西南麦区小麦主要品质性状分析及QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是世界上重要的粮食作物,是人类植物碳水化合物和蛋白质的重要来源。随着社会经济的发展和生活水平的提高,人们对小麦加工的各种精制面食、保健品和营养食品的需求增大,同时更加关注相关产品的品质,因此品质改良已成为我国小麦育种的主要目标之一。通过分子数量遗传学方法,对小麦品质相关性状的品质分析及QTL定位研究,可以为分子标记辅助育种提供理论基础,并加快品质改良的进度。本研究通过对小麦F9-10高代重组自交系群体(RIL)R97×R146两年的主要品质性状进行分析和QTL定位,及F9-10RIL群体R131×R142的小麦籽粒、旗叶蛋白质含量和旗叶谷氨酰胺合成酶活性发育动态的条件QTL定位研究,主要取得以下结果:
     (1)由于现有研究群体遗传差异大,构建连锁图谱都不同,与QTL连锁的分子标记也不尽相同,所以各自定位的QTL结果难以相互借鉴利用,仅靠连锁图谱的简单比对难以进行准确和有效的分析。因此,本研究利用两个由中国栽培小麦血统的研究材料所构建的高密度连锁图谱数据和一个由Somers构建的一致性图谱数据,重新构建了一个高密度一致性连锁图谱。该图谱包含了617个微卫星标记(Xwmc、Xgwm和Xbarc三套),覆盖的遗传图谱总长度为1881.1cM,平均遗传距离为3.OcM,通过一致性图谱的构建,可为国内小麦分子辅助育种和QTL结果比较分析提供一个更为合适方便的分析基础。
     (2)由于粉质指数等面团流变学特性相关参数测定费时费力、并且不易一次性操作成功,因此检测时需要大量小麦面粉。而本研究发现,面筋指数与面团流变学特性的相关指标(面团形成时间、面团稳定时间和粉质指数)均存在显著或极显著的相关性,相关系数分别为0.201(P<0.05)、0.678(p<0.()1)和0.48(p<0.01)。并且也有大量文献报道面筋指数与面团流变学特性指标存在显著相关性。因此,在育种的早代材料中可以将面筋指数作为研究面团流变学特性指标的间接快速测定方法。
     (3)据文献报道,优质的小麦品种分为质量型优质品种(如优质性状是由蛋白质的质量-优质亚基引起的)和数量型优质品种(如优质性状是由蛋白质含量较高引起)两种。本研究通过分析品质性状间的相关性,发现质量型性状(面筋指数、面团稳定时间和粉质指数等)与数量型性状(湿面筋含量、干面筋含量及蛋白质的含量)呈显著或极显著负相关性。这说明具有较高加工品质(如较高的面筋指数和粉质指数)的小麦往往含有相对较低的面筋含量和蛋白质含量。因此,小麦加工品质与数量型性状极有可能处于一个动态平衡,在不打破这一平衡状态的前提下,小麦加工品质的提高势必会降低小麦数量型性状的含量(如面筋指数与蛋白质含量的关系)。
     (4)小麦蛋白质含量是小麦的一个重要品质性状。通过对小麦蛋白质含量的QTL分析,在RIL群体R97×R146中检测到一个与分子标记Xwmc419-6B连锁的QTL(Q.GPC-6B),且在两年的QTL分析都被检测到。另有研究显示,在相近的遗传位置也存在多个控制蛋白质含量的QTL。因此,在6B染色体分子标记xwmc419-6B附近的染色体片段上极可能存在控制蛋白质含量的QTL/基因簇。
     (5)戊聚糖是小麦的一个重要抗营养因子,对小麦的营养品质和加工品质均有重要作用。通过对戊聚糖相关性状进行分析,发现戊聚糖中的水溶性戊聚糖是控制籽粒硬度的重要因素。其原因可能是与造粉体膜相连的戊聚糖主要是水溶性戊聚糖,而造粉体膜上的水溶性戊聚糖通过对淀粉-蛋白质复合体粘性的改变,达到对籽粒硬度控制的作用。
     (6)通过研究小麦的籽粒硬度指数,发现小麦RIL群体R97×R146籽粒硬度指数的分布图呈双峰分布,并通过t检验,双峰分布的群体符合1:1的分离比,这说明该群体中存在一个主效QTL/基因控制小麦的籽粒硬度。而且,经QTL分析检测到一个控制小麦籽粒硬度的主效QTL(Q.H1-7D),其与分子标记xwmc634-7D连锁,两年都被检测到,并且LOD>10、R2>32%。因此,该QTL极可能是造成群体硬度指数分布图呈双峰分布的孟德尔遗传因子。
     (7)因QTL表达具有时空特异性,并且动态QTL分析方法可以对不同发育时期性状进行精确有效的QTL定位,所以在条件允许的情况下应尽量采用条件QTL动态分析方法。鉴于蛋白质含量对小麦加工品质的重要影响,本研究首次对小麦籽粒和旗叶蛋白质含量以及旗叶谷氨酰胺合成酶活性进行了动态QTL定位,并在不同时间段定位到四个对表型变异具有较大贡献率的QTL,即Q. GPC-1B.1(LOD=5.2R2=16.6%)、 Q. LPC-2B.1(LOD=4.3R2=28.2)、Q. LPC-1B.2(LOD=8.1R2=32.2%)和Q.GS-1B.1(LOD=3.8R2=29.4%)。T6(4.30|4.25)时间段,在分子标记Xwmc419x-Xwmc44之间同时检测到控制小麦籽粒及叶片蛋白质含量的两个QTL, Q.GPC-1B.3和Q. LPC-2B.3。
As one of the most important grain crop, common wheat (Triticum aestivum L.) is the main food of35%of population of the world. People pay more attention to the quality of wheat foods as living standards have improved. So, improvement of wheat's nutritional quality becomes an important objective in wheat molecular breeding programs. Through the methods of molecular quantitative genetics, we can enhance the power of molecular marker-assisted breeding and the progress of wheat quality improvement. In this research, major quality traits analysis and QTL detection are firstly carried out on the RIL R97×R146; then the protein content in kernel and leaves, Glutamine synthetase activity in leaves of RIL R131×R142are analysed by conditioned QTL mapping methods. The main results are as follows.
     (1) Because of great genetic variation of wheat populations and diversity of genetic linkage map, it is difficult to draw lessons from the multiple QTL analyzing results. In the research, we have constructed a high-density consensus map with two high density genetic map, which have Chinese cultivated wheat genetic background, and a consensus map data. It contains617SSR markers (Xwmc, Xgwm and Xbarc) and covers1881.1cM. The high-density consensus map will be a new tool for multiple QTL results analysis and moleculer marker-assisted breeding.
     (2) The detection of dough rheology characteristics is laborious, time-consuming and need much flours. Our research shows that gluten index is significantly positively correlated with dough rheology characteristics (Farinogram Quality Number, dough development and stabilization time) and the correlation coefficients is0.201(P<0.05), 0.678(P<0.01)and0.48(P<0.01), respectively. So gluten index can be a rapid determination method for dough rheology characteristics detection in the early generation materials selection of wheat quality breeding.
