调节性T细胞对日本血吸虫GST疫苗保护性效果的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寄生虫能逃避宿主的免疫攻击而继续生存的现象称为免疫逃避,其机理为分子模拟与伪装、封闭抗体的产生等多种方式逃避宿主的体液和细胞免疫攻击,因而寄生虫能在宿主体内长期存在并引起慢性感染。新近证实,调节性T细胞与寄生虫逃避宿主免疫攻击有关,即“病原体可能会利用调节性T细胞当做逃生的窗口”,如利什曼原虫感染部位聚集了大量的调节性T细胞而有利于原虫的存活,若用抗体阻断调节性T细胞则有利于机体清除原虫。
     调节性T细胞最早于1995年由Sakaguchi等描述,主要包括自然性和诱导性调节性T细胞两种类型。诱导性调节性T细胞由外来抗原诱导产生,自然性调节性T细胞即CD4+CD25+调节性T细胞,来源于胸腺并维持于外周,组成性表达CD25、Foxp3、CTLA-4和GITR等分子。CD25分子即IL-2受体的α链,对于维持调节性T细胞增殖及功能具有重要作用,但CD25分子同时也表达于活化的效应细胞表面,因而不具有特异性。Foxp3为核转录因子,是调节性T细胞的特征性标志。CTLA-4(细胞毒性T淋巴细胞相关抗原4)是一种共抑制性受体,CTLA-4与机体的免疫耐受功能相关。CD4+CD25+调节性T细胞能抑制CD4+和CD8+效应T细胞的激活,其抑制功能是由调节性T细胞与效应细胞之间直接接触或者由调节性T细胞分泌抑制性细胞因子IL-10和TGF-β来实现的,单独及联合使用相应的阻断性抗体有利于机体清除寄生虫感染。
     日本血吸虫疫苗的研究经历了死疫苗、减毒活疫苗、基因工程疫苗和核酸疫苗的漫长过程,仍未取得较好的效果。WHO推荐的六种候选疫苗包括谷胱苷肽S转移酶均不能稳定地获得40%以上的保护力。既然CD4+CD25+调节性T细胞能抑制效应T细胞反应,因此推测日本血吸虫在宿主体内免疫逃避及日本血吸虫疫苗的免疫保护性效果不佳均可能与调节性T细胞有关。
     本文一方面探讨了日本血吸虫感染与调节性T细胞之间的关系,采用相应抗体阻断调节性T细胞,观察其对机体清除日本血吸虫感染能力的影响及其作用机制。另一方面探讨了日本血吸虫疫苗与调节性T细胞之间的关系,采用相应抗体阻断调节性T细胞观察其对日本血吸虫疫苗免疫保护性效果的影响及其作用机制。
     本课题分为以下二个部分:
     一、CD4+CD25+ Tregs在日本血吸虫免疫逃避中的作用及其机制研究
     目的:通过观察日本血吸虫感染对CD4+CD25+ Tregs的影响及使用anti-CD25 mAb对CD4+CD25+ Tregs的影响,了解CD4+CD25+ Tregs在日本血吸虫免疫逃避中的作用及其机制。
     方法:动物实验分为三个部分
     第一部分6~8周龄雌性BALB/c小鼠随机分成二组,即正常对照组和感染组,感染组每只小鼠感染日本血吸虫尾蚴40条,分别在感染后2周、3周、4周和5周剖杀小鼠,流式细胞术检测各组小鼠脾淋巴细胞中CD4+CD25+ Tregs的比例。
     第二部分6-8周龄雌性BALB/c小鼠随机分成二组,即正常对照组和anti-CD25 mAb组,抗体组腹腔注射300μg anti-CD25 mAb,对照组注射等体积的PBS,使用抗体后2周剖杀小鼠,无菌取脾,制备单个脾淋巴细胞悬液,流式细胞术检测各组小鼠脾淋巴细胞中CD4+CD25+ Tregs百分比。
     第三部分6-8周龄雌性BALB/c小鼠随机分成二组,即感染对照组和anti-CD25 mAb组。每只小鼠感染日本血吸虫尾蚴40条,感染后2周,抗体使用组每只小鼠腹腔注射300μg anti-CD25 mAb,感染对照组注射等体积的PBS。感染后6周剖杀各组小鼠。计数虫荷和每克肝脏内虫卵数,计算减虫率和每克肝脏组织中减卵率。无菌取各组小鼠脾脏,制备单个脾淋巴细胞悬液,收集脾细胞培养上清,夹心ELISA法检测脾细胞上清中细胞因子含量。
     结果:
     1)日本血吸虫感染后2周、3周、4周和5周,小鼠脾淋巴细胞中CD4+CD25+ Tregs百分比由感染前的1.99±0.10%分别上升至2.36±0.37%、2.8±0.05%、2.35±0.09%和2.68±0.05%。提示日本血吸虫感染可诱导机体CD4+CD25+ Tregs升高。
     2)正常对照组小鼠脾淋巴细胞中CD4+CD25+ Tregs百分比平均值为1.99±0.10%,使用anti-CD25 mAb后2周百分比平均值为0.20±0.05%,抗体组明显低于对照组(P<0.01)。提示anti-CD25 mAb可部分阻断CD4+CD25+ Tregs。
     3)使用anti-CD25 mAb组小鼠虫荷较未使用抗体组减少18.99%,每克肝脏虫卵数减少15.86%。提示CD4+CD25+ Tregs下降有利于宿主对血吸虫的清除。
     4)使用anti-CD25 mAb组小鼠脾细胞培养上清中细胞因子IFN-γ,、IL-5明显高于感染对照组。
     结论:Anti-CD25 mAb能部分阻断CD4+CD25+ Tregs,使用后有利于机体清除日本血吸虫。
     二、CD4+CD25+ Tregs对日本血吸虫GST疫苗保护性效果的影响及其作用机制
