HID-1蛋白在线虫中的功能和作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞必须具有有效而精密的机制,确保在糙面内质网上合成的各种蛋白,在反面高尔基复合体上以出芽的方式通过不同的转运囊泡以不同的途径被分选、转运并发挥其生理功能。分泌囊泡(secretory granules, SGs)也叫做致密核心囊泡(dense core vesicles, DCVs)是装载并转运分泌蛋白的载体,其在胞内的转运过程不仅涉及蛋白本身(分泌蛋白和囊泡膜蛋白)的修饰、加工和装配,还涉及到多种囊泡特异组分的定向转运和复杂的调控过程。
     hid-1编码一个全新的蛋白,由Ailion和Thomas在筛选具有Hid (high temperature-induced dauer formation)表型的线虫种系过程中发现。HID-1蛋白高度保守,在果蝇、小鼠和人类中都只有唯一的同源物。此外,hid-1基因突变的线虫还具有多种表型,如轻微的行动不协调(Unc),对乙酰胆碱酯酶抑制剂的抗性(Ric),排便缺陷(Aex)等。本文主要利用线虫这个经典的动物模型对HID-1蛋白的作用机理和生理功能进行深入的研究。
     本文第一部分为研究背景介绍,简要概述了分泌囊泡的生成、加工成熟、转运、分选及分泌机制和学习记忆、信息整合的神经通路及分子机理。
     本文第二部分研究了hid-1蛋白参与学习记忆这个高级认知功能的调节过程,主要是信息整合和联系性学习记忆。我们发现除了参与调节NaCl-饥饿模式和温度-饥饿模式这两种联系性学习记忆模式外,hid-1基因还对两种感觉信号的整合及相应的抉择行为有重要调控作用,并且确定了其功能的发挥主要是通过调节神经元内负责神经多肽分泌的DCVs实现的。我们试图确定hid-1调节信息整合的信号通路,但遗憾的是,我们只能排除hid-1不是通过hen-1途径和胰岛素受体信号途径来调节学习记忆过程,下一步我们需要研究hid-1基因的作用靶点和信号通路,进而深入透析其分子机制
     第三部分通过电生理技术、荧光成像技术以及生物化学技术研究了HID-1作为一个高度保守的蛋白,是DCVs成熟、转运和再循环的必需调节因子。HID-1主要定位在高尔基复合体上,它的缺失会导致DCVs的可溶性内容物减少,但以高度聚集形式存在于致密核心内的神经多肽却不受影响,此外还会引起特异膜蛋白的增加。我们推测HID-1主要通过影响DCVs特异组分从早期内涵体到高尔基体的逆向转运,从而影响囊泡的成熟和再循环过程,但它并不参与突触囊泡(synaptic vesicles, SVs)的分泌。这些发现对于理解分泌囊泡成熟、转运及再循环回高尔基体的具体作用机理有所帮助。
     本文第四部分研究了由黑寡妇蜘蛛分泌的神经毒素α-LTX及其突变体α-LTXN4C通过不同机制促进胰腺β细胞[Ca2+]i升高。我们发现α-LTX引起[Ca2+]i的升高依赖于细胞外液中的Ca2+,并且这种升高可以被La3+特异阻断。而α-LTXN4C引起的[Ca2+]i上升则依赖于二价阳离子的存在。
Peptide hormones and neuropeptides are packaged and stored in specialized intracellular organelles called secretory granules (SGs, also known as dense core vesicles, DCVs). DCV is the specialized organelle that facilitates long-term intracellular storage of secretory proteins at high concentration. While DCVs have been known to be prominent post-Golgi carriers for almost 50 years, the exact mechanism of how DCVs maturation and its specific components recycled back to TGN remains largely unknown.
     In search for mutants with high-temperature-induced dauer formation (Hid) phenotype in C. elegans, a mutation in hid-1 gene was identified. The hid-1 gene encodes a novel protein with a single homolog in Drosophila melanogaster, mouse and Homo sapiens and bioinformatic analysis of HID-1 suggests no known functional domain. In addition to Hid phenotype, hid-1 mutants show pleiotropic phenotypes such as mildly uncoordinated movement (Unc), moderately resistant to the paralytic effects of aldicarb (Ric) and constipated phenotype (Aex). Here we used C. elegans as the research model to study the molecular mechanism and function of HID-1 protein.
     First, we introduced the functional mechanisms of DCVs, the neural circuits and molecular mechanisms underlying the sensory integration and a great animal model to study above mysteries, C. elegans.
     Animals integrate various environmental stimuli within the nervous system to generate proper behavioral response and plasticity. The neural circuits and molecular mechanisms underlying the sensory integration are largely unknown. Here in the second part, we identified protein HID-1 that functions in the sensory integration across modalities and associative learning in C. elegans. hid-1 mutants display defects in sensory integration between taste and olfactory signals and in two types of associative learning. We propose that HID-1 functions in neurons by regulating DCVs, which constitutes an essential component in sensory integration and behavior plasticity.