     (3) It has been reported that high quality wheat is divided into quality type and quantity type. In the research, we find that quality traits (gluten index, Farinogram Quality Number) are significantly or high significantly negatively correlated with quantity traits (gluten content, protein content). It means that high quality wheat tends to have low gluten and protein content. Apparently, wheat quality and associated quantity traits are always in a dynamic state of equilibrium.
     (4) Protein content is an important qulity trait in wheat breeding. We have detected one major QTL (Q.GPC-6B) for protein content in RIL R97XR146. Q.GPC-6B is linked to marker Xwmc419-6B, which can steadily express in multi-environment. Others researches also detect QTLs for protein content in the similar genetic locus. So, there may be one QTL/genes cluster for protein content in the genetic locus which links to xwmc419-6B on chromosome6B.
     (5) Pentosans are important albeit quantitatively minor constituents of wheat grain. They are significant anti-nutrient factor and have important impact on end-use quality of cereal grain. In this study, we believe that water-soluble pentosan is the major component in pentosans which associate with amyloplast membranes. The association of water-soluble pentosan with amyloplast membranes could modulate the adhesion of starch-protein matrix and therefore has an impact on grain hard index.
     (6) In the grain hard index (HI) analysis, we find that distribution of the RIL population is bimodal. Using our classification criterion, we classify58RIL lines as high HI and43RIL lines as low HI. The results indicate that there is a single Mendalian genetic factor in this population for grain hard index as the segregation pattern for HI is1:1(χ2=1.66). At the same time, we also find a major QTL Q.HI.scau-7D (LOD>10、R2>32%). This QTL may be the Mendalian genetic factor in this population.
     (7) Because of temporal spatial expression of QTL, dynamic QTL analysis can accurately detect the QTL in the different development periods of wheat. So, the protein content of kernel and leaves, the Glutamine synthetase activity of leaves are firstly analysed and detected by conditioned QTL mapping method. We have detected four QTL with higher percentage of phenotypic variation. They are Q.GPC-1B.1(LOD=5.2, R2=16.6%), Q.LPC-2B.1(LOD=4.3, R2=28.2), Q.LPC-1B.2(LOD=8.1, R2=32.2%) and Q.GS-1B.1(LOD=3.8, R2=29.4%). We also detecte two QTL (Q.GPC-1B.3and Q.LPC-1B.3) for protein content of kernel and leaves between Xwmc419x and Xwmc44at T6(4.30|4.25).
引文
[1]. Shi C., Shi Y., Lou X., et al., Identification of endosperm and maternal plant QTLs for protein and lysine contents of rice across different environments. Crop and Pasture Science,2009.60(3):p.295-301.
    [2]. Zhang Y., Wu Y, Xiao Y, et al., QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese softx hard wheat cross. Crop and Pasture Science,2009.60(6):p.587-597.
    [3].赵广才,何中虎,刘利华等.肥水调控对强筋小麦中优9507品质与产量协同提高的研究.中国农业科学,2004.37(3):p.351-356.
    [4]. Campbell K. G. Bergman C. J., Gualberto D. G., et al., Quantitative trait loci associated with kernel traits in a soft x hard wheat cross. Crop Science,1999.39:p. 1184-1195.
    [5].任正隆.适应四川农业产业化的小麦生产:现状,问题和应对策略.四川农业大学学报,2000.18(1):p.89-93.
    [6]. 晏本菊.中国西南麦区普通小麦(Triticum Aestivum L.)优质育种的生化遗传基础研究.2004.四川农业大学.
    [7].任正隆,朱华忠,宋荷仙等,雨养农业区的小麦育种.2010:科学出版社.
    [8].王宏延.高分子质量谷蛋白亚基与小麦加工品质的关系.粮食科技与经济,2012.37(3):p.41-43.
    [9]. 魏益民,李志西和王立宏.小麦品种籽粒蛋白质品质的研究.西北农林科技大学学报(自然科学版),1992.4.
    [10]. 王晓曦,陈颖,徐荣敏等.小麦加工工艺与小麦粉品质.粮食与饲料工业,2006(10):p.9-12.
    [11]. 高汝勇和杨学举.小麦子粒谷蛋白大聚合体含量的遗传模型分析.河北农业大学学报,2002.25(001):p.10.12.
    [12].赵新和王步军.小麦蛋白质和淀粉性状与面包品质关系研究进展.中国农学通报,2008.24(12).
    [13].郑建梅.谷蛋白溶涨指数与小麦品质关系研究.2004.西北农林科技大学.
    [14]. 黄东印和林作楫.冬小麦品质性状与面条品质性状关系的初步研究.华北农学报,1990.5(1):p.40-45.
    [15]. Park C. S., Hong B. H. and Baik B. K., Protein quality of wheat desirable for making fresh white salted noodles and its influences on processing and texture of noodles. Cereal Chemistry,2003.80(3):p.297-303.
    [16]. Park C. S. and Baik B. K., Relationship between protein characteristics and instant noodle making quality of wheat flour. Cereal Chemistry,2004.81(2):p.159-164.
    [17]. 林作楫,食品加工与小麦品质改良.1994:中国农业出版社.
    [18]. Finney K. F. and Barrimore M. A., Loaf volume and protein content of hard winter and spring wheats. Cereal Chemistry,1948.25:p.291-312.
    [19]. Blanco A., Simeone R. and Gadaleta A., Detection of QTLs for grain protein content in durum wheat. Theoretical and Applied Genetics,2006.112(7):p. 1195-1204.
    [20]. 陈正茂.人工合成小麦品质相关性状QTL定位研究.2011.四川农业大学
    [21]. Halverson J., Zeleny L. and Pomeranz Y., Criteria of wheat quality. Wheat: chemistry and technology. Volume I.,1988(Ed 3):p.15-45.
    [22]. 李志西,魏益民,张建国等.小麦蛋白质组分与面团特性和烘焙品质关系的研究.中国粮油学报,1998.13(3):p.1-5.
    [23].张振民和邱明发.试论不同用途小麦品质特性.麦类作物,1998.18(006):p.28-32.
    [24]. Oh N., Seib P., Ward A., et al., Noodles Ⅵ. Functional properties of wheat flour components in oriental dry noodles. Cereal foods world,1985.30(2):p.176-178.
    [25]. 何雅蔷,马铁明,王凤成等.大豆粉末磷脂对面团流变学特性和馒头品质的影响研究.粮食与饲料工业,2007.1:p.25-27.
    [26].张岐军,张艳和何中虎.软质小麦品质性状与酥性饼干品质参数的关系研究.作物学报,2005.31(9):p.1125-1131.
    [27]. Addo K., Pomeranz Y., Huang M., et al., Steamed bread. Ⅱ. Role of protein content and strength. Cereal Chemistry,1991.68(1):p.39-42.
    [28]. Zhu J., Huang S. and Khan K., Relationship of protein quantity, quality and dough properties with Chinese steamed bread quality. Journal of Cereal Science,2001. 33(2):p.205-212.