     目的:通过观察日本吸虫GST疫苗对CD4+CD25+ Tregs的影响及anti-CD25 mAb对CD4+CD25+ Tregs表达的影响,探讨CD4+CD25+ Tregs对GST疫苗免疫保护效果的影响及其作用机制。
     方法:雌性BALB/c小鼠随机分成五组,正常组、感染对照组、anti-CD25 mAb组、GST组以及anti-CD25 mAb与GST联合组。GST组和联合组小鼠背部皮下多点注射日本血吸虫GST疫苗50μg/鼠,每次间隔2周,共免疫三次,末次免疫后2周,每只小鼠感染日本血吸虫尾蚴40条,感染后2周,anti-CD25 mAb组和联合组小鼠腹腔注射anti-CD25 mAb 300μg/鼠,对照组注射等体积的PBS。分别在感染后2周、3周、4周和5周剖杀四组小鼠。无菌取各组小鼠脾脏,制备单个脾淋巴细胞悬液,流式细胞术检测脾淋巴细胞中CD4+CD25+ Tregs百分比;收集脾细胞培养上清,夹心ELISA法检测脾细胞培养上清中细胞因子含量。感染后5周剖杀的小鼠同时计数虫荷和每克肝脏虫卵数,计算减虫率和每克肝组织中减卵率。小鼠肝组织石蜡切片HE染色,观察各组小鼠虫卵肉芽肿的变化。
     结果:
     1)日本血吸虫感染后2周,感染对照组与GST组脾淋巴细胞中CD4+CD25+ Tregs百分比平均值分别为2.36±0.37%和3.36±0.06%;感染后3周,其百分比平均值分别为2.8±0.05%和2.97±0.08%;感染后4周,其百分比平均值分别为2.35±0.09%和2.47±0.09%;感染后5周,其百分比平均值分别为2.68±0.05%和3.03±±0.13%。提示GST疫苗能诱导机体CD4+CD25+ Tregs升高。
     2)使用anti-CD25 mAb后1周(即感染后3周),感染对照组与anti-CD25 mAb组小鼠脾淋巴细胞中CD4+CD25+ Tregs百分比平均值分别为2.8±0.05%和0.13±0.04%;使用anti-CD25 mAb后2周(即感染后4周),百分比平均值分别为2.35±0.09%和0.9±0.23%;使用anti-CD25 mAb后3周(即感染后5周),百分比平均值分别为2.68±0.05%和1.93±0.03%。提示使用anti-CD25 mAb后1周能部分封闭CD4+CD25+ Tregs,使用anti-CD25 mAb后2周、3周其百分比逐渐上升,但仍明显低于感染对照组。
     3)GST组小鼠对日本血吸虫减虫率及减卵率分别为24.98%和32%,而GST与anti-CD25 mAb联合组减虫率及减卵率分别为43.43%和49%。提示anti-CD25 mAb可作为佐剂增强GST疫苗的保护性效果。
     4)日本血吸虫感染早期以Thl型免疫反应为主,感染后4周雌虫排卵后以Th2型免疫反应为主,而使用anti-CD25 mAb后Th1型细胞因子IFN-y仍维持在较高水平,有利于机体清除日本血吸虫。提示anti-CD25 mAb增强GST疫苗免疫保护性效果的机制为增强机体内Thl型免疫反应。
     5)病理组织学检查显示各感染组单个虫卵肉芽肿直径及浸润细胞无明显差异。提示anti-CD25 mAb未明显增强小鼠肝脏虫卵肉芽肿的病理变化。
     结论:日本血吸虫GST疫苗能诱导CD4+CD25+ Tregs比例上升,因而会影响GST疫苗的保护性效果;anti-CD25 mAb能部分阻断CD4+CD25+ Tregs,同时增强Thl型免疫反应,因而能提高GST疫苗的免疫保护性效果,因此anti-CD25 mAb能作为佐剂增强GST疫苗的保护性效果。
     本研究结论如下:
     1)寄生虫的免疫逃避与CD4+CD25+ Tregs有关,CD4+CD25+ Tregs升高有利于血吸虫逃避宿主的免疫攻击。
     2)首次证明日本血吸虫GST疫苗的保护性效果与宿主的CD4+CD25+ Tregs有关,GST疫苗在感染背景下能诱导小鼠脾淋巴细胞中CD4+CD25+ Tregs升高,从而影响GST疫苗的保护性效果。
     3)首次证明anti-CD25 mAb可增强日本血吸虫GST疫苗的保护性效果,其作用机制是通过阻断CD4+CD25+ Tregs和增强Thl型免疫反应来实现的。
     4)首次提出anti-CD25 mAb可作为佐剂用来增强日本血吸虫GST疫苗的保护性效果。
Pathogens can escape from the host immune assault by antigen mask and blockage antibody, and they can live in the host and result in chronic infection. Most recently, regulatory T cells have been reported to be involved in immune evasion of pathogens. Many parasites including Leishmania major can result in the clustering of regulatory T cells, which favors the pathogen to survive while the antibody blocking regulatory T cells contributes to parasite killing.
