水杨醛席夫碱金属配合物的合成、表征及PTP1B抑制活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
属于重大疾病之一的糖尿病,对人类危害十分严重,迄今为止还没有彻底治疗的有效方法。糖尿病发病的关键因素是胰岛素分泌不足和胰岛素抵抗,众多研究表明,蛋白酪氨酸磷酸酶1B(PTP1B)对胰岛素信号传导具有负性调节作用,PTP1B的表达水平在糖尿病或发生胰岛素抵抗时明显增高,而且PTP1B与肿瘤的发生发展也有密切关系。因此开展对蛋白酪氨酸磷酸酶1B抑制剂的研究,并探索抑制剂与酶作用机理,不仅对于研究生物体中的信号传导具有重要的理论价值,也有利于开发新型抗糖尿病及抗癌药物。
     目前国内外关于PTP1B抑制剂的报道很多,其中以有机小分子居多,但是无机小分子抑制剂的研究却非常少。大量研究表明微量金属元素如V、Cr、Cu、Zn等特别是V与糖尿病的预防和治疗密切相关,但其作用机制仍不明确。一些研究表明钒配合物可能通过抑制PTP活性发挥降血糖作用。为了进一步深入探讨钒配合物的降血糖活性和机理,我们选择了一些具有广泛生物活性的配体,设计合成了各种新的金属配合物,研究了这些配合物对PTP1B活性的抑制作用,并进行了初步的选择性和作用机理研究。本论文的主要研究成果如下:
     1.合成了一系列新型的水杨醛及其衍生物缩邻氨基苯甲酸-多吡啶-氧钒三元配合物,运用元素分析、晶体衍射、红外光谱、电子顺磁共振光谱、密度泛函理论计算、摩尔电导、紫外光谱、电喷雾质谱、电位滴定等手段对其结构进行了表征,结果表明,这是一类稳定的具有六配位变形八面体结构的中性氧钒(Ⅳ)配合物。在配合物结构特性研究的基础上,首次研究了这类三元氧钒配合物对PTP1B活性的抑制作用及模式,初步探讨了配合物与PTP1B作用的机理。配合物对PTP1B的半数抑制浓度(ICso)只有几十纳摩尔,而且相对于SHP-1和TCPTP来说,这类配合物对PTP1B有适度的选择性。另外,稳态动力学实验也表明这类配合物以竞争模式与PTP1B相互作用,所以该类配合物是高效的、适度选择性的、典型的竞争型PTP1B抑制剂。结合配合物竞争型的作用模式,利用分子模拟的方法初步探索了该类配合物与PTP1B活性位点相互作用的可能模式,即配合物凭借其比较适合的结构进入PTP1B酶的催化域口袋并且主要通过其钒氧及邻近基团与PTP1B活性位点作用。
     文献报道苯环上引入不同取代基时,由于电子效应、空间效应的影响,这些取代基会对其合成的化合物生物活性有一定的影响,为了比较取代基对抑制活性的影响,我们进一步在水杨醛的苯环上引入溴或者将苯环用萘环取代,然后与邻氨基苯甲酸缩合而成两种新的席夫碱,5-溴水杨醛缩邻氨基苯甲酸席夫碱和2-羟基-1-萘醛缩邻氨基苯甲酸席夫碱,利用这两种席夫碱和多吡啶配体合成一系列类似的新型氧钒配合物,研究了配合物与PTP1B的相互作用,结果表明,该类配合物的抑制活性要略低于没有取代基的相应配合物,这可能是由于取代基的引入对配合物进入酶的催化域口袋产生一些位阻作用,但是在这个空间结构中位阻还没有足够大到阻止配合物进入酶的催化域口袋,所以与没有取代基的配合物抑制活性相比,该类配合物对PTP1B活性的抑制作用变化不明显。
     2.动物实验已经表明,配位形式为VO(N_2O_2)的配合物有非常显著的抗糖作用,所以我们选择含有N_2O_2配位基的水杨醛双席夫碱作为配体,合成一系列新的水杨醛及其衍生物缩芳胺双席夫碱氧钒配合物,利用元素分析、红外光谱、摩尔电导、紫外光谱、电子顺磁共振光谱和密度泛函理论计算等手段对其结构进行了表征,并用紫外光谱测定了配合物在缓冲溶液中的稳定性动力学。结果表明这是一类稳定的具有五配位扭曲四方锥结构的中性氧钒(Ⅳ)配合物。同样,我们也首次研究了该类配合物与PTP1B的相互作用,发现所合成的这些配合物对PTP1B都具有很好的抑制活性,半数抑制浓度IC_(50)值在15~133nM范围内,从IC_(50)值结果可以看出,配合物中不同部位取代基的改变对配合物的PTP1B抑制作用有不同的影响结果。其中席夫碱配体中水杨醛上取代基的引入主要是对配合物进入PTP1B活性区域时产生一定的空间位阻,而且取代基越大,位阻也就越大,而席夫碱配体中邻苯二胺上取代基的引入可能主要是通过电子的推拉效应影响氧钒离子与PTP1B活性部位的相互作用,结果还表明吸电子基的引入能够提高配合物的抑制活性。另外,以水杨醛缩邻苯二胺双席夫碱氧钒配合物为例,酶动力学实验研究表明,该类配合物是典型的竞争型抑制剂。根据实验结果并结合分子模拟计算,推测配合物也是以钒氧端与PTP1B活性部位结合的。
     3.铜和锌是重要的生命金属元素,以DNA为作用靶点的铜配合物抗肿瘤活性的研究已有很多报道,但是以PTP1B为作用靶点的铜配合物的各种生物活性研究还没见文献报道,我们课题组以PTP1B为作用靶点,首次探索了铜配合物以及席夫碱锌配合物对PTP1B活性的抑制作用。本文中,合成了分别以水杨醛缩芳胺席夫碱和1,10-邻菲哕啉为配体的铜、锌配合物,运用元素分析、晶体衍射、红外光谱、摩尔电导、紫外光谱等手段对其结构进行了表征,并研究了这些配合物对PTP1B的抑制作用。实验结果表明,这些配合物都能很好的抑制PTP1B酶的活性,它们的IC_(50)值在10~(-6)~10~(-7)M数量级范围。进一步的研究表明,还原型谷胱甘肽的存在一定程度上降低了席夫碱铜配合物对PTP1B抑制的作用,氧气的存在增强邻菲哕啉铜配合物对PTP1B的抑制,我们推测铜配合物抑制PTP1B酶活性的过程可能存在氧化机理。我们初步认为这个机理可能不同于产生羟基自由基的氧化机理,因为还原剂GSH的去除对铜配合物的抑制活性没有明显的影响,更进一步的机理研究还在继续中。另外,值得一提的是双核铜配合物[Cu(phen)_2(μ-IDA)Cu(phen)(NO_3)]NO_3·4H_2O是以一种很少见的反竞争方式来抑制PTP1B活性的,而且比较配合物对PTP1B、TCPTP和SHP-1活性的抑制能力可以发现,该配合物对TCPTP活性的抑制有一定的选择性。