    [29]. 晏本菊,任正隆,张怀琼等.麦谷蛋白聚合体含量与小麦粉质量性状相关性研究.中国粮油学报,2010(004):p.7-11.
    [30]. 李昌文和刘延奇.小麦及其面粉品质对馒头品质的影响.粮食与食品工业,2008.15(2):p.7-8.
    [31]. Kosmolak F., Leisle D., DEXTER J., et al., A relationship between durum wheat quality and gliadin electrophoregrams. Canadian Journal of Plant Science,1980. 60(2):p.427-432.
    [32]. Lagudah E. S., Macritchie F. and Halloran G. M., The influence of high-molecular-weight subunits of glutenin from Triticum tauschii on flour quality of synthetic hexaploid wheat. Journal of Cereal Science,1987.5(2):p.129-138.
    [33].李慧慧,张鲁燕和王建康.数量性状基因定位研究中若干常见问题的分析与解答.作物学报,2010.36(6):p.918-931.
    [34]. 刘志华,胡尚连,韩占江等.小麦蛋白质组分与加工品质关系.粮食与油脂,2003(10):p.7-9.
    [35]. Payne P., Corfield K. and Blackman J., Identification of a high-molecular-weight subunit of glutenin whose prescnce correlates with bread-making quality in wheats of related pedigree. Theoretical and Applied Genetics,1979.55(3):p.153-159.
    [36]. Orth R. and Bushuk W., A comparative study of the proteins of wheat of diverse baking qualities. Cereal Chemistry,1972.49:p.268-275.
    [37]. 毛炜翔,高金燕和陈红兵.小麦过敏研究进展.食品科学,2007.28(8):p.559-562.
    [38]. Bean S., Evaluation of novel precast SDS-PAGE gels for separation of sorghum proteins. Cereal Chemistry,2003.80(5):p.500-504.
    [39].杨学举和卢少源.小麦籽粒蛋白质组分与面包烘焙品质性状关系的研究.中国粮油学报,1999.14(1):p.1-5.
    [40]. 舒卫国,张玉良和王光瑞.冬小麦主要品质性状鉴定及其相关性研究.中国粮油学报,1996.11(4):p.1-7.
    [41]. 车永和和马晓岗.小麦蛋白质品质研究进展.青海农林科技,2001.4:p.23-25.
    [42]. Bean S., Lyne R., Tilley K., et al., A Rapid Method for Quantitation of Insoluble Polymeric Proteins in Flour 1. Cereal Chemistry,1998.75(3):p.374-379.
    [43]. Sapirstein H. and Fu B., Intercultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin, and residue protein in wheat flour and relationships to breadmaking quality. Cereal Chemistry,1998.75(4):p.500-507.
    [44]. Payne P. and Lawrence G., Catalogue of alleles for the complex gene loci, Glu-Al, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Communications,1983.11(1):p.29-35.
    [45]. Buonocore F., Caporale C. and Lafiandra D., Purification and Characterisation of HighMrGlutenin Subunit 20 and its Linked y-type Subunit from Durum Wheat. Journal of Cereal Science,1996.23(3):p.195-201.
    [46]. Cloutier S., Rampitsch C., Penner G. A., et al., Cloning and expression of a LMW-i glutenin gene. Journal of Cereal Science,2001.33(2):p.143-154.
    [47]. Branlard G., Dardevet M., Saccomano R., et al., Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica,2001.119(1):p.59-67.
    [48]. Luo C., Griffin W., Branlard G., et al., Comparison of low-and high molecular-weight wheat glutenin allele effects on flour quality. Theoretical and Applied Genetics,2001.102(6):p.1088-1098.
    [49]. He Z., Liu L., Xia X., et al., Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chemistry,2005.82(4):p.345-350.
    [50].刘丽,周阳,何中虎等Glu-1和Glu-3等位变异对小麦加工品质的影响.作物学报,2004.30(10):p.959-968.
    [51]. 张玲.用TOM评价中国面条品质的新方法及研究小麦品质对它的影响.中国粮油学报,1998.13(1):p.49-53.
    [52]. Payne P. I., Jackson E. A. and Holt L. M., The association between y-gliadin 45 and gluten strength in durum wheat varieties:A direct causal effect or the result of genetic linkage? Journal of Cereal Science,1984.2(2):p.73-81.
    [53]. 晏本菊和任正隆.我国部分小麦新品种(系)的高分子谷蛋白亚基遗传变异分析.四川农业大学学报,2001.19(4):p.380-383.
    [54].晏本菊和任正隆.小麦新高产品系的高分子谷蛋白亚基结构分析.四川农业大学学报,2001.19(4):p.376-379.
    [55].张学勇,董玉琛,游光侠等.中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析.中国农业科学,2001.34(4):p.355-362.
    [56]. Zhong-hu H., Pena R. and Rajaram S., High molecular weight glutenin subunit composition of Chinese bread wheats. Euphytica,1992.64(1):p.11-20.
    [57]. 杨恩年,晏本菊,唐宗祥等.四川小麦新品种高分子量谷蛋白亚基遗传变异分析.西南农业学报,2008.21(003):p.557-561.
    [58]. 张晓燕,陆启玉,蔡凤仪等.面粉面筋数量和质量与鲜湿面条品质的关系.河南工业大学学报(自然科学版),2006.27(002):p.25-28.
    [59]. 张华文,田纪春和刘艳玲.小麦品种间籽粒品质性状表现及其相关性分析.山东农业科学,2004(006):p.10-12.
    [60]. Toyokawa H., Rubenthaler G., Powers J., ct al., Japanese noodle qualities. I. Flour components. Cereal Chem,1989.66(5):p.382-386.
    [61]. 顾尧臣.面包专用粉标准和面筋质量的快速检测.粮油食品科技,1998(004):p.4-6.
    [62].王恕.从湿面筋含量和面筋指数来评价中国河南和法国小麦面筋.中国粮油学报,1999.14(006):p.5-7.
    [63]. Hu X. Z. and Shang Y. N., A new testing method for vital gluten swelling index. Journal of the Science of Food and Agriculture,2007.87(9):p.1778-1782.
    [64]. Zeleny I., A simple sedimentation test estimating the breadbaking and gluten qualities of wheat flour. Cereal Chemistry,1947.24:p.465-475.
    [65]. Axford D., McDermott E. and Redman D., Note on the sodium dodecyl sulfate test of breadmaking quality:comparison with Pelshenke and Zeleny tests. Cereal Chemistry,1979.56(6):p.582-584.
    [66]. 马传喜和徐风.影响SDS沉降值的试验因素分析.安徽农业大学学报, 1995.22(1):p.1-6.
    [67]. 晏本菊,宋振巧,张怀琼等.1BL/1RS易位对SDS沉降值和HMW-GS的多样性效应.华中农业大学学报,2004(z1):p.55-60.
    [68].孙学永和马传喜.普通小麦SDS沉淀值,蛋白质含量及GMP含量的相关性分析.安徽农业科学,2002.30(002):p.171-174.
    [69]. Lonkhuijsen H. J., Hamer R. J. and Schreuder C., Influence of specific gliadins on the breadmaking quality of wheat. Cereal Chemistry,1992.69(2):p.174-177.