     In the third part, we studied HID-1, a highly conserved protein, involved in DCVs maturation and specific protein recycling thereafter. The subcellular distribution of HID-1 was localized to Golgi. Deletion of HID-1 reduced not only the number of readily releasable DCVs but also the amount of soluble peptides, but not the dense core peptides. On the contrary, the DCV-specific membrane proteins were incresed in the absence of HID-1. We propose that HID-1 participates in DCVs soluble cargo and membrane protein recycling from early endosome back to Golgi and hence affects the DCVs maturation
     The last part presentsα-latrotoxin (α-LTX), a neurotoxin from black-widow spider, causes vesicles release in presynapse of nerve terminal after binding to specific membrane receptors. We found thatα-LTX inserts into the plasma membrane and forms stable non-selective cation channels, the influx of extracellular Ca2+ through the channels causes massive Ca2+-dependent exocytosis of insulin-containing vesicles. Whereas,α-LTXN4C, binding with its receptor CIRL in extracellular divalent cation-dependent way, increases [Ca2+]i by mobilization of the intracellular calcium stores.
引文
[1]J. S. Bonifacino, B. S. Glick. The mechanisms of vesicle budding and fusion. Cell, 2004,116(2):153-166
    [2]C. R. Artalejo, A. Elhamdani, H. C. Palfrey. Secretion:dense-core vesicles can kiss-and-run too. Curr Biol,1998,8(2):R62-65
    [3]T. Galli, V. Haucke. Cycling of synaptic vesicles:how far? How fast! Sci STKE, 2004,2001(88):re19
    [4]G A. Rutter, T. Tsuboi. Kiss and run exocytosis of dense core secretory vesicles. Neuroreport,2004,15(1):79-81
    [5]T. A. Ryan. Kiss-and-run, fuse-pinch-and-linger, fuse-and-collapse:the life and times of a neurosecretory granule. Proc Natl Acad Sci U S A,2003,100(5): 2171-2173
    [6]T. Tsuboi, G A. Rutter. Multiple forms of "kiss-and-run" exocytosis revealed by evanescent wave microscopy. Curr Biol,2003,13(7):563-567
    [7]L. Eliasson, E. Renstrom, W. G. Ding, et al. Rapid ATP-dependent priming of secretory granules precedes Ca(+)-induced exocytosis in mouse pancreatic B-cells. J Physiol,1997,503(Pt 2):399-412
    [8]T. Xu, T. Binz, H. Niemann, E. Neher. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci,1998,1(3):192-200
    [9]M. L. Nonet, O. Saifee, H. Zhao, et al. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci,1998,18(1):70-80
    [10]O. Saifee, L. Wei, M. L. Nonet. The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol Biol Cell,1998,9(6): 1235-1252
    [11]K. Broadie, A. Prokop, H. J. Bellen, et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron,1995,15(3):663-673
    [12]F. Deak, S. Schoch, X. Liu, et al. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat Cell Biol,2004,6(11):1102-1108
    [13]J. M. Hunt, K. Bommert, M. P. Charlton, et al. A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron,1994,12(6):1269-1279
    [14]N. E. Reist, J. Buchanan, J. Li, et al. Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J Neurosci,1998,18(19): 7662-7673
    [15]E. M. Jorgensen, E. Hartwieg, K. Schuske, et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature,1995, 378(6553):196-199
    [16]M. L. Nonet, J. E. Staunton, M. P. Kilgard, et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J Neurosci,1997,17(21):8061-8073
    [17]Y. Wang, M. Okamoto, F. Schmitz, et al. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature,1997,388(6642):593-598
    [18]S. Brenner. The genetics of Caenorhabditis elegans. Genetics,1974,77(1):71-94
    [19]R. Hosono, S. Hekimi, Y. Kamiya, et al. The unc-18 gene encodes a novel protein affecting the kinetics of acetylcholine metabolism in the nematode Caenorhabditis elegans. J Neurochem,1992,58(4):1517-1525
    [20]K. Gengyo-Ando, H. Kitayama, M. Mukaida, et al. A murine neural-specific homolog corrects cholinergic defects in Caenorhabditis elegans unc-18 mutants. J Neurosci,1996,16(21):6695-6702
    [21]M. Verhage, A. S. Maia, J. J. Plomp, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science,2000,287(5454):864-869
    [22]R. M. Weimer, J. E. Richmond, W. S. Davis, et al. Defects in synaptic vesicle docking in unc-18 mutants. Nat Neurosci,2003,6(10):1023-1030
    [23]M. Fukuda, J. E. Moreira, F. M. Lewis, et al. Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. Proc Natl Acad Sci U S A,1995,92(23):10708-10712
    [24]V. Haucke, P. De Camilli. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science,1999,285(5431):1268-1271
    [25]V. Haucke, M. R. Wenk, E. R. Chapman, et al. Dual interaction of synaptotagmin with mu2- and alpha-adaptin facilitates clathrin-coated pit nucleation. EMBO J,
    2000,19(22):6011-6019
    [26]J. Z. Zhang, B. A. Davletov, T. C. Sudhof, et al. Synaptotagmin I is a high affinity receptor for clathrin AP-2:implications for membrane recycling. Cell,1994,78(5): 751-760
    [27]M. L. Nonet, K. Grundahl, B. J. Meyer, et al. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell,1993,73(7): 1291-1305
    [28]M. L. Nonet, A. M. Holgado, F. Brewer, et al. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol Biol Cell,1999,10(7):2343-2360
    [29]T. Kirchhausen. Clathrin. Annu Rev Biochem,2000,69:699-727
