Brien, Spectroscopic characterization of the surface of iron oxidenanocrystals, Chem. Mater., 2005, 17: 5970-5975.
    [138] B. M. Choudary, N. S. Chowdari, S. Madhi, M. L. Kantam, A trifunctional catalyst for one-potsynthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application forthe synthesis of diltiazem and taxol side chain, J. Org. Chem., 2003, 68, 1736-1746.
    [139] F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, D. B. Shieh,Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,Biomaterials, 2005, 26: 729-738.
    [140] Sadtler Research Laboratories, Sadtler standard spectra: standard infrared grating spectra,Philadelphia: Sadtler Research Laboratories, 1985.
    [141] Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C. N. Sukkenik, G. Markovich, Alkylphosphonate/phosphate coating on magnetite nanoparticles: A comparison with fatty acids, Lang-muir, 2001, 17: 7907-7911.
    [142] R. C. O’Handley, Modern Magnetic Materials Principle and Applications, Chichester: John Wi-ley & Sons, 2000.
    [143] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Col-loidosomes: Selectively permeable capsules composed of colloidal particles, Science, 2002, 298:1006-1009.
    [144] B. P. Binks, S. O. Lumsdon, In?uence of particle wettability on the type and stability of surfactant-free emulsions, Langmuir, 2000, 16: 8622-8631.
    [145] B. P. Binks, S. O. Lumsdon, Pickering emulsions stabilized by monodisperse latex particles: Effectsof particle size, Langmuir, 2001, 17: 4540-4547.
    [146]范康年,物理化学(第二版),北京:高等教育出版社, 2005.
    [147]杨文胜,高明远,白玉白,纳米材料与生物技术,北京:化学工业出版社, 2005.
    [148] X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, Y. Li, Synthesis of nearly monodisperse ironoxide and oxyhydroxide nanocrystals, Adv. Func. Mater., 2006, 16: 1805-1813.
    [149] J. L. Jambor, J. E. Dutrizac, Occurrence and constitution of natural and synthetic ferrihydrite, awidespread iron oxyhydroxide, Chem. Rev., 1998, 98: 2549-2585.
    [150] W. Schneider, Hydrolysis of iron(III)chaotic olation versus nucleation, Comments Inorg. Chem.,1984, 3: 205.
    [151] U. Schwertmann, R. M. Cornell, Iron oxide in the laboratory, New York: VCH, 1991.
    [152] R. M. Cornell, U. Schwertmann, The iron oxide, Weinheim: Wiley-VCH verlag, 1996.
    [153] U. Schwertmann, J. Friedl, H. Stanjek, From Fe(III) Ions to ferrihydrite and then to hematite, J.Colloid Interf. Sci., 1999, 209: 215-223.
    [154] A. Kondo, H. Fukuda, Preparation of thermo-sensitive magnetic microspheres and their applicationto bioprocesses, Colloid Surf. A, 1999, 153: 435-438.
    [155] J. P. Jolivet, C. Chane′ac, E. Tronc, Iron oxide chemistry, from molecular clusters to extended solidnetworks, Chem. Commun., 2004, 481-487.
    [156] M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, V. G. Harris, Chemically preparedmagnetic nanoparticles, Inter. Mater. Rev., 2004, 49: 125-170.
    [157]邢其毅,基础有机化学(第三版),北京:高等教育出版社, 2005.
    [158] I. Benjamin, Chemical reactions and solvation at liquid interfaces: A microscopic perspective,Chem. Rev., 1996, 96, 1449-1475.
    [159] R. Massart, E. Dubois, V. Cabuil, E. Hasmonay, Preparation and properties of monodisperse mag-netic ?uids, J. Magn. Magn. Mater., 1995, 149: 1-5.
    [160] C. N. Chinnasamy, B. Jeyadevan, O. Perales-Perez, K. Shinoda, K. Tohji, A. Kasuya, Growth dom-inant co-precipitation process to achieve high coercivity at room temperature in CoFe2O4 nanoparti-cles, IEEE Trans. Magn., 2002, 38: 2640-2642.
    [161]陈宗淇,王光信,徐桂英,胶体与界面化学,北京:高等教育出版社, 2005.
    [162] M. D. Butterworth, L. Illum, S. S. Davis, Preparation of ultrafine silica- and PEG-coated magnetiteparticles, Colloid. Surf. A, 2001, 179: 93-102.