    [70].王宪泽和李菡.山东推广小麦品种籽粒物理及面粉品质性状的研究.山东农业科学,1997(6):p.6-10.
    [71]. Pomeranz Y. and Williams P., Wheat hardness:Its genetic, structural, and biochemical background, measurement, and significance. Advances in cereal science and technology,1990.10:p.471-544.
    [72]. Stenvert N. L. and Kingswood K., The influence of the physical Structure of the protein matrix on wheat hardness. Journal of the Science of Food and Agriculture, 1977.28(1):p.11-19.
    [73]. Barlow K., Buttrose M. and Simmonds D., Vesk M. The nature of the starch-prctein interdace in wheat endosperm. Cereal Chem,1973.50:p.443-454.
    [74]. Henry R. J. and Kettlewell P., Cereal grain quality.1996. Chapman & Hall Ltd.
    [75]. Bergman C. J., Giroux M. J., Roue C., et al., Quantitative trait loci associated with milling and baking quality in a soft× hard wheat cross. Crop Science.2001.41(4): p.1275-1285.
    [76]. Major B., Kettlewell P. and Scott R., Mechanisms leading to excess alpha-amylase activity in wheat (Triticum aestivum, L) grain in the UK. Journal of Cereal Science, 2001.33(3):p.313-329.
    [77]. Alaru M., Laur U. and Jaama E., Influence of nitrogen and weather conditions on the grain quality of winter triticale. Agronomy Research,2003.1(1):p.3-10.
    [78]. 尹成华,王亚平,路辉丽等.小麦品质指标与面团流变学特性指标的相关性分析.河南工业大学学报(自然科学版),2012(04).
    [79]. 展海军,李建伟,金华丽等.小麦储藏期间品质变化的研究.郑州工程学院学 报,2002(02).
    [80]. 高新楼,邢庭茂,刘劲哲,et al.,小麦品质与面制吕加工技术.2009:中原农民出版社.
    [81]. Michelmore R. W. and Shaw D. V., Character dissection. Nature,1988.335:p. 672-673.
    [82]. Xu Y, Molecular Plant Breeding.2010 Cambridge:CABI North American Office.
    [83]. 赵亮.小麦主要品质性状的QTL定位.2009.山东农业大学.
    [84]. Donis-Keller H., Green P., Helms C., et al., A genetic linkage map of the human genome. Cell,1987.51(2):p.319-337.
    [85]. Somers D. J., Isaac P. and Edwards K., A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics,2004. 109(6):p. 1105-1114.
    [86]. Fu D., Uauy C., Distelfeld A., et al., A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science,2009.323:p. 1357-1360.
    [87]. Yan L., Loukoianov A., Tianquilli G., et al., Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences,2003. 100(10):p.6263-6268.
    [88]. 徐云碧和朱立煌,分子数量遗传学.1994:中国农业出版社.
    [89]. 侯北伟,窦秉德,李生强等.利用回交群体对小麦雌性不育基因的SSR标记.淮阴师范学院学报(自然科学版),2005.4(4).
    [90].谭远德和万春玲.不同作图群体对显隐性分子标记位点的作图效率.生命科学研究,2000.4(3):p.202-210.
    [91].蒋洪蔚,刘春燕,高运来等.作物QTL定位常用作图群体.生物技术通报,2008(z1):p.12-17.
    [92]. 胡中立和章志宏.质量—数量性状的遗传参数估计:Ⅱ.利用DH群体或RIL群体.武汉大学学报:自然科学版,1998.44(6):p.784-788.
    [93]. 方宣钧,吴为人和唐纪良,作物DNA标记辅助育种.2001:科学出版社.
    [94]. Snape J., Chapman V., Moss J., et al., The crossabilities of wheat varieties with Hordeum bulbosum. Heredity,1979.42(3):p.291-298.
    [95]. Lin F., Xue S., Tian D., et al., Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica,2008.164(3):p.769-777.
    [96]. Burr B. and Burr F. A., Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends in Genetics,1991.7(2):p.55-60.
    [97]. Yano M. and Sasaki T., Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology,1997.35(1):p.145-153.
    [98]. 吕祝章.大豆遗传图谱构建,重要农艺性状QTL定位及优异基因发掘[D].2006.山东农业大学.
    [99]. 廖长见,王颖姮和潘光堂.作物染色体导入系的构建及其应用.分子植物育种,2007.5(F11):p.139-144.
    [100]. 席章营,朱芬菊.台国琴等.作物QTL分析的原理与方法.中国农学通报,2005.21(1).
    [101]. 吕瑞玲,吴小凤和刘敏超.分子标记技术及在水稻遗传研究中的应用.中国农学通报,2009.25(4):p.65-73.
    [102]. Grodzicker T., Williams J., Sharp P., et al., Physical mapping of temperature-sensitive mutations of adenoviruses.1974, Cold Spring Harbor Laboratory Press. p.439-446.
    [103]. Williams J. G. K., Kubelik A. R., Livak K. J., et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic acids research, 1990.18(22):p.6531-6535.
    [104]. Olson M., Hood L., Cantor C., et al., A common language for physical mapping of the human genome. Science,1989.245(4925):p.1434-1434.
    [105]. Monna L., Miyao A., Inoue T., et al., Determination of RAPD markers in rice and their conversion into sequence tagged sites (STSs) and STS-specific primers. DNA Research,1994.1(3):p.139-148.
    [106]. Flavell A. J., Bolshakov V. N., Booth A., et al., A microarray-based high throughput molecular marker genotyping method:the tagged microarray marker (TAM) approach. Nucleic acids research,2003.31(19):p. e115.
    [107]. Zabeau M. and Vos P., Selective restriction fragment amplification:a general method for DNA fingerprinting.1993, European Patent Office, EP 0534858-A1.
    [108]. Vos P., Hogers R., Bleeker M., et al., AFLP:a new technique for DNA fingerprinting. Nucleic acids research,1995.23(21):p.4407-4414.
    [109]. Tautz D., Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic acids research,1989.17(16):p.6463-6471.
    [110]. Powell W., Machray G. C. and Provan J., Polymorphism revealed by simple sequence repeats. Trends in Plant Science,1996.1(7):p.215-222.
    [111].王泽立和戴景瑞.植物基因的图位克隆.生物技术通报,2000(004):p.21-27.
    [112]. Moreno-Gonzalez J., Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple tegression techniques. Theoretical and Applied Genetics,1992,85(4):p.435-444.
    [113]. Keightley P. D. and Bulfield G., Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genetical research,1993.62(3):p. 195-204.
    [114]. 吴为人,唐定中和李维明.数量性状的遗传剖析和分子剖析.作物学报,2000.26(4):p.501-507.
    [115]. Prioul J. L., Pelleschi S., Sene M., et al., From QTLs for enzyme activity to candidate genes in maize. Journal of Experimental Botany,1999.50(337):p. 1281-1288.
    [116]. Zhang Y. and Stommel J., RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theoretical and Applied Genetics,2000. 100(3):p.368-375.