    [30]B. Grant, D. Hirsh. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell,1999,10(12):4311-4326
    [31]S. Ahle, E. Ungewickell. Purification and properties of a new clathrin assembly protein. EMBO J,1986,5(12):3143-3149
    [32]K. R. Schuske, J. E. Richmond, D. S. Matthies, et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron,2003,40(4): 749-762
    [33]S. M. Sweitzer, J. E. Hinshaw. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell,1998,93(6):1021-1029
    [34]S. G. Clark, D. L. Shurland, E. M. Meyerowitz, et al. A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci U S A,1997,94(19):10438-10443
    [35]S. Sever, H. Damke, S. L. Schmid. Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol,2000,150(5):1137-1148
    [36]J. E. Rothman, S. L. Schmid. Enzymatic recycling of clathrin from coated vesicles. Cell,1986,46(1):5-9
    [37]E. Ungewickell, H. Ungewickell, S. E. Holstein, et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature,1995,378(6557):632-635
    [38]L. E. Greene, E. Eisenberg. Dissociation of clathrin from coated vesicles by the uncoating ATPase. J Biol Chem,1990,265(12):6682-6687
    [39]Y. Zhang, B. Grant, D. Hirsh. RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell,2001,12(7):2011-2021
    [40]S. X. Lin, B. Grant, D. Hirsh, et al. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat Cell Biol,2001, 3(6):567-572
    [41]B. Grant, Y. Zhang, M. C. Paupard, et al. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat Cell Biol,2001, 3(6):573-579
    [42]F. M. Brodsky, C. Y. Chen, C. Knuehl, et al. Biological basket weaving:formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol,2001,17: 517-568
    [43]B. D. Grant, M. Sato. Intracellular trafficking. WormBook,2006:1-9
    [44]H. Fares, I. Greenwald. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet,2001,28(1):64-68
    [45]S. Treusch, S. Knuth, S. A. Slaugenhaupt, et al. Caenorhabditis elegans functional orthologue of human protein hmucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci U S A,2004,101(13):4483-4488
    [46]H. Dang, Z. Li, E. Y. Skolnik, et al. Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol Biol Cell,2004,15(1):189-196
    [47]H. Stenmark, D. J. Gillooly. Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Semin Cell Dev Biol,2001 12(2):193-199
    [48]S. A. Tooze. Biogenesis of secretory granules. Implications arising from the immature secretory granule in the regulated pathway of secretion. FEBS Lett,1991, 285(2):220-224
    [49]G. Griffiths, K. Simons. The trans Golgi network:sorting at the exit site of the Golgi complex. Science,1986,234(4775):438-443
    [50]R. R. Duncan, J. Greaves, U. K. Wiegand, et al. Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature,2003,422(6928): 176-180
    [51]J. E. Heuser, T. S. Reese. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol,1973, 57(2):315-344
    [52]N. Takahashi, T. Kishimoto, T. Nemoto, et al. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science,2002,297(5585):1349-1352
    [53]J. W. Taraska, D. Perrais, M. Ohara-Imaizumi, et al. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A,2003,100(4):2070-2075
    [54]S. Mayor, J. F. Presley, F. R. Maxfield. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J Cell Biol,1993,121(6):1257-1269
    [55]C. Bucci, R. G Parton, I. H. Mather, et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell,1992,70(5):715-728
    [56]E. Daro, P. van der Sluijs, T. Galli, et al. Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. Proc Natl Acad Sci U S A,1996,93(18):9559-9564
    [57]J. P. Gorvel, P. Chavrier, M. Zerial, et al. rab5 controls early endosome fusion in vitro. Cell,1991,64(5):915-925
    [58]P. van der Sluijs, M. Hull, P. Webster, et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell,1992,70(5): 729-740
    [59]M. Deneka, P. van der Sluijs.'Rab'ing up endosomal membrane transport. Nat Cell Biol,2002,4(2):33-35
    [60]B. L. Grosshans, D. Ortiz, P. Novick. Rabs and their effectors:achieving specificity in membrane traffic. Proc Natl Acad Sci U S A,2006,103(32): 11821-11827
    [61]S. R. Pfeffer. Rab GTPases:specifying and deciphering organelle identity and function. Trends Cell Biol,2001,11(12):487-491
    [62]M. Zerial, H. McBride. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol,2001,2(2):107-117
    [63]C. M. Babbey, N. Ahktar, E. Wang, et al. Rab 10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Mol Biol Cell,2006,17(7):3156-3175
    [64]J. R. Junutula, A. M. De Maziere, A. A. Peden, et al. Rab14 is involved in membrane trafficking between the Golgi complex and endosomes. Mol Biol Cell, 2004,15(5):2218-2229
    [65]T. Proikas-Cezanne, A. Gaugel, T. Frickey, et al. Rab14 is part of the early endosomal clathrin-coated TGN microdomain. FEBS Lett,2006,580(22): 5241-5246
    [66]J. C. Simpson, G Griffiths, M. Wessling-Resnick, et al. A role for the small GTPase Rab21 in the early endocytic pathway. J Cell Sci,2004,117(Pt 26): 6297-6311
    [67]M. Kauppi, A. Simonsen, B. Bremnes, et al. The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci,2002,115(Pt 5): 899-911
    [68]J. G. Magadan, M. A. Barbieri, R. Mesa, et al. Rab22a regulates the sorting of transferrin to recycling endosomes. Mol Cell Biol,2006,26(7):2595-2614