    [163] D. Hora′k, N. Semenyuk, F. Lednicky′, Effect of the reaction parameters on the particle size in thedispersion polymerization of 2-hydroxyethyl and glycidyl methacrylate in the presence of a ferro?uid,J. Polym. Sci. A, 2003, 41: 1848-1863.
    [164] J. Lee, T. Isobe, M. Senna, Preparation of ultrafine Fe3O4 particles by precipitation in the presenceof PVA at high pH, J. Colloid. Interface. Sci., 1996, 177: 490-494.
    [165] B. P. Binks, J. H. Clint, Solid wettability from surface energy components: relevance to pickeringemulsions, Langmuir, 2002, 18: 1270-1273.
    [166] A. Quarta, R. D. Corato, L. Manna, A. Ragusa, T. Pellegrino, Fluorescent-Magnetic Hybrid Nanos-tructures: Preparation, Properties, and Applications in Biology, IEEE Trans. Nanobiosci., 2007, 6,298-308.
    [167] H. Zeng, S. Sun, Syntheses, Properties, and Potential Applications of Multicomponent Magneticnanoparticles, Adv. Func. Mater., 2008,18, 391-400.
    [168] H. Kim, M. Achermann, L. P. Balet, J. A. Hollingsworth, V. I. Klimov, J. Am. Chem. Soc., 2005,127, 544-546.
    [169] C. L. Kaufman, M. Williams, L. M Ryle, T. L. Smith, M. Tanner, C. Ho, Superparamagnetic ironoxide particles transactivator protein-?uorescein isothiocyanate particle labeling for in vivo magneticresonance imaging detection of cell migration: uptake and durability, Transplantation, 2003, 76,1043-1045.
    [170] A. M. Koch, F. Reynolds, M. F. Kircher, H. P. Merkle, R. Weissleder, L. Josephson, Uptake andmetabolism of a dual ?uorochrome Tat-nanoparticle in HeLa cells, Bioconj. Chem., 2003, 14, 1115-1121.
    [171] C. Lu, Y. Hung, J. Hsiao, M. Yao, T. Chung, Y. Lin, S. Wu, S. Hsu, H. Liu, C. Mou, C. Yang,D. Huang, Y. Chen, Bifunctional magnetic silica nanoparticles for highly efficient human stem celllabeling,Nano. Lett., 2006, 7, 149-154.
    [172] A. Imhof, M. Megens, J. J. Engelberts, D. T. N. de Lang, R. Sprik, W. L. Vos, Spectroscopy of?uorescein (FITC) dyed colloidal silica spheres, J. Phys. Chem. B, 1999, 103, 1408.
    [173] A. Van Blaaderen, A. Vrij, Synthesis and characterization of colloidal dispersions of ?uorescent,monodisperse silica spheres, Langmuir, 1992, 8, 2921.
    [174] N. Lewinsky, V. Colvin, R. Drezek, Cytotoxicity of nanoparticles, Small, 2008, 4, 26-49.
    [175] U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Superparamagnetic colloids: controlled synthesisand Niche applications, Adv. Mater., 2007, 19: 33-60.
    [176] L.Thoren, The dextrans-clinical data, Devel. Biol. Stand., 1981, 48: 157-167.
    [177] R. Mehvar, Dextrans for targeted and sustained delivery of therapeutic and imaging agents, J.Controlled Release., 2000, 69: 1-25.
    [178] A. Moore, E. Marecos, A. Bogdanov, R. Weissleder, Tumoral distribution of long-circulatingdextran-coated iron oxide nanoparticles in a rodent model, Radiology, 2000, 214: 568-574.
    [179] L. M. Lacava, Z. G. M. Lacava, M. F. Da Silva, O. Silva, S. B. Chaves, R. B. Azevedo, F. Pelegrini,C. Gansau, N. Buske, D. Sabolovic, P. C. Morais, Magnetic resonance of a dextran-coated magnetic?uid intravenously administered in mice, Biophys. J., 2001, 80: 2483-2486.
    [180] L. M. Lacava, V. A. P. Garcia, S. Ku¨ckelhaus, R. B. Azevedo, N. Sadeghiani, N. Buske, P. C.Morais, Z. G. M. Lacava, Long-term retention of dextran-coated magnetite nanoparticles in the liverand spleen, J. Magn. Magn. Mater., 2004, 272-276: 2434-2435.