     Regulatory T cells were firstly described by Sakaguchi et al in 1995, which were divided into natural and induced regulatory T cells. Natural regulatory T cells are originated from thymus and maintain in periphery, which constitutively expressed markers of CD25, Foxp3, CTLA-4 and GITR. CD25 molecule, IL-2 receptor a band, is also expressed on the surface of activated effector cells, while Foxp3 is important for the suppressive function and is specific for CD4+CD25+ Tregs. CD4+CD25+ Tregs can suppress the activation of CD4+ and CD8+ effector T cells by direct contact with CD4+CD25+ Tregs and effector T cells or suppressive cytokines of IL-10 and TGF-0. CTLA-4 (cell cytotoxic T lymphocyte associated-antigen), a co-inhibitory receptor, is correlated with the host immune tolerance. Combination treatment of blockage antibody or treatment alone favors for the host clearing parasites.
     Studies on vaccines against Schistosoma japonicum (S. japonicum), including dead vaccine, attenuated live vaccine, genetically engineering and nucleic acid vaccine, have often yielded disappointing results. Gluthatione-S-transferase (GST) is one of the candidated vaccines against S. japonicum recommended by WHO, but not usually acquires 40% protective efficacy. Since CD4+CD25+ Tregs can suppress effector T cells, the poor protective efficacy of vaccine against S. japonicum may be related to CD4+CD25+ Tregs and blockade antibody can enhance the protective efficacy of vaccine.
     In this study, one hand, we explore the relationship between CD4+CD25+ Tregs and infection with S. japonicum and the effect and mechanism of blockade antibody on the protective efficacy against S. japonicum. On the other hand, we explore the relationship between GST vaccine against S. japonicum and CD4+CD25+ Tregs and the effect and mechanism of anti-CD25 mAb on the protective efficacy of GST vaccine against S. japonicum.
     This study was divided into two parts:
     Part 1:The effect and mechanism of CD4+CD25+ Tregs on the immune evasion of S. japonicum.
     Objective:To explore the effect and mechanism of CD4+CD25+ Tregs on the immune evasion of S. japonicum and the effect of S. japonicum infection and anti-CD25 mAb on the percentages of CD4+CD25+ Tregs.
     Methods:Animal experiments include three parts Part 1:BALB/c female mice were randomly divided into 2 groups:normal and infected group. Each mouse in infected group was infected with 40 S. japonicum cercarie. Mice in two groups were sacrificed at 2,3,4 and 5 weeks after infection respectively. Flow cytometry was performed to detect the percentage of CD4+CD25+ Tregs in spleen cells.
     Part 2:BALB/c female mice were randomly divided into 2 groups:normal, and anti-CD25 mAb group. Each mouse in anti-CD25 mAb group were injected intraperitoneally 300μg of anti-CD25 mAb and that of control group was injected equal volume of PBS. All mice were succumbed at 2 weeks after treatment. Spleens were obtained sterile and prepared single cell suspension. Flow cytometry was performed for detection of the frequency of CD4+CD25+ Tregs.
     Part 3:BALB/c female mice were randomly divided into 2 groups, infected control and anti-CD25 mAb group. Each mouse were infected 40 S. japonicum cercarie. Mice were injected intraperitoneally 300μg anti-CD25 mAb at 2 weeks after infection, and equal volume PBS as control. All mice were sacrificed at 6 weeks after infection to measure worm burden and eggs number in liver, reduction rate of worm and reduction rate of eggs per gram liver was evaluated. Spleens were obtained sterile and prepared single cell suspension. The levels of cytokines in spleen cell cultural suprernatant were detected by sandwich ELIS A after stimulation by ConA.
     Results:
     1) At 2,3,4 and 5 weeks after infection, the percentage of CD4+CD25+ Tregs were prompted from 1.99±0.10% to 2.36±0.37%,2.8±0.05%,2.35±0.09% and 2.68±0.05% respectively. It demonstrats that S. japonicum infection can induce the expansion of CD4+CD25+ Tregs.
     2) The percentage of CD4+CD25+ Tregs in normal group was 1.90±0.10%, which was 0.20±0.05% at 2 weeks post-CD25 mAb administration. It demonstrats that anti-CD25 mAb can partially block CD4+CD25+ Tregs.
     3) The reduction rate of worm burden at 3 weeks post-anti-CD25 mAb was 18.99% and the reduction rate of eggs of per gram liver was 15.86%. It demonstrates that the reduction of CD4+CD25+ Tregs favors the clearance of S. japonicum in the host body.
     4) The levels of IFN-γand IL-5 were increased by anti-CD25 mAb administration.
     Conclusion:Anti-CD25 mAb favors the host to clear S. japonicum by reducing CD4+CD25+ Tregs.
     Part 2:The effect and mechanism of CD4+CD25+ Tregs on the protective efficacy of GST vaccine against S. japonicum
     Objective:To explore the effect and mechanism of CD4+CD25+ Tregs on the protective efficacy of GST vaccine against S. japonicom by the effect of vaccine GST and anti-CD25 mAb on the expression of CD4+CD25+ Tregs.