    [69]R. Mesa, J. Magadan, A. Barbieri, et al. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus. Exp Cell Res,2005,304(2): 339-353
    [70]R. Mesa, C. Salomon, M. Roggero, et al. Rab22a affects the morphology and function of the endocytic pathway. J Cell Sci,2001,114(Pt 22):4041-4049
    [71]S. Christoforidis, M. Miaczynska, K. Ashman, et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol,1999,1(4):249-252
    [72]J. T. Murray, C. Panaretou, H. Stenmark, et al. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic,2002,3(6):416-427
    [73]E. Nielsen, F. Severin, J. M. Backer, et al. Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol,1999,1(6):376-382
    [74]A. Pal, F. Severin, B. Lommer, et al. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. J Cell Biol,2006,172(4):605-618
    [75]H. Horiuchi, R. Lippe, H. M. McBride, et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5-links nucleotide exchange to effector recruitment and function. Cell,1997,90(6):1149-1159
    [76]D. R. Sheff, E. A. Daro, M. Hull, et al. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J Cell Biol,1999,145(1):123-139
    [77]H. de Wit, Y. Lichtenstein, R. B. Kelly, et al. Rab4 regulates formation of synaptic-like microvesicles from early endosomes in PC12 cells. Mol Biol Cell, 2001,12(11):3703-3715
    [78]C. Valetti, D. M. Wetzel, M. Schrader, et al. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol Biol Cell,1999,10(12):4107-4120
    [79]B. D. Grant, S. Caplan. Mechanisms of EHD/RME-1 protein function in endocytic transport. Traffic,2008,9(12):2043-2052
    [80]N. Naslavsky, S. Caplan. C-terminal EH-domain-containing proteins:consensus for a role in endocytic trafficking, EH? J Cell Sci,2005,118(Pt 18):4093-4101
    [81]F. R. Maxfield, T. E. McGraw. Endocytic recycling. Nat Rev Mol Cell Biol,2004, 5(2):121-132
    [82]M. Deneka, M. Neeft, I. Popa, et al. Rabaptin-5alpha/rabaptin-4 serves as a linker between rab4 and gamma(1)-adaptin in membrane recycling from endosomes. EMBO J,2003,22(11):2645-2657
    [83]C. R. Hopkins, I. S. Trowbridge. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J Cell Biol,1983,97(2): 508-521
    [84]J. S. Bonifacino, J. H. Hurley. Retromer. Curr Opin Cell Biol,2008,20(4): 427-436
    [85]M. Mari, M. V. Bujny, D. Zeuschner, et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic,2008,9(3): 380-393
    [86]M. Jovic, M. Sharma, J. Rahajeng, et al. The early endosome:a busy sorting station for proteins at the crossroads. Histol Histopathol,2010,25(1):99-112
    [87]G. A. Calvert. Crossmodal processing in the human brain:insights from functional neuroimaging studies.Cereb Cortex,2001,11(12):1110-1123
    [88]M. A. Frye, M. Tarsitano, M. H. Dickinson. Odor localization requires visual feedback during free flight in Drosophila melanogaster. J Exp Biol,2003,206(Pt 5):843-855
    [89]J. Guo, A. Guo. Crossmodal interactions between olfactory and visual learning in Drosophila. Science,2005,309(5732):307-310
    [90]M. Heisenberg, R. Wolf, B. Brembs. Flexibility in a single behavioral variable of Drosophila. Learn Mem,2001,8(1):1-10
    [91]L. Liu, R. Wolf, R. Ernst, et al. Context generalization in Drosophila visual learning requires the mushroom bodies. Nature,1999,400(6746):753-756
    [92]S. Tang, A. Guo. Choice behavior of Drosophila facing contradictory visual cues. Science,2001,294(5546):1543-1547
    [93]S. Tang, R. Wolf, S. Xu, et al. Visual pattern recognition in Drosophila is invariant for retinal position. Science,2004,305(5686):1020-1022
    [94]J. Dubnau, T. Tully. Gene discovery in Drosophila:new insights for learning and memory. Annu Rev Neurosci,1998,21:407-444
    [95]R. J. Greenspan. Flies, genes, learning, and memory. Neuron,1995,15(4):747-750
    [96]S. Waddell, W. G. Quinn. What can we teach Drosophila? What can they teach us? Trends Genet,2001,17(12):719-726
    [97]T. Celikel, B. Sakmann. Sensory integration across space and in time for decision making in the somatosensory system of rodents. Proc Natl Acad Sci U S A,2007, 104(4):1395-1400
    [98]R. Melzack, P. D. Wall. Pain mechanisms:a new theory. Science,1965,150(699): 971-979
    [99]D. C. Sinclair. Cutaneous sensation and the doctrine of specific energy. Brain, 1955,78(4):584-614
    [100]G. A. Calvert, P. C. Hansen, S. D. Iversen, et al. Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. Neuroimage,2001,14(2):427-438
    [101]E. K. Miller, J. D. Cohen. An integrative theory of prefrontal cortex function. Annu Rev Neurosci,2001,24:167-202
    [102]M. M. Barr, L. R. Garcia. Male mating behavior. WormBook,2006:1-11
    [103]J. M. Simon, P. W. Sternberg. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A,2002,99(3): 1598-1603
    [104]J. Lipton, G. Kleemann, R. Ghosh, et al. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci,2004,24(34): 7427-7434
    [105]M. M. Barr, P. W. Sternberg. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature,1999,401(6751):386-389
    [106]K. S. Liu, P. W. Sternberg. Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron,1995,14(1):79-89
    [107]C. M. Loer, C. J. Kenyon. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J Neurosci,1993,13(12):5407-5417