    [181] R. Arshady, Microspheres for biomedical applications: Preparation of reactive and labelled micro-spheres, Biomaterials, 1993, 14: 5-15.
    [182] C. Chouly, D. Pouliquen, I. Lucet, J. J. Jeune, P. Jallet, Development of superparamagneticnanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution, J. Mi-croencaps., 1996, 13: 245-255.
    [183] K. Mu¨ller, J. N. Skepper, M. Posfai, R. Trivedi, S. Howarth, C. Corot, E. Lancelot, J. H. Gillard, Ef-fect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro, Biomaterials, 2007, 28: 1629-1642.
    [184] Z. Xia, G. Wang, K. Tao, J. Li, Preparation of magnetite-dextran microspheres by ultrasonication,J. Magn. Magn. Mater., 2005, 293: 182-186.
    [185] T. Goetze, C. Gansau, N. Buske, M. Roeder, P. Go¨rnert, M. Bahr, Biocompatible magneticcore/shell nanoparticles, J. Magn. Magn. Mater., 2002, 252: 399-402.
    [186] P. C. Morais, J. G. Santos, L. B. Silveira, W. C. Nunes, J. P. Sinnecker, M. A. Novak, Magneticinvestigation of zero-field-cooled dextran-coated magnetite-based magnetic ?uid, J. Magn. Magn.Mater., 2005, 289: 174-176.
    [187] T. Kawaguchi, A. Yoshino, M. Hasegawa, T. Hanaichi, S. Maruno, N. Adachi, Dextran-magnetitecomplex: Temperature dependence of its NMR relaxivity, J. Mater. Sci: Mater. Med., 2002, 13: 113-117.
    [188] T. Kawaguchi, T. Hanaichi, M. Hasegawa, S. Maruno, Dextran-magnetite complex: conformationof dextran chains and stability of solution, J. Mater. Sci.: Mater. Med., 2001, 12: 121-127.
    [189] C. L. Lin, C. F. Lee, W. Y. Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilizedsuperparamagnetic ferro?uid, J. Colloid Interface Sci., 2005, 291: 411-420.
    [190]赵瑶兴,孙祥玉,有机分子结构光谱鉴定,北京:科学出版社, 2003.
    [191] C. W. Jung, Surface properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides,Ferumoxtran, Ferumoxil, Magn. Reson. Image., 1995, 13: 675-691.
    [192] R. W. Chantrell, J. Popplewell, S. W. Charles, Measurements of particle size distribution parametersin ferro?uids. IEEE. Trans. Magn., 1978, MAG-14: 975-977.
    [193] D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, M. Muhammed, Synthesis and characterization ofsurfactant-coated superparamagnetic monodispersed iron oxide nanoparticles, J. Magn. Magn. Mater.,2001, 225: 30-32.
    [194]高濂,孙静,刘阳桥,纳米粉体的分散及表面改性,北京:化学工业出版社, 2003.
    [195] H. Fu¨redi-Milhofer, Spontaneous precipitation from electrolytic solutions. Pure. Appl. Chem.,1981, 53: 2041-2055.
    [196] T. Kawaguchi, M. Hasegawa, Structure of dextran-magnetite complex: Relation between confor-mation of dextran chains covering core and its molecular weight, J. Mater. Sci: Mater. Med., 2000,11: 31-35.
    [197] X. Q. Xu, H. Shen, J. R. Xu, J. Xu, X. J. Li, X. M. Xiong. Core-shell structure and magneticproperties of magnetite magnetic ?uids stabilized with dextran, Appl. Surf. Sci. 2005, 252: 494-500.
    [198] E. Martinez, Effect of particle size on thermal properties of serpentine, Am. Mineralogist, 1961,46: 901-912.
    [199] D. Caruntu, Y. Remond, N. H. Chou, M. J. Jun, G. Caruntu, J. He, G. Goloverda, C. J. O’Connor,V. Kolesnichenko, Reactivity of 3d transition metal cations in diethylene glycol solutions: Synthesisof transition metal ferrites with the structure of discrete nanoparticles complexed with long-chaincarboxylate anions, Inorg. Chem., 2002, 41, 6137-6146.