     4.尝试用浸泡法观察在金属配合物中浸泡24小时后PTP1B的蛋白晶体的变化,比较浸泡前后PTP1B晶体的初步结构发现,金属抑制剂作用之前PTP1B活性区域口袋形状比较明显,活性位点Cys215上的巯基向上伸展,当金属抑制剂作用之后PTP1B活性区域口袋形状就变得有些不太清楚了,活性位点Cys215上的巯基也都向袋子口方向伸展,这可能是由于金属抑制抑制剂与活性位点发生作用的原因。特别值得一提的是,从经过铜配合物溶液浸泡后的PTP1B晶体结构中我们发现活性位点Cys215上的巯基有部分被氧化和成环的趋势,这一现象与prof.H.Jhoti等2003年在Nature上报道的双氧水氧化PTP1B的机理有点类似,为我们今后更深入地研究PTP1B铜配合物抑制剂奠定了坚实的理论基础。
     本论文创新之处:获得一系列新型的金属配合物,首次研究了这些配合物对PTP1B活性的抑制作用,并进行了初步的机理探索,为金属配合物作为胰岛素模拟物方面的探索积累了一些研究基础,同时获得一些高效且有一定选择性的PTP1B金属抑制剂;首次以PTP1B作为靶点来研究铜配合物的生物活性,这些有意义的研究结果将对今后开发基于金属化合物的抗糖尿病和抗肿瘤药物提供理论和实验依据,同时也进一步丰富了相关金属的生物无机化学内容。
The number of patients suffering from diabetes mellitus(DM) is increasing throughout the world,with this disease becoming most significant disease in the century.Up to now,there are not still potent methods to cure the disease thoroughly.DM is a disease that results in chronic hyperglycemia due to an absolute or relative lack of insulin and/or insulin resistance.It is proved that protein-tyrosine phosphatase 1B(PTP1B) is an important negative regulator of insulin and leptin signaling in vivo.PTP1B can associate with and dephosphorylate activated insulin receptor(IR) or insulin receptor substrates.Overexpression of PTP1B in cell cultures decreases insulin-stimulated phosphorylation of nsulin receptor(IR) or insulin receptor substrates.So it is very important to study the inhibitors'interaction with PTP1B and their mechanism.Furthermore,the potent and specificity PTP1B inhibitors may be promising candidates for novel anti-diabetic drug development.
     Currently,a large number of the studies on PTP1B inhibitors have been reported.While most of the inhibitors are organic moleculars,the inorganic metal-complex PTP1B inhibitors have been few reported.Many experiments in vivo have shown the close relation of the trace metal elements to diabetes precaution and treatment.However,the mechanism for the insulin-sensitizing of metal effects has not been well understood by far,though the activities of decreasing the blood sugar by metal compounds had been associated with protein tyrosine phosphatase inhibition.Therefore,how metal compounds directly inhibit PTP1B and then influence metabolism need more investigation.