    [108]R. Lints, S. W. Emmons. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development,1999,126(24):5819-5831
    [109]J. E. Sulston, D. G. Albertson, J. N. Thomson. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol,1980,78(2): 542-576
    [110]J. E. Sulston, H. R. Horvitz. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol,1977,56(1):110-156
    [111]L. E. Waggoner, G. T. Zhou, R. W. Schafer, et al. Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron,1998,21(1):203-214
    [112]G T. Zhou, Schafer W. R., Schafer R. W. A three-state biological point process model and its parameter estimation. IEEE Trans. Signal Process,1998,46(10): 2698-2707
    [113]H. R. Horvitz, M. Chalfie, C. Trent, et al. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science,1982,216(4549):1012-1014
    [114]C. Trent. Genetic and Behavioral Studies of the Egg-Laying System of Caenorhabditis elegans. Ph. D. Thesis,1983
    [115]N. D. L'Etoile, C. M. Coburn, J. Eastham, et al. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron,2002,36(6): 1079-1089
    [116]S. A. Daniels, M. Ailion, J. H. Thomas, et al. egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. Genetics,2000,156(1):123-141
    [117]C. Trent, N. Tsuing, H. R. Horvitz. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics,1983,104(4):619-647
    [118]G. I. Patterson, R. W. Padgett. TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet,2000,16(1):27-33
    [119]L. A. Hardaker, E. Singer, R. Kerr, et al. Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. J Neurobiol, 2001,49(4):303-313
    [120]R. C. Cassada, R. L. Russell. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol,1975,46(2):326-342
    [121]D. L. Riddle, M. M. Swanson, P. S. Albert. Interacting genes in nematode dauer larva formation. Nature,1981,290(5808):668-671
    [122]J. J. Vowels, J. H. Thomas. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics,1992,130(1):105-123
    [123]W. G. Wadsworth, D. L. Riddle. Developmental regulation of energy metabolism in Caenorhabditis elegans. Dev Biol,1989,132(1):167-173
    [124]B. K. Dalley, M. Golomb. Gene expression in the Caenorhabditis elegans dauer larva:developmental regulation of Hsp90 and other genes. Dev Biol,1992,151(1): 80-90
    [125]T. P. Snutch, D. L. Baillie. Alterations in the pattern of gene expression following heat shock in the nematode Caenorhabditis elegans. Can J Biochem Cell Biol, 1983,61(6):480-487
    [126]P. L. Larsen. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A,1993,90(19):8905-8909
    [127]J. R. Vanfleteren, A. De Vreese. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J,1995,9(13): 1355-1361
    [128]M. Klass, D. Hirsh. Non-ageing developmental variant of Caenorhabditis elegans. Nature,1976,260(5551):523-525
    [129]C. Mello, A. Fire. DNA transformation. Methods Cell Biol,1995,48:451-482
    [130]C. C. Mello, J. M. Kramer, D. Stinchcomb, et al. Efficient gene transfer in C. elegans:extrachromosomal maintenance and integration of transforming sequences. EMBO J,1991,10(12):3959-3970
    [131]O. Bossinger, E. Schierenberg. Cell-cell communication in the embryo of Caenorhabditis elegans. Dev Biol,1992,151(2):401-409
    [132]T. C. Evans, S. L. Crittenden, V. Kodoyianni, et a.. Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell, 1994,77(2):183-194
    [133]J. Kimble, J. Hodgkin, T. Smith, et al. Suppression of an amber mutation by microinjection of suppressor tRNA in C. elegans. Nature,1982,299(5882): 456-458
    [134]T. Maniatis, R. Reed. An extensive network of coupling among gene expression machines. Nature,2002,416(6880):499-506
    [135]A. Nott, H. Le Hir, M. J. Moore. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev,2004,18(2): 210-222
    [136]E. Berezikov, C. I. Bargmann, R. H. Plasterk. Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Res,2004,32(4): e40
    [137]S. Broverman, M. MacMorris, T. Blumenthal. Alteration of Caenorhabditis elegans gene expression by targeted transformation. Proc Natl Acad Sci U S A,1993, 90(10):4359-4363
    [138]V. Praitis, E. Casey, D. Collar, et al. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics,2001,157(3):1217-1226
    [139]D. M. Raizen, L. Avery. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron,1994,12(3):483-495
    [140]S. R. Lockery, M. B. Goodman. Tight-seal whole-cell patch clamping of Caenorhabditis elegans neurons. Methods Enzymol,1998,293:201-217
    [141]M. B. Goodman, D. H. Hall, L. Avery, et al. Active currents regulate sensitivity
    and dynamic range in C. elegans neurons. Neuron,1998,20(4):763-772
    [142]W. T. Nickell, R. Y. Pun, C. I. Bargmann, et al. Single ionic channels of two Caenorhabditis elegans chemosensory neurons in native membrane. J Membr Biol, 2002,189(1):55-66
    [143]J. E. Richmond, E. M. Jorgensen. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci,1999,2(9): 791-797
    [144]T. Stiernagle. Maintenance of C. elegans. wormbook,2006
    [145]Jonathan Hodgkin, Alan Coulson, Patricia Kuwabara. Molecular, Genetic and Informatic Methods for C. elegans. Worm Breeder's Gazette,1998,15(2):6
    [146]T. Ishihara, Y. Iino, A. Mohri, et al. HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell,2002,109(5):639-649