     Methods:BALB/c female mice were randomly divided into 5 groups:normal group, infected control group, anti-CD25 mAb group, GST group and co-treated group with anti-CD25 mAb and GST. Each mouse in GST group and co-treated group was injected 50μg of GST each mouse at 2-week interval,3 times immunization totally. At 2 weeks after the last immunization, each mouse was infected with 40 S. japonicum cercarie. Each mouse in anti-CD25 mAb and co-treated group were injected intraperitoneally 300μg of anti-CD25 mAb at 2 weeks after infection and equal volume of PBS was as control. Four groups six each were sacrificed at 2,3,4 and 5 weeks after infection respectively. Flow cytometry was performed to detect the percentage of CD4+CD25+ Tregs. The levels of cytokines in spleen cell cultural supernatant were detected by sandwich ELISA. Worm burden and eggs in per gram liver were valuated at 5 weeks after infection. Liver tissues were stained with HE to detect egg granuloma.
     Results:
     1) The percentages of CD4+CD25+ Tregs in infected control and GST group were 2.36±0.37% and 3.36±0.06% at 2 weeks after infection respectively; The percentages of CD4+CD25+ Tregs in infected control and GST group were 2.8±0.05% and 2.97±0.08% at 3 weeks after infection; 2.35±.09% and 2.47±0.09% at 4 weeks after infection; 2.68±0.05% and 3.03±0.13% at 5 weeks after infection respectively. It demonstrates that GST vaccine can induce the expansion of CD4+CD25+ Tregs.
     2) The percentages of CD4+CD25+ Tregs were decreased at 1 week post-anti-CD25 mAb (3 weeks after infection) from 2.8±0.05% to 0.13±0.04%. The percentages of CD4+CD25+ Tregs in infected control and anti-CD25 mAb group were 2.35±0.09% and 0.9±0.23% at 2 weeks post-anti-CD25 mAb administration (4 weeks after infection); 2.68±0.05% and 1.93±0.03% at 3 weeks post-anti-CD25 mAb administration (5 weeks after infection) respectively. It demonstrates that CD4+CD25+ Tregs can be blocked at 1 week after anti-CD25 mAb administration, which was partially restored but still lower than those in infected control group at 2 and 3 weeks post-anti-CD25 mAb adminstration.
     3) The reduction rate of worm burden and eggs per gram liver in GST group was 24.98% and 32%, which were prompted to 43.43% and 49% in co-treated group respectively. It demonstrates that anti-CD25 mAb can enhance the protective efficacy of GST vaccine as an adjuvant.
     4) Thl type immune response is predominant in the early stage of S. japonicum infection, which shifts to Th2 immune response at 4 weeks after infection. Thl type cytokine IFN-y was still sustain at higher level by the administration of anti-CD25 mAb and favored the host to clear S. japonicum. It demonstrates that anti-CD25 mAb enhances the protective efficacy of GST vaccine by increasing Thl type immune response.
     5) Pathogenical analysis denoted that there were no significant differences in the size and infiltrating cells of egg granuloma in each infected group. It demonstrates that anti-CD25 mAb can not enhance the pathogenical injury.
     Conclusion:GST vaccine against S. japonicum can induce the frequency of CD4+CD25+ Tregs which influence the protective efficacy of GST; anti-CD25 mAb can partially block CD4+CD25+ Tregs and enhance Thl type immune response which can enhance the protective efficacy of GST. So anti-CD25 mAb can act as an adjuvant to enhance the protective efficacy of GST vaccine against S.japoncium.
     In conclusion, this study demonstrated:
     1) CD4+CD25+ Tregs are involved in parasites immune evasion, and the expansion of CD4+CD25+ Tregs favors parasites escaping from the host immune assault.
     2) It is the first time that GST vaccine against S. japonicum can induce CD4+CD25+ Tregs on the infected background and CD4+CD25+ Tregs are involved in the poor protective efficacy of GST vaccine.
     3) It is the first time that anti-CD25 mAb can enhance the protective efficacy of vaccine GST against S. japonicum by blocking CD4+CD25+ Tregs and enhancement Thl type immune response.
     4) It is the first time that anti-CD25 mAb can as an adjuvant to enhance the protective efficacy of GST vaccine against S. japoncium.
引文
1. Chitsulo L, Loverde P, Engels D. Schistosomiasis. Nat Rev Microbiol,2004,2(1):12-3.
    2. Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat Rev Immunol. 2002;2(7):499-511.
    3. Cioli D, Botros SS, Wheatcroft-Francklow K, et al. Determination of ED50 values for praziquantel in praziquantel-resistant and-susceptible Schistosoma mansoni isolates. Int J Parasitol,2004,34(8):979-87.
    4. McManus DP. Prospects for development of a transmission blocking vaccine against Schistosoma japonicum. Parasite Immunol,2005,27(7-8):297-308.
    5. McManus DP, Bartley PB. A vaccine against Asian schistosomiasis. Parasitol Int,2004, 53(2):163-73.
    6. Butterworth AE. Vaccines against schistosomiasis:where do we stand? Trans R Soc Trop Med Hyg,1992,86(1):1-2.
    7. Hagan P, Sharaf O. Schistosomiasis vaccines. Expert Opin Biol Ther,2003, 3(8):1271-8.
    8. Bergquist R, Al-Sherbiny M, Barakat R, et al. Blueprint for schistosomiasis vaccine development. Acta Trop,2002,82(2):183-92.
    9. Yurchenko E, Tritt M, Hay V, Shevach EM, et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med.2006; 203(11):2451-60.
    10. Mendez S, Reckling SK, Piccirillo CA, et al. Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med.2004; 200(2):201-10.
    11. Hisaeda H, Tetsutani K, Imai T, et al. Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells. J Immunol.2008; 180(4):2496-503.
    12. Walsh CM, Smith P, Fallon PG. Role for CTLA-4 but not CD25+ T cells during Schistosoma mansoni infection of mice. Parasite Immunol.2007; 29(6):293-308.