     In this thesis,we design and synthesis a series novel metal compounds employing the ligands with wide biological activities,and their inhibition effect and mechanism against PTP1B were investigated.The main results are as follows:
     1.A new series of oxovanadium complexes with mixed ligands,a tridentate ONO donor Schiff base ligand[viz.,salicylidene anthranilic acid(SAA)]and a bidentate polypyridyle ligand,have been synthesized and characterized by elemental analysis,FT-IR,EPR,DFT calculations,X-ray crystallography, ESI-MS,UV-vis,Molar conductivity measurment and potentiometric pH titrations.The results show that this kind of oxovanadium complex with a distorted octahedral geometry is stable and neutral,and the center vanadium atom is the oxidation state ofⅤ(Ⅳ) with d~1 configuration.The complexes have been found to be potent inhibitors against PTP1B(IC_(50) approximate 10~(-8)M) in vitro.This kind of complex selectively inhibits PTP1B over the other two phosphatases(approximate 4~9-fold selectivity against SHP-1 and about 2-fold selectivity against TCPTP).Kinetics assays suggest that these complexes inhibit PTP1B in a competitive manner.The binding model of the kind of complex with PTP1B is predicted by using molecular docking techniques.The putative mode of interaction of the kind of complex with PTP1B suggests that the complex is capable of binding to the catalytic site of PTP1B.In the model,the vanadyl oxygen is close to the sulphur atom of the active site cysteine(Cys 215).
     In order to test the substitution of ligands effects on the PTP1B-inhibition activities,we replaced "salicylaldehyde" with "5-bromo-salicylaldehyde" and "2-hydroxy naphthalene-1-carbaldehyde",respectively,then synthesize and characterized a series of new similar mixed oxovanadium complexes.The results of inhibition assays show the PTP1B-inhibition activities of these oxovanadium complexes of derivatives are slightly lower than the corresponding complexes.It appears that the spatial bulk of substitute of Schiff base weakly diminishes the PTP1B-inhibition activities in these complexes.