    [147]S. Saeki, M. Yamamoto, Y. Iino. Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol,2001,204(Pt 10):1757-1764
    [148]S. H. Chung, D. A. Clark, C. V. Gabel, et al. The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation. BMC Neurosci, 2006,7:30
    [149]I. Mori, Y. Ohshima. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature,1995,376(6538):344-348
    [150]W. S. Ryu, A. D. Samuel. Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined Thermal stimuli. J Neurosci,2002,22(13): 5727-5733
    [151]S. Chang, R. J. Johnston, O. Hobert. A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. Genes Dev, 2003,17(17):2123-2137
    [152]Altun-Gultekin. Z. e. a. Development,2001,128
    [153]E. R. Troemel, J. H. Chou, N. D. Dwyer, et al. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell,1995,83(2): 207-218
    [154]E. R. Troemel, B. E. Kimmel, C. I. Bargmann. Reprogramming chemotaxis responses:sensory neurons define olfactory preferences in C. elegans. Cell,1997, 91(2):161-169
    [155]M. Tomioka, T. Adachi, H. Suzuki, et al. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron,2006,51(5):613-625
    [156]T. R. Mahoney, Q. Liu, T. Itoh, et al. Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol Biol Cell,2006,17(6): 2617-2625
    [157]M. Ailion, J. H. Thomas. Isolation and characterization of high-temperature-induced Dauer formation mutants in Caenorhabditis elegans. Genetics,2003, 165(1):127-144
    [158]C. J. Cronin, J. E. Mendel, S. Mukhtar, et al. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet,2005,6(1):5
    [159]M. R. Lackner, S. J. Nurrish, J. M. Kaplan. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta:DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron,1999,24(2):335-346
    [160]K. D. Gillis. Techniques for membrane capacitance measurements, in Single-Channel Recording. B. Sakmann and E. Neher, Editors. Plenum Press:New York, NY,1995:155-198
    [161]T. Xu, M. Naraghi, H. Kang, et al. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys J,1997,73(1): 532-545
    [162]D. A. Birnby, E. M. Link, J. J. Vowels, et al. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics,2000,155(1):85-104
    [163]M. Estevez, L. Attisano, J. L. Wrana, et al. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature,1993,365(6447):644-649
    [164]L. L. Georgi, P. S. Albert, D. L. Riddle. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell,1990,61(4): 635-645
    [165]T. Inoue, J. H. Thomas. Targets of TGF-beta signaling in Caenorhabditis elegans dauer formation. Dev Biol,2000,217(1):192-204
    [166]G I. Patterson, A. Koweek, A. Wong, et al. The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev,1997,11(20):2679-2690
    [167]P. Ren, C. S. Lim, R. Johnsen, et al. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science,1996,274(5291):1389-1391
    [168]W. S. Schackwitz. Genetic and neural processing of the dauer pheromone response in Caenorhabditis elegans. Ph. D. Thesis, University of Washington, Seattle.,1996
    [169]K. D. Kimura, H. A. Tissenbaum, Y. Liu, et al. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science,1997, 277(5328):942-946
    [170]K. Lin, J. B. Dorman, A. Rodan, et al. daf-16:An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science,1997, 278(5341):1319-1322
    [171]J. Z. Morris, H. A. Tissenbaum, G Ruvkun. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature,1996(382):536-539
    [172]S. Ogg, S. Paradis, S. Gottlieb, et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature,1997, 389(6591):994-999
    [173]S. Paradis, M. Ailion, A. Toker, et al. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev,1999,13(11):1438-1452
    [174]S. Paradis, G. Ruvkun. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev,1998,12(16):2488-2498
    [175]K. Iwasaki, D. W. Liu, J. H. Thomas. Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 1995,92(22):10317-10321
    [176]T. Inoue, J. H. Thomas. Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans dauer formation pathway. Genetics,2000, 156(3):1035-1046
    [177]M. Nguyen, A. Alfonso, C. D. Johnson, et al. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics,1995,140(2):527-535
    [178]M. M. Rolls, D. H. Hall, M. Victor, et al. Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol Biol Cell, 2002,13(5):1778-1791
    [179]T. Cai, T. Fukushige, A. L. Notkins, et al. Insulinoma-Associated Protein IA-2, a Vesicle Transmembrane Protein, Genetically Interacts with UNC-31/CAPS and Affects Neurosecretion in Caenorhabditis elegans. J Neurosci,2004,24(12): 3115-3124
    [180]K. M. Zhou, Y. M. Dong, Q. Ge, et al. PKA activation bypasses the requirement for UNC-31 in the docking of dense core vesicles from C. elegans neurons. Neuron, 2007,56(4):657-669
    [181]N. W. Kahn, S. L. Rea, S. Moyle, et al. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem J,2008,409(1):205-213
    [182]K. T. Lin, G Broitman-Maduro, W. W. Hung, et al. Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Dev Biol,2009,325(1):296-306
    [183]J. M. Tullet, M. Hertweck, J. H. An, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell,2008,132(6): 1025-1038