    13. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med,2004, 10(9):942-9.
    14. Toka FN, Suvas S, Rouse BT. CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against herpes simplex virus type 1. J Virol,2004, 78(23):13082-9.
    15. Julia V, McSorley SS, Malherbe L, et al. Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. J Immunol,2000,165(10):5637-45.
    16. Stober CB, Lange UG, Roberts MT, et al. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol,2005,
    175(4):2517-24.
    17. Tabbara KS, Peters NC, Afrin F, et al. Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun, 2005,73(8):4714-22.
    18. Jonuleit H, Schmitt E. The regulatory T cell family:distinct subsets and their interrelations. J Immunol,2003,171(12):6323-7.
    19. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol, 2003,3(3):253-7.
    20. Ng WF, Duggan PJ, Ponchel F, et al. Human CD4(+)CD25(+) cells:a naturally occurring population of regulatory T cells. Blood,2001,98(9):2736-44.
    21. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995; 155(3):1151-64.
    22. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent aunique lineage of immunoregulatory cells. J Immunol,1998,160(3):1212-8.
    23. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009,30(5):636-45.
    24. Camara NO, Sebille F, Lechler RI. Human CD4+CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation. Eur J Immunol,2003,33(12):3473-83.
    25. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med,2001,194(5):629-44.
    26. Mariano FS, Gutierrez FR, Pavanelli WR, et al. The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect,2008, 10(7):825-33.
    27. Stephens LA, Mason D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25-subpopulations. J Immunol,2000,165(6):3105-10.
    28. Banham AH, Powrie FM, Suri-Payer E. FOXP3+ regulatory T cells:Current controversies and future perspectives. Eur J Immunol,2006,36(11):2832-6.
    29. Furuichi Y, Tokuyama H, Ueha S, et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+ T cell response primed by DNA immunization. World J Gastroenterol,2005,11(24):3772-7.
    30. Fecci PE, Sweeney AE, Grossi PM, et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res,2006,12(14 Pt 1):4294-305.
    31. Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest,2005, 115(12):3623-33.
    1. Chitsulo L, Loverde P, Engels D. Schistosomiasis. Nat Rev Microbiol,2004,2(l):12-3.
    2. Liu F, Hu W, Cui SJ, et al. Insight into the host-parasite interplay by proteomic study of host proteins copurified with the human parasite, Schistosoma japonicum. Proteomics. 2007; 7(3):450-62.
    3. Belkaid Y, Sun CM, Bouladoux N. Parasites and immunoregulatory T cells. Curr Opin Immunol.2006; 18(4):406-12.
    4. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005; 6(4):353-60.
    5. Yurchenko E, Tritt M, Hay V, Shevach EM, et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med.2006; 203(11):2451-60.
    6. Mendez S, Reckling SK, Piccirillo CA, et al. Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med.2004; 200(2):201-10.
    7. Belkaid Y, Piccirillo CA, Mendez S, et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature.2002; 420(6915):502-7.
    8. Hisaeda H, Tetsutani K, Imai T, et al. Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells. J Immunol.2008; 180(4):2496-503.
    9. Hisaeda H, Maekawa Y, Iwakawa D, et al. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med.2004; 10(1):29-30.
    10. Xiaoping Cai, Hui Zhang, et al. Dynamics of CD4+CD25+ Treg cell populations in spleens and mesenteric lymph nodes of mice in infection with Schistosoma japonicum. Acta Biochim Biophys Sin 2006,38(5):299-304
    11. Ruppel A, Shi YE. Moloney NA. Schistosoma mansoni and S. japonicum:comparison of levels of ultraviolet irradiation for vaccination of mice with cercariae. Parasitology. 1990; 101 Pt 1:23-6.
    12. Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009; 30(5):626-35.
    13. Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 2007; 445(7129):766-70.
    14. Milanezi CM, Cavassani KA, Moreira AP, et al. The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect.2008; 10(7):825-33.
    15. Couper KN, Blount DG, de Souza JB, et al. Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice. J Immunol.2007; 178(7):4136-46.
    16. Read S, Greenwald R, Izcue A, et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol.2006; 177(7):4376-83.
    17. Moore AC, Gallimore A, Draper SJ,et al. Anti-CD25 antibody enhancement of vaccine-induced immunogenicity:increased durable cellular immunity with reduced immunodominance. J Immunol.2005; 175(11):7264-73.
    18. Wei G, Tabel H. Regulatory T cells prevent control of experimental African trypanosomiasis. J Immunol.2008; 180(4):2514-21.
    19. Kursar M, Bonhagen K, Fensterle J, Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J Exp Med.2002; 196(12):1585-92.
    20. Nakamura K, Kitani A, Strober W.Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med.2001; 194(5):629-44.
    21. Suvas S, Azkur AK, Kim BS, et al. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol.2004; 172(7):4123-32.
    22. Fecci PE, Mitchell DA, Whitesides JF, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res.2006; 66(6):3294-302.
    23. Wei F, Liu Q, Gao S, Shang L, Zhai Y, Men J, et al. Enhancement by IL-18 of the protective effect of a Schistosoma japonicum 26kDa GST plasmid DNA vaccine in mice. Vaccine 2008; 26(33):4145-9.27
    24. Taylor MD, Harris A, Babayan SA. CTLA-4 and CD4+ CD25+ regulatory T cells inhibit protective immunity to filarial parasites in vivo. J Immunol.2007; 179(7):4626-34.