    [200] P. Sobota, J. Utko, K. Sztajnowska, L. B. Jerzykiewicz, Preparation and crystal structures of donor-functionalized 2,2′-oxydiethanol complexes of titanium, yttrium, magnesium and sodium, New J.Chem., 1998, 22, 851-855.
    [201] J. Ge, Y. Hu, M. Biasini, C. Dong, J. Guo, W. P. Beyermann, Y. Yin, One-step synthesis of highlywater-soluble magnetite colloidal nanocrystals, Chem. Euro. J., 2007, 13, 7153-7161.
    [202] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 2002, 298,2176-2179.
    [203] H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferritemicrospheres, Angew. Chem. Int. Ed., 2005, 44, 2782-2785.
    [204] http://webbook.nist.gov/chemistry/
    [205] C. Barbe′, j. Bartlett, L. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja,Silica particles: A novel drug-delivery system, Adv. Mater., 2004, 16: 1959-1966.
    [206] M. Ohmori, E. Matijevic′, Preparation and properties of uniform coated inorganic colloidal parti-cles: Silica on iron, J. Colloid Interface Sci., 1993, 160: 288.
    [207] L. M. Liz-Marza′n, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles,Langmuir, 1996, 12: 4329-4335.
    [208] Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno, L. M. Liz-Marza′n, Silica coating ofsilver nanoparticles using a modified sto¨ber method, J. Colloid Interface Sci., 2005, 283: 392-396.
    [209] Y. Zhou, K. Shimizu, J. N. Cha, G. D. Stucky, D. E. Morse, Efficient catalysis of polysiloxanesynthesis by silicatein a requires specific hydroxy and imidazole functionalities, Angew. Chem. Int.Ed., 1999, 38: 780-782.
    [210] K. M. Roth, Y. Zhou, W. Yang, D. E. Morse, Bifunctional small molecules are biomimetic catalystsfor silica synthesis at neutral pH, J. Am. Chem. Soc., 2005, 127: 325-330.
    [211] T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, Periodic arrangement ofsilica nanospheres assisted by amino acids, J. Am. Chem. Soc., 2006, 128: 13664-13665.
    [212] Q. Liu, Z. Xu, J. A. Finch, R. Egerton, A novel two-step silica-coating process for engineeringmagnetic nanocomposites, Chem. Mater., 1998, 10, 3936-3940.
    [213] C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, A general method to coat colloidal particleswith silica, Langmuir, 2003, 19: 6693-6700.
    [214] I. J. Bruce, T. Sen, Surface modification of magnetic nanoparticles with alkoxysilanes and theirapplication in magnetic bioseparations, Langmuir, 2005, 21: 7029-7035.
    [215] M. Lewin, N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden, R. Weissleder, Tatpeptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells,Nat. Biotechnol., 2000, 18, 410-414.
    [216] E. Strable, J. W. M. Bulte, B. M. Moskowitz, K. Vivekanandan, M. Allen, T. Douglas, Synthesisand Characterization of Soluble Iron Oxide-Dendrimer Composites, Chem. Mater., 2001, 13, 2201-2209.
    [217] Y. Zhang, N. Kohler, M. Zhang, Surface modification of superparamagnetic magnetite nanoparti-cles and their intracellular uptake, Biomaterials, 2002, 23, 1553-1561.
    [218] C. Wilhelm, F. Gazeau, J. Roger, J. N. Pons, J. C. Bacri, Interaction of Anionic SuperparamagneticNanoparticles with Cells: Kinetic Analyses of Membrane Adsorption and Subsequent Internalization,Langmuir, 2002, 18, 8148-8155.
    [219] C. Wilhelm, C. Billotey, J. Roger, J. N. Pons, J. C. Bacri, F. Gazeau,Intracellular uptake ofanionic superparamagnetic nanoparticles as a function of their surface coating,Biomaterials, 2003,24, 1001-1011.
    [220] Z. P. Xu, Q. H. Zeng, G. Q. Lu, A. B. Yu, Inorganic nanoparticles as carriers for efficient cellulardelivery, Chem. Engin. Sci., 2006, 61, 1027-1040.
    [221] V. Sokolova, M. Epple, Inorganic Nanoparticles as Carriers of Nucleic Acids into Cells, Angew.Chem. Int. Ed., 2008, 47, 1382-1395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700