    [184]D. Gems, A. J. Sutton, M. L. Sundermeyer, et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics,1998,150(1):129-155
    [185]M. Hasshoff, C. Bohnisch, D. Tonn, et al. The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis. FASEB J,2007,21(8):1801-1812
    [186]E. Kodama, A. Kuhara, A. Mohri-Shiomi, et al. Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes Dev,2006,20(21): 2955-2960
    [187]T. Vellai, D. McCulloch, D. Gems, et al. Effects of sex and insulin/insulin-like growth factor-1 signaling on performance in an associative learning paradigm in Caenorhabditis elegans. Genetics,2006,174(1):309-316
    [188]A. Solomon, S. Bandhakavi, S. Jabbar, et al. Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics,2004,167(1):161-170
    [189]L. Duret, N. Guex, M. C. Peitsch, et al. New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res,1998,8(4):348-353
    [190]S. B. Pierce, M. Costa, R. Wisotzkey, et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev,2001,15(6):672-686
    [191]P. Arvan, D. Castle. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J,1998,332(Pt 3):593-610
    [192]B. Borgonovo, J. Ouwendijk, M. Solimena. Biogenesis of secretory granules. Curr Opin Cell Biol,2006,18(4):365-370
    [193]T. Kim, M. C. Gondre-Lewis, I. Arnaoutova, et al. Dense-core secretory granule biogenesis. Physiology (Bethesda),2006,21:124-133
    [194]S. A. Tooze, G J. Martens, W. B. Huttner. Secretory granule biogenesis:rafting to the SNARE. Trends Cell Biol,2001,11(3):116-122
    [195]J. D. Dikeakos, T. L. Reudelhuber. Sending proteins to dense core secretory granules:still a lot to sort out. J Cell Biol,2007,177(2):191-196
    [196]P. Arvan, D. Castle. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol,1992,2(11):327-331
    [197]S. Speese, M. Petrie, K. Schuske, et al. UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J Neurosci, 2007,27(23):6150-6162
    [198]R. H. Chow, L. von Ruden, E. Neher. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature,1992,356(6364):60-63
    [199]C. T. Wang, R. Grishanin, C. A. Earles, et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science,2001, 294(5544):1111-1115
    [200]J. B. Sorensen. Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch,2004,448(4):347-362
    [201]M. J. Pierce, R. C. Berrington. Evidence for Stellar Streaming in the Cores of Elliptical Galaxies:A Kinematic Signature of Mergers? Astrophys J,2000,531(2): L99-L101
    [202]A. N. Nathoo, R. A. Moeller, B. A. Westlund, et al. Identification of neuropeptide-like protein gene families in Caenorhabditiselegans and other species. Proc Natl Acad Sci U S A,2001,98(24):14000-14005
    [203]S. J. Husson, E. Clynen, G Baggerman, et al. Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. J Neurochem,2006,98(6):1999-2012
    [204]T. C. Jacob, J. M. Kaplan. The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. J Neurosci,2003,23(6):2122-2130
    [205]G Di Paolo, P. De Camilli. Phosphoinositides in cell regulation and membrane dynamics. Nature,2006,443(7112):651-657
    [206]B. Grosshans, D. Ortiz, P. Novick. Rabs and their effectors:achieving specificity in membrane traffic. Proceedings of the National Academy of Sciences,2006, 103(32):11821
    [207]K. Lindmo, H. Stenmark. Regulation of membrane traffic by phosphoinositide 3-kinases. Journal of cell science,2006,119(4):605
    [208]F. Meunier, S. Osborne, G Hammond, et al. Phosphatidylinositol 3-kinase C2 {alpha} is essential for ATP-dependent priming of neurosecretory granule exocytosis. Molecular biology of the cell,2005,16(10):4841
    [209]L. Roggo, V. Bernard, A. Kovacs, et al. Membrane transport in Caenorhabditis elegans:an essential role for VPS34 at the nuclear membrane. The EMBO Journal, 2002,21(7):1673
    [210]X. Yu, S. Odera, C. Chuang, et al. C. elegans Dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfinent and degradation of apoptotic cells. Developmental cell,2006,10(6):743-757
    [211]S. Edwards, N. Charlie, J. Richmond, et al. Impaired dense core vesicle maturation in Caenorhabditis elegans mutants lacking Rab2. Journal of Cell Biology,2009, 186(6):881
    [212]C. Wasmeier, J. C. Hutton. Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J Biol Chem,1996,271(30):18161-18170
    [213]M. Sumakovic, J. Hegermann, L. Luo, et al. UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans. J Cell Biol,2009,186(6):897-914
    [214]D. K. Chun, J. M. McEwen, M. Burbea, et al. UNC-108/Rab2 regulates postendocytic trafficking in Caenorhabditis elegans. Mol Biol Cell,2008,19(7): 2682-2695
    [215]Y. A. Chen, R. H. Scheller. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol,2001,2(2):98-106
    [216]P. I. Hanson, R. Roth, H. Morisaki, et al. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell,1997,90(3):523-535
    [217]R. Jahn, T. C. Sudhof. Membrane fusion and exocytosis. Annu Rev Biochem,1999, 68:863-911
    [218]J. Rizo, T. C. Sudhof. Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci,2002,3(8):641-653
    [219]T. Weber, B. V. Zemelman, J. A. McNew, et al. SNAREpins:minimal machinery for membrane fusion. Cell,1998,92(6):759-772
    [220]F. Maxfield, T. McGraw. Endocytic recycling. Nature reviews Molecular cell biology,2004,5(2):121-132