    [117]. Chevre A., Barret P., Eber F., et al., Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans).1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theoretical and Applied Genetics,1997.95(7):p.1104-1111.
    [118]. Hayes A. and Saghai Maroof M., Targeted resistance gene mapping in soybean using modified AFLPs. Theoretical and Applied Genetics,2000.100(8):p. 1279-1283.
    [119]. Dong N., Subudhi P., Luong P., et al., Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theoretical and Applied Genetics,2000.100(5):p.727-734.
    [120]. 高用明和朱军.植物QTL定位方法的研究进展.遗传学报,2000.22(3):p.175-179.
    [121]. Weller J., Soller M. and Brody T., Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum x Lycopersicon pimpinellifolium) by means of genetic markers. Genetics,1988.118(2):p.329-339.
    [122]. Tanksley S. D., Medina-Filho H. and Rick C. M., Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity,1982.49(1):p.11-25.
    [123]. Stuber C. W., Edwards M. D. and Wendel J., Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Science,1987.27(4):p.639-648.
    [124]. Lander E. S. and Botstein D., Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989.121(1):p.185-199.
    [125]. Zeng Z. B., Precision mapping of quantitative trait loci. Genetics,1994.136(4):p. 1457-1468.
    [126]. 阮成江,何祯祥和钦佩.我国农作物QTL定位研究的现状和进展.植物学通报,2003.20(1):p.10-22.
    [127]. 朱军.运用合线性模型定位复杂数量性状基因的方法 浙江大学学报(自然科学版),1999.33(3):p.327.
    [128]. 朱军,遗传模型分析方法.Vol.1.1997:中国农业出版社.
    [129]. Tanksley S. D., Mapping polygenes. Annual review of genetics,1993.27(1):p. 205-233.
    [130].徐建龙,薛庆中,梅捍卫等.水稻数量性状位点(QTL)定位研究进展.浙江 农业学报,2001.13(5):p.315-321.
    [131]. Lee M., DNA markers and plant breeding programs. Advances in agronomy,1995. 55:p.265-344.
    [132]. 毛传澡和程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,1999.7(4):p.386-394.
    [133]. Paterson A. H., Lander E. S., Hewitt J. D., et al., Resolution of quantitative traits into Mendel ian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988.335(20):p.721-726.
    [134].刘宾.小麦主要农艺性状的条件和非条件QTL定位.2011.山东农业大学.
    [135]. Varshney R. K., Marcel T. C., Ramsay L., et al., A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics, 2007.114(6):p.1091-1103.
    [136]. Gustafson J. P., Ma X F., Korzun V., et al., A consensus map of rye integrating mapping data from five mapping populations. Theoretical and Applied Genetics, 2009.118(4):p.793-800.
    [137]. Milian T., Winter P., Jungling R., et al., A consensus genetic map of chickpea (Cicer arictinum L.) based on 10 mapping populations. Euphytica,2010.175(2):p. 175-189.
    [138]. Xia J. H., Liu F., Zhu Z, Y., et al., A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics, 2010.11(135):p.1-16.
    [139]. Marcel T. C., Varshney R., Barbieri M., et al., A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics,2007.114(3): p.487-500.
    [140]. Cadalen T., Sourdille P., Charmet G., et al., Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theoretical and Applied Genetics,1998.96(6):p.933-940.
    [141]. 刘冬成,高睦枪,关荣霞等.小麦株高性状的QTL分析,遗传学报,2002. 29(8):p.706-711.
    [142].傅大雄,阮仁武,刘大军等.近等基因系法对小麦显性矮源的研究.中国农业科学,2007.40(4):p.655-664.
    [143]. Borner A., Schumann E., Fiirste A., et al., Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics,2002.105(6):p.921-936.
    [144]. Lelley J. and Vizmathy E., Wheat breeding:theory and practice.1976:Akademiai Kiado.
    [145]. Li W., Nelson J., Chu C., et al., Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica,2002.125(3):p.357-366.
    [146]. Cui F., Li J., Ding A., et al., Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics,2011.122(8):p.1517-1536.
    [147]. Mao S. L., Wei Y. M., Cao W., et al., Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica,2010.174(3):p.343-356.
    [148]. Faris J., Anderson J., Francl L., et al., RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theoretical and Applied Genetics,1997.94(1):p.98-103.
    [149]. Cheong J., Wallwork H. and Williams K., Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbrook. Crop and Pasture Science,2004.55(3):p.315-319.
    [150]. Nelson J., Singh R., Autrique J., et al., Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Science,1997.37(6):p.1928-1935.
    [151]. Kulwal P., Kumar N., Kumar A., et al., Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Functional & Integrative Genomics,2005.5(4):p.254-259.
    [152]. Rehman Arif M., Nagel M., Neumann K., et al., Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica,2012.186(1):p.1-13.
    [153]. Anderson J. A., Stack R., Liu S., et al., DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theoretical and Applied Genetics,2001. 102(8):p.1164-1168.
    [154]. Basnet B. R., Glover K. D., Ibrahim A. M. H., et al., A QTL on chromosome 2DS of'Sumai 3'increases susceptibility to Fusarium head blight in wheat Euphytica, 2012.186(1):p.91-101.
    [155]. Zhou M. P., Hayden M. J., Zhang Z. Y., et al., Saturation and mapping of a major Fusarium head blight resistance QTL on chromosome 3BS of Sumai 3 wheat. Journal of Applied Genetics,2010.51(1):p.19-25.
    [156]. Prins R., Pretorius Z., Bender C, et al., QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega×Avocet S doubled haploid wheat population. Molecular Breeding,2011.27(2):p.259-270.
    [157]. Ma L., Zhou E., Huo N., et al., Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica,2007.153(1):p. 109-117.
    [158]. Kirigwi F., Van Ginkel M., Brown-Guedira G., et al.. Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding,2007.20(4):p. 401-413.
    [159]. Prasad M., Varshney R., Kumar A., et al., A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theoretical and Applied Genetics,1999.99(1):p.341-345.
    [160], Sun X., Marza F., Ma H., et al., Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theoretical and Applied Genetics, 2010.120(5):p.1041-1051.
    [161]. Kunert A., Naz A. A., Dedeck O., et al., AB-QTL analysis in winter wheat:I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides×T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theoretical and Applied Genetics,2007.115(5):p.683-695.
    [162]. 张立平.普通小麦品质性状遗传与QTI分析.2003.中国农业科学院博士学位论文.
    [163]. Joppa L., Du C., Hart G. E., et al., Mapping gene (s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Science,1997.37(5):p.1586-1589.
    [164]. Gonzalez-Hernandez J., Elias E. and Kianian S., Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica,2004.139(3):p.217-225.
    [165]. Huang X., Cloutier S., Lycar L., et al., Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics,2006.113(4):p. 753-766.
    [166]. Kerfal S., Giraldo P., Rodriguez-Quijano M., et al., Mapping quantitative trait loci (QTLs) associated with dough quality in a soft× hard bread wheat progeny. Journal of Cereal Science,2010.52(1):p.46-52.
    [167]. Taenzler B., Esposti R., Vaccino P., et al., Molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genetical research,2002.80(2):p.131-143.