    1. Xiaoping Cai, Hui Zhang, et al. Dynamics of CD4+CD25+ Treg cell populations in spleens and mesenteric lymph nodes of mice in infection with Schistosoma japonicum. Acta Biochim Biophys Sin 2006,38(5):299-304
    2. Butterworth AE. Vaccines against schistosomiasis:where do we stand? Trans R Soc Trop Med Hyg.1992; 86(1):1-2.
    3. Hagan P, Sharaf O. Schistosomiasis vaccines. Expert Opin Biol Ther.2003; 3(8):1271-8.
    4. Bergquist R, Al-Sherbiny M, Barakat R, et al. Blueprint for schistosomiasis vaccine development. Acta Trop.2002; 82(2):183-92.
    5. Taylor MD, LeGoff L, Harris A, et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol.2005; 174(8):4924-33.
    6. Camara NO, Sebille F, Lechler RI. Human CD4+CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation. Eur J Immunol.2003; 33(12):3473-83.
    7. Cobbold SP, Nolan KF, Graca L, et al. Regulatory T cells and dendritic cells in transplantation tolerance:molecular markers and mechanisms. Immunol Rev.2003; 196:109-24.
    8. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med,2004, 10(9):942-9.
    9. Toka FN, Suvas S, Rouse BT. CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against herpes simplex virus type 1. J Virol,2004,78(23):13082-9.
    10. Julia V, McSorley SS, Malherbe L, et al. Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. J Immunol,2000,165(10):5637-45.
    11. Stober CB, Lange UG, Roberts MT, et al. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol.2005; 175(4):2517-24.
    12. Moore AC, Gallimore A, Draper SJ, et al. Anti-CD25 antibody enhancement of vaccine-induced immunogenicity:increased durable cellular immunity with reduced immunodominance. J Immunol.2005; 175(11):7264-73.
    13. Tabbara KS, Peters NC, Afrin F, et al. Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun, 2005,73(8):4714-22.
    14.余光清,蒋诗琴,李雍龙。可溶性重组日本血吸虫26 kDa GST的优化表达。中国人兽共患病学报2006;22(8);770-773
    Yu GQ, Jiang SQ, LI YL. Optimizing expression of recombinant 26-kilodalton glutathione S-transferases of Schistosoma japonicum in Escherchia coli. CHINESE JOURNAL OF ZOONOSES.2006; 22 (8); 770-773
    15. Ruppel A, Shi YE, Moloney NA. Schistosoma mansoni and S. japonicum:comparison of levels of ultraviolet irradiation for vaccination of mice with cercariae. Parasitology. 1990; 101 Pt 1:23-6.
    16. Moloney NA, Doenhoff MJ, Webbe G, et al. Studies on the host-parasite relationship of Schistosoma japonicum in normal and immunosuppressed mice. Parasite Immunol. 1982; 4(6):431-40.
    17. Ouyang RY, Hu CP, Chen P, et al. Effect of Th1/Th2 cytokine immune imbalance on the expression of nerve growth factors in asthma[J]. J Central South Univer (Med Sci), 2007,32(7):119-123. (in Chinese)
    (欧阳若芸,胡成平,陈平,等。哮喘中Th1/Th2类细胞因子免疫失衡对神经生长因子表达的影响[J]。中南大学学报(医学版),2007,32(7):119-123。)
    18. Jonuleit H, Schmitt E.The regulatory T cell family:distinct subsets and their interrelations. J Immunol.2003; 171(12):6323-7.
    19. Milanezi CM, Cavassani KA, Moreira AP, et al. The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect.2008; 10(7):825-33.
    20. Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature.2007; 445(7129):766-70.
    21. Camara NO, Sebille F, Lechler RI. Human CD4+CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation. Eur J Immunol.2003; 33(12):3473-83.
    22. Cobbold SP, Nolan KF, Graca L, et al. Regulatory T cells and dendritic cells in transplantation tolerance:molecular markers and mechanisms. Immunol Rev.2003; 196:109-24.
    23. Taylor MD, LeGoff L, Harris A, et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol.2005; 174(8):4924-33.
    24. Couper KN, Blount DG, de Souza JB, et al. Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice. J Immunol.2007; 178(7):4136-46.
    25. Toka FN, Suvas S, Rouse BT. CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against herpes simplex virus type 1. J Virol.2004; 78(23):13082-9.
    26. Nakamura K, Kitani A, Strober W.Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med.2001; 194(5):629-44.
    27. Grzych JM, Pearce E, Cheever A, Caulada ZA, Caspar P, Heiny S, et al. Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni. J Immunol 1991; 146(4):1322-7.
    28. Fecci PE, Mitchell DA, Whitesides JF, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res.2006; 66(6):3294-302.
    29. Wei F, Liu Q, Gao S, Shang L, Zhai Y, Men J, et al. Enhancement by IL-18 of the protective effect of a Schistosoma japonicum 26kDa GST plasmid DNA vaccine in mice. Vaccine 2008; 26(33):4145-9.27
    30. Oswald IP, Eltoum I, Wynn TA, Schwartz B, Caspar P, Paulin D, et al. Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide. Proc Natl Acad Sci U S A 1994; 91(3):999-1003.
    31. Hodi FS, Butler M, Oble DA, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A.2008; 105(8):3005-10.
    32. Taylor MD, Harris A, Babayan SA. CTLA-4 and CD4+ CD25+ regulatory T cells inhibit protective immunity to filarial parasites in vivo. J Immunol.2007; 179(7):4626-34.