    [221]D. Chun, J. McEwen, M. Burbea, et al. UNC-108/Rab2 regulates postendocytic trafficking in Caenorhabditis elegans. Molecular biology of the cell,2008,19(7): 2682
    [222]N. Frontali, B. Ceccarelli, A. Gorio, et al. Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J Cell Biol,1976,68(3):462-479
    [223]M. C. Tzeng, P. Siekevitz. The effect of the purified major protein factor (alpha-latrotoxin) of black widow spider venom on the release of acetylcholine and norepinephrine from mouse cerebral cortex slices. Brain Res,1978,139(1): 190-196
    [224]A. G Petrenko, V. A. Kovalenko, O. G Shamotienko, et al. Isolation and properties of the alpha-latrotoxin receptor. EMBO J,1990,9(6):2023-2027
    [225]Y. A. Ushkaryov, A. G Petrenko, M. Geppert, et al. Neurexins:synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science,1992, 257(5066):50-56
    [226]B. A. Davletov, O. G Shamotienko, V. G Lelianova, et al. Isolation and biochemical characterization of a Ca2+-independent alpha-latrotoxin-binding protein. J Biol Chem,1996,271(38):23239-23245
    [227]V. G Krasnoperov, R. Beavis, O. G Chepurny, et al. The calcium-independent receptor of alpha-latrotoxin is not a neurexin. Biochem Biophys Res Commun, 1996,227(3):868-875
    [228]V. G Krasnoperov, M. A. Bittner, R. Beavis, et al. alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron, 1997,18(6):925-937
    [229]V. Krasnoperov, M. A. Bittner, W. Mo, et al. Protein-tyrosine phosphatase-sigma is a novel member of the functional family of alpha-latrotoxin receptors. J Biol Chem, 2002,277(39):35887-35895
    [230]A. Grasso, S. Alema, S. Rufini, et al. Black widow spider toxin-induced calcium fluxes and transmitter release in a neurosecretory cell line. Nature,1980, 283(5749):774-776
    [231]E. V. Orlova, M. A. Rahman, B. Gowen, et al. Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. Nat Struct Biol,2000,7(1):48-53
    [232]J. Meldolesi, W. B. Huttner, R. Y. Tsien, et al. Free cytoplasmic Ca2+ and neurotransmitter release:studies on PC 12 cells and synaptosomes exposed to alpha-latrotoxin. Proc Natl Acad Sci U S A,1984,81(2):620-624
    [233]M. Capogna, K. E. Volynski, N. J. Emptage, et al. The alpha-latrotoxin mutant LTXN4C enhances spontaneous and evoked transmitter release in CA3 pyramidal neurons. J Neurosci,2003,23(10):4044-4053
    [234]K. Ichtchenko, M. Khvotchev, N. Kiyatkin, et al. alpha-latrotoxin action probed with recombinant toxin:receptors recruit alpha-latrotoxin but do not transduce an exocytotic signal. EMBO J,1998,17(21):6188-6199
    [235]M. A. Rahman, A. C. Ashton, F. A. Meunier, et al. Norepinephrine exocytosis stimulated by alpha-latrotoxin requires both external and stored Ca2+ and is mediated by latrophilin, G proteins and phospholipase C. Philos Trans R Soc Lond B Biol Sci,1999,354(1381):379-386
    [236]V. G Lelianova, B. A. Davletov, A. Sterling, et al. Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem,1997,272(34):21504-21508
    [237]K. E. Volynski, M. Capogna, A. C. Ashton, et al. Mutant alpha-latrotoxin (LTXN4C) does not form pores and causes secretion by receptor stimulation:this action does not require neurexins. J Biol Chem,2003,278(33):31058-31066
    [238]X. L. Lou, X. Yu, X. K. Chen, et al. Na+ channel inactivation:a comparative study between pancreatic islet beta-cells and adrenal chromaffin cells in rat. J Physiol, 2003,548(Pt 1):191-202
    [239]Z. Zhou, S. Misler. Amperometric detection of quantal secretion from patch-clamped rat pancreatic beta-cells. J Biol Chem,1996,271(1):270-277
    [240]H. E. Longenecker Jr., W. P. Hurlbut, A. Mauro, et al. Effects of black widow spider venom on the frog neuromuscular junction. Effects on end-plate potential, miniature end-plate potential and nerve terminal spike. Nature,1970,225(5234): 701-703
    [241]S. Sugita, M. Khvochtev, T. C. Sudhof. Neurexins are functional alpha-latrotoxin receptors. Neuron,1999,22(3):489-496
    [242]A. C. Ashton, K. E. Volynski, V. G. Lelianova, et al. alpha-Latrotoxin, acting via two Ca2+-dependent pathways, triggers exocytosis of two pools of synaptic vesicles. J Biol Chem,2001,276(48):44695-44703
    [243]A. N. Chanturiya, H. V. Nikoloshina. Correlations between changes in membrane capacitance induced by changes in ionic environment and the conductance of channels incorporated into bilayer lipid membranes. J Membr Biol,1994,137(1): 71-77
    [244]W. P. Hurlbut, E. Chieregatti, F. Valtorta, et al. Alpha-latrotoxin channels in neuroblastoma cells. J Membr Biol,1994,138(1):91-102
    [245]M. Khvotchev, T. C. Sudhof. alpha-latrotoxin triggers transmitter release via direct insertion into the presynaptic plasma membrane. EMBO J,2000,19(13): 3250-3262
    [246]G. M. Shepherd, K. M. Harris. Three-dimensional structure and composition of CA3 CA1 axons in rat hippocampal slices:implications for presynaptic connectivity and compartmentalization. J Neurosci,1998,18(20):8300-8310
    [247]K. E. Volynski, F. A. Meunier, V. G. Lelianova,et al. Latrophilin, neurexin, and their signaling-deficient mutants facilitate alpha-latrotoxin insertion into membranes but are not involved in pore formation. J Biol Chem,2000,275(52): 41175-41183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700