     2.Based on the good activities of decreasing blood sugar by the oxovanadium complex with N_2O_2 coordination form.A tetradentate donor Schiff base ligand and derivatives with N_2O_2 coordination form were chosen to synthesize a series of oxovanadium complexes.These complexes were characterized by elemental analysis,FT-IR,EPR,DFT,UV-vis,conductivity measurment.The results show this kind of oxovanadium complex is five-coordinated neutral complex with distorted tetragonal pyramid geometry. The center vanadium atom is V(IV) with d~1 configuration.The complexes have been shown to be potent inhibitors of PTP1B.Kinetics assays suggest that the complex VO(sal-BDA) inhibits PTP1B in a competitive manner and inhibition constant of 31nM,was determined for the inhibition of PTP1B. The binding model of the complex VO(sal-BDA) with PTP1B is studied by using molecular docking techniques.The putative mode of interaction of the complex with PTP1B suggests that the vanadyl oxygen of the complex is close to the sulphur atom of cysteine(Cys 215) at the active site.
     3.Copper and zinc are essential trace elements that play some central roles in the biochemistry of every living organism.The antitumor activity of copper complexes based on DNA cleavage has been studied extensively. However,the investigation of copper complexes interaction with PTP1B, which is regared as the target of antitumor drugs,is not reported.Our group first explores PTP1B-inhibitory activities of copper complexes and zinc complexes with Schiff base ligands.In this thesis,the copper complexes with Schiff base.or 1,10-phenanthroline ligands are synthesized and nsulin receptor(IR) or insulin receptor substratesthen characterized by elemental analysis,FT-IR,X-ray crystallography,UV-vis,conductivity measurement. The results of inhibition assays show these copper complexes are potent PTP1B inhibitors.IC_(50) values ranged from 10~(-6) to 10~(-7)M.More studies show that PTP1B inhibitory activities of copper complexes with Schiff base ligands decrease in the presence of GSH and PTP1B inhibitory activities of the copper complex[Cu(phen)_3]~(2+) increase in the presence of oxygen,implying the existence of oxidation mechanism during the PTP1B-inhibition process by copper complexes.Noted that the binuclear copper complex [Cu(phen)_2(μ-IDA)Cu(phen)(NO_3)]NO_3 inhibits PTP1B in a uncompetitive manner.And the complex selectively inhibits TCPTP over the other two phosphatases SHP-1 and TCPTP.
     4.Using oxovanadium complex VO(SAA)(phen) and copper complex [Cu(phen)_2(μ-IDA)Cu(phen)(NO_3)]NO_3 as the representatives,we attempt to cultivate and PTP1B/inhibitor compound crystals by the soaking method and obtain two X-ray crystal structures of PTP1B soaked in the copper complex and oxovanadium complex.In comparison with the native PTP1B,the structures in PTP1B soaked in the copper complex and oxovanadium complex have some difference,and it is mainly obvious for the SH group of Cys 215,which indicates the ever happened interactions between the inhibitors and active region of PTP1B.Remarkably,the SH of catalytic cysteine of PTP1B is partially oxidized in the PTP1B/(copper complex) compound crystal,and the phenomenon is similar to that reported by the reference published in Nature.
引文
[1]马艳红,在第一个“联合国糖尿病日”即将到来之际,医学专家呼吁:全社会共同关注糖尿病危害.中国医药报 2007,(170期),B6版.
    [2]付国香,涂玉林.脂毒性与肥胖性2型糖尿病.中国动脉硬化杂志.2002,10(4),362-364.
    [3]郭彩华,蔡慧农,卢珍华.糖尿病的生化机理浅释.生物学通报.2003,38(3),24-25.
    [4]宋滇平,尹维珍,冯文忠,汤保.糖尿病药物治疗研究方向.云南医药.1994. 15(4),305-308.
    [5]郭丰广,郝吉福,孝建华,李菲,宋涛,孙中东.抗糖尿病药物研究进展.泰山医学院学报.2008,29(3),234-237.
    [6]Bolen,S.;Feldman,L.;Vassy,J.;Wilson,L.;Yeh,H.C.;Marinopoulos,S.;Wiley,C.;Selvin,E.;Wilson,R.;Bass,E.B.;Brancati,F.L.,Systematic review:Comparative effectiveness and safety of oral medications for type 2 diabetes Mellitus Ann.Intern.Med.2007,147(6),386-399.