    1. Jonuleit H, Schmitt E. The regulatory T cell family:distinct subsets and their interrelations. J Immunol.2003; 171(12):6323-7.
    2. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003; 3(3):253-7.
    3. Carrier Y, Yuan J, Kuchroo VK, et al. Th3 cells in peripheral tolerance. Ⅱ. TGF-beta-transgenic Th3 cells rescue IL-2-deficient mice from autoimmunity. J Immunol.2007; 178(1):172-8.
    4. Fukaura H, Kent SC, Pietrusewicz MJ, et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-betal-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin
    Invest.1996; 98(1):70-7.
    5. Satoguina JS, Adjobimey T, Arndts K. et al. Trl and naturally occurring regulatory T cells induce IgG4 in B cells through GITR/GITR-L interaction, IL-10 and TGF-beta. EurJ Immunol.2008; 38(11):3101-13.
    6. Roncarolo MG, Gregori S, Battaglia M, et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev.2006; 212:28-50.
    7. Ma A, Xiong Z, Hu Y, et al. Dysfunction of IL-10-producing type 1 regulatory T cells and CD4(+)CD25(+) regulatory T cells in a mimic model of human multiple sclerosis in Cynomolgus monkeys. Int Immunopharmacol.2009; 9(5):599-608.
    8. Gershon RK. A disquisition on suppressor T cells. Transplant Rev.1975; 26:170-85.
    9. Ng WF, Duggan PJ, Ponchel F, et al. Human CD4(+)CD25(+) cells:a naturally occurring population of regulatory T cells. Blood.2001; 98(9):2736-44.
    10. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998; 188(2):287-96.
    11. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol.2000; 164(1):183-90.
    12. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995; 155(3):1151-64.
    13. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol.1998; 160(3):1212-8.
    14. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009; 30(5):636-45.
    15. Camara NO, Sebille F, Lechler RI. Human CD4+CD25+ regulatory cells have marked
    and sustained effects on CD8+T cell activation. Eur J Immunol.2003; 33(12):3473-83.
    16. Cobbold SP, Nolan KF, Graca L, et al. Regulatory T cells and dendritic cells in transplantation tolerance:molecular markers and mechanisms. Immunol Rev.2003; 196:109-24.
    17. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med.2001; 194(5):629-44.
    18. Stephens LA, Mason D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25-subpopulations. J Immunol.2000; 165(6):3105-10.
    19. Couper KN, Blount DG, de Souza JB, Suffia I, Belkaid Y, Riley EM. Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice. J Immunol.2007; 178(7):4136-46.
    20. Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature.2007; 445(7129):766-70.
    21. Banham AH, Powrie FM, Suri-Payer E. FOXP3+ regulatory T cells:Current controversies and future perspectives. Eur J Immunol.2006; 36(11):2832-6.
    22. Pyzik M, Piccirillo CA. TGF-betal modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J Leukoc Biol.2007; 82(2):335-46.
    23. Banz A, Peixoto A, Pontoux C, et al. A unique subpopulation of CD4+ regulatory T cells controls wasting disease, IL-10 secretion and T cell homeostasis. Eur J Immunol. 2003; 33(9):2419-28.
    24. Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol.2002; 3(2):135-42.
    25. Lepault F, Gagnerault MC. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J Immunol.2000; 164(1):240-7.
    26. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med.2000; 192(2):295-302.
    27. Mariano FS, Gutierrez FR, Pavanelli WR, et al. The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect.2008; 10(7):825-33.
    28. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med.2000; 192(2):303-10.
    29. Chai JG, Tsang JY, Lechler R, et al. GD4+CD25+ T cells as immunoregulatory T cells in vitro. Eur J Immunol.2002; 32(8):2365-75.
    30. Koup RA. Virus escape from CTL recognition. J Exp Med.1994 Sep 1;180(3):779-82.
    31. Goulder PJ, Brander C, Tang Y, et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature.2001; 412(6844):334-8.
    32. Taylor MD, LeGoff L, Harris A, et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol.2005; 174(8):4924-33.
    33. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005; 6(4):353-60.
    34. Yurchenko E, Tritt M, Hay V, Shevach EM, et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med.2006; 203(11):2451-60.
    35. Mills KH. Regulatory T cells:friend or foe in immunity to infection? Nat Rev Immunol. 2004; 4(11):841-55.
    36. Suvas S, Azkur AK, Kim BS, et al. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol.2004; 172(7):4123-32.
    37. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by
    activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995; 155(3):1151-64.
    38. Camara NO, Sebille F, Lechler RI. Human CD4+CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation. Eur J Immunol.2003; 33(12):3473-83.
    39. Cobbold SP, Nolan KF, Graca L, et al. Regulatory T cells and dendritic cells in transplantation tolerance:molecular markers and mechanisms. Immunol Rev.2003; 196:109-24.
    40. Xu D, Liu H, Komai-Koma M, et al. CD4+CD25+ regulatory T cells suppress differentiation and functions of Thl and Th2 cells, Leishmania major infection, and colitis in mice. J Immunol.2003;170(1):394-9.
    41. Stober CB, Lange UG, Roberts MT, et al. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol.2005; 175(4):2517-24.
    42. Moore AC, Gallimore A, Draper SJ, et al. Anti-CD25 antibody enhancement of vaccine-induced immunogenicity:increased durable cellular immunity with reduced immunodominance. J Immunol.2005; 175(11):7264-73.