    [168]. Blanco A., Bellomo M., Lotti C., et al., Genetic mapping of sedimentation volume across environments using recombinant inbred lines of durum wheat. Plant Breeding,1998.117(5):p.413-417.
    [169]. Huang X., Coster H., Ganal M., et al., Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics,2003.106(8):p.1379-1389.
    [170]. Patil R., Oak M., Tamhankar S., et al., Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L.ssp durum). Journal of Cereal Science,2009.49(3):p. 378-386.
    [171]. Li Y., Song Y., Zhou R., et al., Detection of QTLs for bread - making quality in wheat using a recombinant inbred line population. Plant Breeding,2009.128(3):p. 235-243.
    [172]. Zhao L., Liu B., Zhang K. P., et al., Detection of QTLs with Additive Effects, Epistatic Effects, and QTL×Environment Interactions for Zeleny Sedimentation Value Using a Doubled Haploid Population in Cultivated Wheat. Agricultural Sciences in China,2009.8(9):p.1039-1045.
    [173]. Kuchel H., Langridge P., Mosionek L., et al., The genetic control of milling yield, dough rheology and baking quality of wheat. Theoretical and Applied Genetics, 2006.112(8):p.1487-1495.
    [174]. Li G., Fang T., Zhang H., et al., Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics,2009. 119(3):p.531-539.
    [175]. Nelson J. C., Andreescu C., Breseghello F., et al., Quantitative trait locus analysis of wheat quality traits. Euphytica,2006.149(1):p.145-159.
    [176]. Elouafi I. and Nachit M.. A genetic linkage map of the Durum×Triticum dicoccoides backcross population based on SSRs and APLP markers, and QTL analysis for milling traits. Theoretical and Applied Genetics,2004.108(3):p. 401-413.
    [177]. Udall J., Souza E., Anderson J., et al., Quantitative trait loci for flour viscosity in winter wheat. Crop Science,1999.39(1):p.238-242.
    [178]. Parker G., Chalmers K., Rathjen A., et al., Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theoretical and Applied Genetics,1998. 97(1):p.238-245.
    [179]. 吴为人,李维明和卢浩然.数量性状基因座的动态定位策略.生物数学学报,1997.12(5):p.490-495.
    [180]. Zhu J., Analysis of conditional genetic effects and variance components in developmental genetics. Genetics,1995.141(4):p.1633-1639.
    [181].李卫华,尤明山,刘伟等.小麦GMP含量发育动态的QTL定位.作物学报, 2006.32(7):p.995-1000.
    [182]. 刘宾,赵亮,张坤普等.小麦株高发育动态QTL定位.中国农业科学,2010.43(22):p.4562-4570.
    [183]. Wu X., Wang Z., Chang X., et al., Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. Journal of Experimental Botany,2010.61(11):p.2923-2937.
    [184]. Zhang K., Fang Z., Liang Y., et al., Genetic dissection of chlorophyll content at different growth stages in common wheat. Journal of Genetics,2009.88(2):p. 183-189.
    [185]. Zhang K., Tian J., Zhao L., et al., Mapping QTLs with epistatic effects and QTL× environment interactions for plant height using a doubled haploid population in cultivated wheat. Journal of Genetics and Genomics,2008.35(2):p.119-127.
    [186]. Bennett M. D. and Leitch I. J., Nuclear DNA amounts in angiosperms. Annals of Botany,1995.76(2):p.113-176.
    [187]. 张正斌和徐萍.小麦基因组研究进展.遗传学报,2002(03).
    [188]. 朱德威和陈庆富.普通小麦遗传图谱研究现状与展望.种子,2010(03).
    [189]. Maroof M. A. S., Soliman K. M., Jorgensen R. A., et al., Ribosomai DNA spacer length polymorphisms in barley:Mendelian inheritance, chromosomal location, and population, and population dynamics. Proceedings of the National Academy of Sciences,1984.81:p.8014-8018.
    [190]. Porebski S., Bailey L. G. and Baum B. R., Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter,1997.15(1):p.8-15.
    [191]. Senior M. L. and Heun M., Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome,1993.36: p.884-889.
    [192]. Bassam B. J., Caetano-Anolles G. and Gresshoff P. M., Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical biochemistry,1991.196(1):p. 80-83.
    [193]. Lincoln S., Daly M. and Lander E., Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute, Cambridge, MA,1992.
    [194]. Quarrie S. A., Steed A., Calestani C., et al., A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics,2005.110(5):p.865-880.
    [195]. Xue S., Zhang Z., Lin F., et al., A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics,2008.117(2):p.181-189.
    [196]. Ooijen J. W. V., JoinMap (?) 4, Software for the calculation of genetic linkage maps in experimental populations 2006.
    [197]. 孔秀英,周荣华,董玉琛等.尾状山羊草C基因组特异重复序列的克隆.科学通报,1999.44(8):p.828-832.
    [198]. Flavell R., Bennett M., Smith J., et al., Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics,1974.12(4):p. 257-269.
    [199]. 柴守诚和员海燕.高等植物DNA重复序列的主要类型和特点.西北植物学报,1999.19(3):p.555-563.
    [200]. 钟兆飞,朱亚娜和蒋立希.分子标记在油菜遗传作图中的应用.Plant Physiol,1993.103:p.1067-1073.
    [201].张书红,张世煌,李新海等.玉米抗病基因一致性图谱的构建.中国农学通报,2007.23(6):p.601-606.
    [202]. Peters J. L., Cnudde F. and Gerats T., Forward genetics and map-based cloning approaches. Trends in Plant Science,2003.8(10):p.484-491.
    [203]. Varshney R. K., Hoisington D. A. and Tyagi A. K., Advances in cereal genomics and applications in crop breeding. TRENDS in Biotechnology,2006.24(11):p. 490-499.
    [204]. Liu S., Cai S., Graybosch R., et al., Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theoretical and Applied Genetics,2008.117(5):p.691-699.
    [205]. D'egidio M., Mariani B., Nardi S., et al., Chemical and technological variables and their relationships:a predictive equation for pasta cooking quality. Cereal Chemistry,1990.67(3):p.275.
    [206]. Arbelbide M. and Bernardo R., Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theoretical and Applied Genetics,2006.112(5): p.885-90.
    [207]. Perretant M., Cadalen T., Charmet G., et al., QTL analysis of bread-making quality in wheat using a doubled haploid population. Theoretical and Applied Genetics, 2000.100(8):p.1167-1175.
    [208]. Groos C., Bervas E. and Charmet G., Genetic analysis of grain protein content, grain hardness and dough rheology in a hardUhard bread wheat progeny. Journal of Cereal Science,2004.40(2):p.93-100.
    [209]. Law C., Bhandari D., Salmon S., et al., Novel genes on chromosome 3A influencing breadmaking quality in wheat, including a new gene for loaf volume, Lvl 1. Journal of Cereal Science,2005.41(3):p.317-326.