    [7]Camp,H.S.,Thiazolidinediones in diabetes:current status and future outlook Curr.Opin.Investig.Drugs 2003,4(4),406-411.
    [8]DeFronzo,R.A.,Pharmacologic therapy for type 2 diabetes mellitus Ann.Intern.Med.1999,131(4),281-303.
    [9]Stades,A.M.E.;Heikens,J.T.;Erkelens,D.W.;Holleman,F.;Hoekstra,J.B.L.,Metformin and lactic acidosis:cause or coincidence? A review of case reports J.Intern.Med.2004,255(2),179-187.
    [10]Ekin,S.;Mert,N.;Gunduz,H.;Meral,I.,Serum sialic acid levels and selected mineral status in patients with type 2 diabetes mellitus Biol.Trace.Elem.Res.2003,94(3),193-201.
    [11]Quilliot,D.;Dousset,B.;Guerci,B.;Dubois,F.;Drouin,P.;Ziegler,O.,Evidence that diabetes mellitus favors impaired metabolism of zinc,copper,and selenium in chronic pancreatitis Pancreas 2001,22(3),299-306.
    [12]Sanchez,M.;Andrestrelles,F.;Hidalgo,A.,Effects of Vanadate in Testicular Capsule of the Rat Gener.Pharm.1991,22(3),499-503.
    [13]Zhang,Z.Y.,Protein tyrosine phosphatases:prospects for therapeutics Curr.Opin.Chem.Biol.2001,5(4),416-423.
    [14]Granot-Attas,S.;Elson,A.,Protein tyrosine phosphatases in osteoclast differentiation,adhesion,and bone resorption.Eur.J.Cell Bio.2008,87(8-9),479-490
    [15]Shultz,L.D.;Schweitzer,P.A.;Rajan,T.V.;Yi,T.L.;Ihle,J.N.;Matthews,R.J.;Thomas,M.L.;Beier,D.R.,Mutations at the Murine Moth-Eaten Locus Are within the Hematopoietic-Cell Protein-Tyrosine-Phosphatase(Hcph) Gene Cell 1993,73(7),1445-1454.
    [16]Qu,C.K.;Yu,W.M.;Azzarelli,B.;Feng,G.S.,Genetic evidence that Shp-2 tyrosine phosphatase is a signal enhancer of the epidermal growth factor receptor in mammals Proc.Natl.Acad.Sci.U.S.A.1999,96(15),8528-8533.
    [17]Zhu,Z.C.;Sun,M.;Zhang,X.Y.;Liu,K.X.;Shi,D.L.;Li,J.D.;Su,J.Q.;Xu,Y.C.;Fu,X.Q.,Expression and characterization of catalytic domain of T cell protein tyrosine phosphatase(Delta TC-PTP)-Immunohistochemical study of Delta TC-PTP expression in non-small cell lung carcinomas Chem.Res.Chinese U.2007,23(3),289-296.
    [18]Cheng,A.;Dube,N.;Gu,F.;Tremblay,M.L.,Coordinated action of protein tyrosine phosphatases in insulin signal transduction Eur.J.Biochem.2002,269(4),1050-1059.
    [19]Barford,D.;Flint,A.J.;Tonks,N.K.,Crystal-Structure of Human Protein-Tyrosine-Phosphatase 1b Science 1994,263(5152),1397-1404.
    [20]Burke,T.R.;Zhang,Z.Y.,Protein-tyrosine phosphatases:Structure,mechanism,and inhibitor discovery Biopolymers 1998,47(3),225-241.
    [21]Johnson,T.O.;Ermolieff,J.;Jirousek,M.R.,Protein tyrosine phosphatase 1B inhibitors for diabetes Nat.Rev.Drug Discov 2002,1(9),696-709.
    [22]Puius,Y.A.;Zhao,Y.;Sullivan,M.;Lawrence,D.S.;Almo,S.C.;Zhang,Z.Y.,Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B:A paradigm for inhibitor design Proc.Natl.Acad.Sci.U.S.A.1997,94(25),13420-13425.