    43. Golgher D, Jones E, Powrie F, et al. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol.2002; 32(11):3267-75.
    44. Jones E, Dahm-Vicker M, Simon AK, et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun.2002; 2:1.
    45. Somasundaram R, Jacob L, Swoboda R, et al. Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res.2002; 62(18):5267-72.
    46. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med.2004; 10(9):942-9.
    47. Ichihara F, Kono K, Takahashi A, et al. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res.2003; 9(12):4404-8.
    48. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol.2002; 169(5):2756-61.
    49. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.2001; 61(12):4766-72.
    50. Fecci PE, Sweeney AE, Grossi PM, et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res.2006; 12(14 Pt 1):4294-305.
    51. Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest.2005; 115(12):3623-33.
    52. Frankel AE, Powell BL, Lilly MB. Diphtheria toxin conjugate therapy of cancer. Cancer Chemother Biol Response Modif.2002; 20:301-13.
    53. Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med.2001; 194(6):823-32.
    54. Suvas S, Kumaraguru U, Pack CD, et al. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med.2003; 198(6):889-901.
    55. Toka FN, Suvas S, Rouse BT. CD4+ CD25+ T cells regulate vaccine-generated primary
    and memory CD8+ T-cell responses against herpes simplex virus type 1. J Virol.2004; 78(23):13082-9.
    56. Furuichi Y, Tokuyama H, Ueha S, et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+ T cell response primed by DNA immunization. World J Gastroenterol.2005;11(24):3772-7.
    57. Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol.2002; 2(4):251-62.
    58. Haeryfar SM, DiPaolo RJ, Tscharke DC, et al. Regulatory T cells suppress CD8+ T cell responses induced by direct priming and cross-priming and moderate immunodominance disparities. J Immunol.2005; 174(6):3344-51.
    59. Shaw MH, Freeman GJ, Scott MF, et al. Tyk2 negatively regulates adaptive Th1 immunity by mediating IL-10 signaling and promoting IFN-gamma-dependent IL-10 reactivation. J Immunol.2006; 176(12):7263-71.
    60. Julia V, McSorley SS, Malherbe L, et al. Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. J Immunol.2000; 165(10):5637-45.
    61. Gurunathan S, Sacks DL, Brown DR, et al. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med.1997; 186(7):1137-47.
    62. Tabbara KS, Peters NC, Afrin F, et al. Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun. 2005; 73(8):4714-22.
    63. Butterworth AE. Vaccines against schistosomiasis:where do we stand? Trans R Soc Trop Med Hyg.1992;86(1):1-2.
    64. Hagan P, Sharaf O. Schistosomiasis vaccines. Expert Opin Biol Ther.2003; 3(8):1271-8.
    65. Wu ZD, Lu ZY, Yu XB. Development of a vaccine against Schistosoma japonicum in
    China:a review. Acta Trop.2005; 96(2-3):106-16.
    66. DeMarco R, Verjovski-Almeida S. Schistosomes--proteomics studies for potential novel vaccines and drug targets. Drug Discov Today.; 14(9-10):472-8.
    67. Bergquist R, Al-Sherbiny M, Barakat R, et al. Blueprint for schistosomiasis vaccine development. Acta Trop.2002; 82(2):183-92.
    68. Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat Rev Immunol. 2002;2(7):499-511.
    69. Sacks D, Sher A. Evasion of innate immunity by parasitic protozoa. Nat Immunol.2002 Nov;3(11):1041-7.
    70. Brown SP, Grenfell BT. An unlikely partnership:parasites, concomitant immunity and host defence. Proc Biol Sci.2001; 268(1485):2543-9.
    71. Belkaid Y. Regulatory T cells and infection:a dangerous necessity. Nat Rev Immunol. 2007; 7(11):875-88.
    72. Xiaoping Cai, Hui Zhang, et al. Dynamics of CD4+CD25+ Treg cell populations in spleens and mesenteric lymph nodes of mice in infection with Schistosoma japonicum. Acta Biochim Biophys Sin 2006,38(5):299-304
    73.余光清,蒋诗琴,李雍龙。可溶性重组日本血吸虫26 kDa GST的优化表达。中国人兽共患病学报2006;22(8);770-773
    Yu GQ, Jiang SQ, Li YL. Optimizing expression of recombinant 26-kilodalton glutathione S-transferases of Schistosoma japonicum in Escherchia coli. CHINESE JOURNAL OF ZOONOSES.2006; 22 (8); 770-773
    74. Oswald IP, Eltoum I, Wynn TA, et al. Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide. Proc Natl Acad Sci U S A.1994; 91(3):999-1003.
    75. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A.2008; 105(8):3005-10.
    76. Nardelli DT, Burchill MA, England DM, et al. Association of CD4+ CD25+ T cells with prevention of severe destructive arthritis in Borrelia burgdorferi-vaccinated and challenged gamma interferon-deficient mice treated with anti-interleukin-17 antibody. Clin Diagn Lab Immunol.2004; 11(6):1075-84.
    77. Taylor JJ, Mohrs M, Pearce EJ. Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population. J Immunol.2006; 176(10):5839-47.
    78. Taylor MD, Harris A, Babayan SA, Bain O, Culshaw A, Allen JE, et al. CTLA-4 and CD4+ CD25+ regulatory T cells inhibit protective immunity to filarial parasites in vivo. J Immunol.2007; 179(7):4626-34.29
    79. Gregor PD, Wolchok JD, Ferrone CR, et al. CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine.2004; 22(13-14):1700-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700