    [210]郭世华和王洪刚.基因型和环境及其互作对我国冬小麦部分品质性状的影响.麦类作物学报,2006.26(001):p.45-51、
    [211]. 乔玉强,马传喜,黄正来等.小麦品质性状的基因型和环境及其互作效应分析.核农学报,2008.22(5):p.706-711.
    [212]. Arcade A., Labourdette A., Falque M., et al., BioMercator:integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics,2004.20(14): p.2324-2326.
    [213]. Chardon F., Virlon B., Moreau L., et al., Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics,2004.168(4):p.2169-2185.
    [214]. Salih H. and Adelson D. L., QTL global meta-analysis:are trait determining genes clustered? BMC Genomics,2009.10:p.1-8.
    [215]. Heidari B., Sayed-Tabatabaei B. E., Saeidi G., et al., Mapping QTL for grain yield, yield components and spike features in a doubled haploid population of bread wheat. Genome,2011.54:p.517-527.
    [216]. Guttieri M. J. B., Gannon D., O'Brien D., et al., Solvent retention capacities of irrigated soft white spring wheat flours. Crop Science,2001.41(4):p.1054-1061.
    [217]. Yahata E., Maruyama-Funatsuki W., Nishio Z., et al., Relationship between the dough quality and content of specific glutenin proteins in wheat mill streams, and its application to making flour suitable for instant Chinese noodles. Biosci Biotechnol Biochem,2006.70(4):p.788-797.
    [218], Cubadda R., Carcea M. and Pasqui L., Suitability of the gluten index method for assessing gluten strength in durum wheat and semolina. Cereal foods world,1992. 37.
    [219]. Hu X., Wei Y., Kovacs M., et al., Swelling index, of glulenin ralated to dough character and noodle quality. Agri Sci China,2004.3:p.746-753.
    [220]. 李保云,王岳光,刘凤鸣等.小麦高分子量谷蛋白亚基与小麦品质性状关系的研究作物学报,2000.26(3):p.322-326.
    [221]. 李世平,王随保.杨玉景等.小麦蛋白质含量遗传规律及品质改良途径研究.中国农学通报,2005.21(2):p,126-128.
    [222]. Wei M., Li X., Li J., et al., QTL detection for stover yield and quality traits using two connected populations in high-oil maize. Plant Physiology and Biochemistry, 2009.47(10):p.886-94.
    [223]. Campbell K. G., Finney P. L., Bergman C. J., et al., Quantitative trait loci associated with milling and baking quality in a soft x hard wheat cross.2001.
    [224]. 晏本菊和任正隆.中国西南麦区小麦品质改良限制因素探讨.中国农业科学,2004.37(10):p.1414-1421.
    [225]. Joppa L. and Cantrell R., Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Science,1990.30(5):p.1059-1064.
    [226]. Cantrell R., Elias E. and Steiger D., Evaluation of lines derived from wild emmer chromosome substitutions:I. Quality traits. Crop Science,1996.36(2):p.223-227.
    [227]. Distelfeld A., Uauy C., Olmos S., et al., Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics,2004.4(1):p. 59-66.
    [228]. Prasad M., Kumar N., Kulwal P., et al., QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theoretical and Applied Genetics,2003.106(4):p.659-667.
    [229]. Olmos S., Distelfeld A., Chicaiza O., et al., Precise mapping of a locus affecting grain protein content in durum wheat. Theoretical and Applied Genetics,2003. 107(7):p.1243-1251.
    [230]. Tuberosa R., SALVI S., SANGUINETI M. C., et al., Mapping QTLs regulating morpho-physiological traits and yield:Case studies, shortcomings and perspectives in drought-stressed maize. Annals of Botany,2002.89(7):p. 941-963.
    [231]. Hodgkin J., Seven types of pleiotropy. International Journal of Developmental Biology,1998.42:p.501-505
    [232]. 钱森和,张艳,王德森等.小麦品种戊聚糖和溶剂保持力遗传变异及其与品质性状关系的研究.作物学报,2005.31(7):p.902-907.
    [233]. Fincher G. and Stone B., A water-soluble arabinogalactan-peptide from wheat endosperm. Australian Journal of Biological Sciences,1974.27(2):p.117-132.
    [234]. Mohammadkhani A., Study of Pentosans (Non Starch Polysaccharides), in Durum Wheat and its Relation to the Quality of Protein and Grain Hardness Index(H.I.). Pakistan Journal of Nutrition,2005.4(4):p.208-209.
    [235], W.Bushuk, Distribution of water in dough and bread. Baker's and Digest,1966. 40(5):p.38-40.
    [236]. Jelaca S. L. and Hlynka I., Water-binding capacity of wheat flour crude pentosans and their relation to mixing characteristics of dough. Cereal Chemistry,1971.48:p. 211-222.
    [237]. Hoseney R. and Faubion J., A mechanism for the oxidative gelation of wheat flour water-soluble pentosans. Cereal Chemistry,1981.58:p.421-424.
    [238]. Morris C., Li S., Bettge A., et al., Arabinoxylan content of hard winter and spring wheats of the U.S. Pacific Northwest, in 11th International Wheat Genetics Symposium 2008 R. Appels, R. Eastwood, E. Lagudah等,Editors.2008, SYDNEY UNIVERSITY PRESS:Australia, p.524-526.
    [239]. Englyst H. N., Anderson V. and Cummings J. H., Starch and non-starch polysaccharides in some cereal foods. Journal of the Science of Food and Agriculture,1983.34(12):p.1434-1440.
    [240]. Dhaliwal A. S., Markes D. J., Marshall D. R., et al., Protein Composition and Pentosan Content in Relation to Dough Stickiness of 1BR Translocation Wheats. Cereal Chemistry,1988.65(2):p.143-149.
    [241]. Bettge A. D. and Morris C. F., Relationships among grain hardness, pentosan fractions, and end-use quality of wheat Cereal Chemistry,2000.77:p.241-247.
    [242]. Fincher G. and Stone B., Cell walls and their components in cereal grain technology. Advances in cereal science and technology,1986.8:p.207-295.
    [243]. McCleary B., Gibson T., Allen H., et al., Enzymic Hydrolysis and Industrial Importance of Barley β-Glucans and Wheat Flour Pentosans. Starch-Starke,1986. 38(12):p.433-437.
    [244]. Girhammar U. and Nair B. M., Isolation, separation and characterization of water soluble non-starch polysaccharides from wheat and rye. Food hydrocolloids,1992. 6(3):p.285-299.
    [245]. Li L., Zhu y. and Yao H., Comparative Study of Different Determination Methods for Cereal Pentosans. Journal of the Chinese Cereals and Oils Association,2004. 19(6):p.76-79.
    [246]. Zhou S., Wang Z. and Xu S., Study on the determination of pentosan in wheat flour. Science and Technology of Food Idustry,2000.21(6):p.70-72.
    [247]. Storsley J., Izydorczyk M., You S., et al., Structure and physicochemical properties of β-glucans and arabinoxylans isolated from hull-less barley. Food hydrocolloids,2003.17(6):p.831-844.
    [248]. Maes C. and Delcour J., Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran. Journal of Cereal Science,2002. 35(3):p.315-326.