    [23]Zhang,Z.Y.,Chemical and mechanistic approaches to the study of protein tyrosine phosphatases Ace.Chem.Res.2003,36(6),385-392.
    [24]Wilson,D.P.;Wan,Z.K.;Xu,W.X.;Kirincich,S.J.;Follows,B.C.;Joseph-McCarthy,D.;Foreman,K.;Moretto,A.;Wu,J.;Zhu,M.;Binnun,E.;Zhang,Y.L.;Tam,M.;Erbe,D.V.;Tobin,J.;Xu,X.;Leung,L.;Shilling,A.;Tam,S.Y.;Mansour,T.S.;Lee,J.,Structure-based optimization of protein tyrosine phosphatase 1B inhibitors:From the active site to the second phosphotyrosine binding site.J.Med.Chem.2007,50(19),4681-4698.
    [25]Elchebly,M.;Payette,P.;Michaliszyn,E.;Cromlish,W.;Collins,S.;Loy,A.L.;Normandin,D.;Cheng,A.;Himms-Hagen,J.;Chan,C.C.;Ramachandran,C.;Gresser,M.J.;Tremblay,M.L.;Kennedy,B.P.,Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene Science 1999,283(5407),1544-1548.
    [26]Klaman,L.D.;Boss,O.;Peroni,O.D.;Kim,J.K.;Martino,J.L.;Zabolotny,J.M.;Moghal,N.;Lubkin,M.;Kim,Y.B.;Sharpe,A.H.;Stricker-Krongrad,A.;Shulman,G.I.;Neel,B.G.;Kahn,B.B.,Increased energy expenditure,decreased adiposity,and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice Mol.Cell.Biol.2000,20(15),5479-5489.
    [27]Seiner,D.R.;LaButti,J.N.;Gates,K.S.,Kinetics and mechanism of protein tyrosine phosphatase 1B inactivation by acrolein Chem.Res.Toxicol.2007,20(9),1315-1320.
    [28]Wang,X.Y.;Bergdahl,K.;Heijbel,A.;Liljebris,C.;Bleasdale,J.E.,Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors Mol.Cell.Endocrinal.2001,173(1-2),109-120.
    [29]Goldstein,B.J.;Ahmad,F.;Ding,W.;Li,P.M.;Zhang,W.R.,Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases Mol.Cell.Biochem.1998,182(1-2),91-99.
    [30]Ukkola,O.;Santaniemi,M.,Protein tyrosine phosphatase 1B:a new target for the treatment of obesity and associated co-morbidities J.Intern.Med.2002,251(6),467-475.
    [31]Forsell,P.;Boie,Y.;Montalibet,J.;Collins,S.;Kennedy,B.P.,Genomic characterization of the human and mouse protein tyrosine phosphatase-1B genes Gene 2000,260(1-2),145-153.
    [32]Wu,X.D.;Hoffstedt,J.;Deeb,W.;Singh,R.;Sedkova,N.;Zilbering,A.;Zhu,L.;Park,P.K.;Amer,P.;Goldstein,B.J.,Depot-specific variation in protein-tyrosine phosphatase activities in human omental and subcutaneous adipose tissue:A potential contribution to differential insulin sensitivity J.Clin.Endocr.Metab.2001,86(12),5973-5980.
    [33]Echwald,S.M.;Bach,H.;Vestergaard,H.;Richelsen,B.;Kristensen,K.;Drivsholm,T.;Borch-Johnsen,K.;Hansen,T.;Pedersen,O.,A P387L variant in protein tyrosine phosphatase-1B(PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro Diabetes 2002,51(1),1-6.
    [34]Di Paola,R.;Frittitta,L.;Miscio,G.;Bozzali,M.;Baratta,R.;Centra,M.;Spampinato,D.;Santagati,M.G.;Ereolino,T.;Cisternino,C.;Soccio,T.;Mastroianno,S.;Tassi,V.;Almgren,P.;Pizzuti,A.;Vigneri,R.;Trischitta,V.,A variation in 3 ' UTR of hPTP1B increases specific gene expression and associates with insulin resistance Am.J.Hum.Genet.2002,70(3),806-812.