    [249]. Martin C. P. and Martinerz-Anaya M. A., Influence of Pentosanase and Oxidases on Water-extractable Pentosans during a Straight Breadmaking Process. Journal of food science,2003.68(1):p.31-41.
    [250]. Hashimoto S., Shogren M. D. and Pomeranz Y., Cereal pentosan:Their estimation and significance. I.Pentosan in wheat and milled wheat products. Cereal Chemistry, 1987.64(1):p.30-34.
    [251]. Delcour J. A., VANHAMEL S. and GEEST C. D., Physico-chemical and functional properties of rye nonstarch polysaccharides. I. Colorimetric analysis of pentosans and their relative monosaccharide composition in fractionated (milled) rye products. Cereal Chemistry,1989.66(2):p.107-111.
    [252]. Maccaferri M., Sanguineti M. C., Corneti S., et al., Quantitative trait loci for grait yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics,2008.178(1):p.489-511.
    [253]. Su Z., Li X., Hao Z., et al., Association analysis of the nced and rab28 genes with phenotypic traits under water stress in maize. Plant Molecular Biology Reporter 2011.29(3):p.714-722.
    [254]. Hong B. H., Rubenthaler G. L. and Allan R. E., Wheat pentosans.I,Cultivar variation and relationship to Kernel Hardness. Cereal Chemistry,1989 66(5):p. 369-373.
    [255]. Mares D. J. and Stone B. A., Studies on wheat endosperm.Ⅲ Galactose-rich polysaccharides. Aust J. Biol Sci,1973.26:p.1005-1007.
    [256]. Xiao Y., He S., Yan J., et al., Molecular mapping of quantitative trait loci for kernel morphology traits in a non-1BL. IRS×1BL. IRS wheat cross. Crop and Pasture Science,2011.62(8):p.625-638.
    [257]. Dowkiw A. and Bastien C., Characterization of Two Major Genetic Factors Controlling Quantitative Resistance to Melampsora larici-populina Leaf Rust in Hybrid Poplars:Strain Specificity, Field Expression, Combined Effects, and Relationship with a Defeated Qualitative Resistance Gene. Phytopathology,2004. 94(12):p.1358-1367.
    [258]. Chee P. W., Elias E. M., Anderson J. A., et al., Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Science,2001.41:p.295-301.
    [259]. Simmonds N. W., The relation between yield and protein in cereal grain. Journal of the Science of Food and Agriculture,1995.67(3):p.309-315.
    [260]. Blanco A., Giovanni C., Laddomada B., et al., Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breeding,1996.115(5):p. 310-316.
    [261]. Wang H., Zhang W., Liu L., et al., Dynamic QTL analysis on rice fat content and fat index using recombinant inbred lines. Cereal Chemistry,2008.85(6):p. 769-775.
    [262]. Miflin B. J. and Habash D. Z., The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany,2002.53(370):p. 979-987.
    [263].王小纯,安帅,熊淑萍等.小麦叶片谷氨酰胺合成酶的分离纯化及鉴定.麦类作物学报,2010(001):p.83-86.
    [264]. 王月福,于振文,李尚霞等.小麦开花后不同器官中硝酸还原酶和谷氨酰胺合成酶的活性比较[J].植物生理学通讯,2003.39(3):p.209-210.
    [265], Zheng L., Zhang W., Chen X., et al., Dynamic QTL Analysis of Rice Protein Content and Protein Index Using Recombinant Inbred Lines. Journal of Plant Biology,2011:p.1-8.
    [266]. Han Y., Xie D., Teng W., et al., Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Theoretical and Applied Genetics, 2011.122(8):p.1481-1488.
    [267]. Cui F., Li J., Ding A., et al., QTL detection of internode length and its component index in wheat using two related RIL populations. Cereal Research Communications,2012:p.1-12.
    [268].孔祥生和易现峰,植物生理学实验技术.2008:中国农业出版社.
    [269]. Martin A., Lee J., Kichey T., et al., Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006.18(11):p.3252-74.
    [270]. Rhodes D., Rendon G. and Stewart G., The control of glutamine synthetase level in Lemna minor L. Planta,1975.125(3):p.201-211.
    [271]. Kamachi K., Yamaya T., Mae T., et al., A Role for Glutamine Synthetase in the Remobilization of Leaf Nitrogen during Natural Senescence in Rice Leaves. Plant Physiol,1991.96(2):p.411-417.
    [272]. Chen G. B., Zhu Z. X., Zhang F. T., et al., Quantitative genetic analysis station for the genetic analysis of complex traits. Chinese Science Bulletin,20,12:p.1-6.
    [273].李志超.小麦旗叶.山西农业科学,1980.5.
    [274]. Obara M., Kajiura M., Fukuta Y., et al., Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). Journal of Experimental Botany,2001.52(359):p.1209-1217.
    [275]. Obara M., Sato T., Sasaki S., et al., Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theoretical and Applied Genetics,2004.110(1):p.1-11.
    [276].任正隆.中国南方小麦优质高效生产的若干问题.四川农业大学学报,2002.20(3):p.299-303.
    [277]. Ireland R. J., Lea P. J. and Singh B., The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism.1999:New York:Marcel Dekker.
    [278]. Sasaki S., Obara M., Kashiba K., et al., Linkage analysis and characterization for QTL on chromosome 2 that associated with cytosolic glutamine synthetase content and panicle weight in rice (Oryza sativa L.). Plant and cell physiology,2002.43:p. S71-S71.
    [279]. Limami A., RouiLLON C., Glevarec G., et al., Genetic Analysis and QTL Mapping for Cytosolic Glutamine Synthetase (GS) and Germination Traits in Maize Grain. The biology of seeds:Recent research advancesCABI publishing, 2003.
    [280]. Yan J., Zhu J., He C., et al., Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics,1998.150(3):p.1257-1265.
    [281]. Sun D., Li W., Zhang Z., et al., Quantitative trait loci analysis for the developmental. behavior of soybean (Glycinemax L. Merr.). Theoretical and Applied Genetics,2006.112(4):p.665-673.
    [282]. 刘丽,李卫华,刘伟等.小麦谷蛋白膨胀指数发育动态的QTL分析.中国农业科学,2008.41(11):p.3838-3844.
    [283]. 库丽霞,孙朝辉,王翠玲等.玉米光周期敏感相关性状发育动态QTL定位.作物学报,2010.36(4):p.602-611.
    [284].孙朝辉.玉米光周期敏感相关性状的QTL定位与分析.2009.河南农业大学.
    [285]. 李卫华,尤明山,刘伟等.小麦GMP含量发育动态的QTL定位.作物学报,2006.32(7):p.995-1000.
    [286]. 卞云龙,杜凯,王益军等.玉米茎秆糖含量的分布.作物学报,2009.35(12):p.2252-2257.
    [287]刘伟.普通小麦谷蛋白大聚合体(GMP)积累动态变化规律及QTL定位的研究.2005.石河子大学.
    [288].朱占玲,刘宾,田宾等.小麦籽粒蛋白质含量的动态QTL定位.中国农业科学,2011.44(15):p.3078-3085.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700