    [35]Watanabe,T.;Suzuki,T.;Umezawa,Y.;Takeushi,T.;Otsuka,M.;Umezawa,K.,Structure-activity relationship and rational design of 3,4-dephostatin derivatives as protein tyrosine phosphatase inhibitors Tetrahedron 2000,56(5),741-752.
    [36]Cebula,R.E.;Blanchard,J.L.;Boisclair,M.D.;Pal,K.;Bockovieh,N.J.,Synthesis and phosphatase inhibitory activity of analogs of sulfircin Bioorg.Med.Chem.Lett.1997,7(15),2015-2020.
    [37]Chen,R.M.;Hu,L.H.;An,T.Y.Natural PTP1B inhibitors from Broussonetia papyrifera.Bioorg.Med.Chem.Lett.2002,12(23),3387-3390.
    [38]Wang,Y.;Shang,X.Y.;Wang,S.J.;Mo,S.Y.;Li,S.;Yang,Y.C.;Ye,F.;Shi,J.G.;He,L.,Structures,biogenesis,and biological activities of pyrano[4,3-c]isochromen-4-one derivatives from the fungus Phellinus igniarius.J.Nat.Prod.2007,70(2),296-299.
    [39]Feng,Y.J.;Carroll,A.R.;Addepalli,R.;Fechner,G.A.;Avery,V.M.;Quinn,R.J.,Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors.J.Nat.Prod.2007,70(11),1790-1792.
    [40]Shi,D.Y.;Xu,F.;He,J.;Li,J.;Fan,X.;Han,L.J.,Inhibition of bromophenols against PTP1B and anti-hyperglycemic effect of Rhodomela confervoides extract in diabetic rats Chinese Sci.Bull.2008,53(16),2476-2479.
    [41]Andersen,H.S.;Iversen,L.F.;Jeppesen,C.B.;Branner,S.;Norris,K.;Rasmussen,H.B.;Moller,K.B.;Moller,N.P.H.,2-(Oxalylamino)-benzoic acid is a general,competitive inhibitor of protein-tyrosine phosphatases J.Biol.Chem.2000,275(10),7101-7108.
    [42]Andersen,H.S.;Olsen,O.H.;Iversen,L.F.;Sorensen,A.L.P.;Mortensen,S.B.;Christensen,M.S.;Branner,S.;Hansen,T.K.;Lau,J.F.;Jeppesen,L.;Moran,E.J.;Su,J.;Bakir,F.;Judge,L.;Shahbaz,M.;Collins,T.;Vo,T.;Newman,M.J.;Ripka,W.C.;Moller,N.P.H.,Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of protein-tyrosine phosphatase 1B J.Med.Chem.2002,45(20),4443-4459.
    [43]Liu,G.,Protein tyrosine phosphatase 1B inhibition:Opportunities and challenges Curr.Med.Chem.2003,10(15),1407-1421.
    [44]Liu,G.;Szczepankiewicz,B.G.;Pei,Z.H.;Janowick,D.A.;Xin,Z.L.;Hajduk,P.J.;Abad-Zapatero,C.;Liang,H.;Hutchins,C.W.;Fesik,S.W.;Ballaron,S.J.;Stashko,M.A.;Lubben,T.;Mika,A.K.;Zinker,B.A.;Trevillyan,J.M.;Jirousek,M.R.,Discovery and structure-activity relationship of oxalylarylaminobenzoic acids as inhibitors of protein tyrosine phosphatase 1B J.Med.Chem.2003,46(11),2093-2103.
    [45]Liu,G.;Xin,Z.L.;Pei,Z.G.;Hajduk,P.J.;Abad-Zapatero,C.;Hutchins,C.W.;Zhao,H.Y.;Lubben,T.H.;Ballaron,S.J.;Haasch,D.L.;Kaszubska,W.;Rondinone,C.M.;Trevillyan,J.M.;Jirousek,M.R.,Fragment screening and assembly:A highly efficient approach to a selective and cell active protein tyrosine phosphatase 1B inhibitor J.Med.Chem.2003,46(20),4232-4235.
    [46]Iversen,L.F.;Andersen,H.S.;Branner,S.;Mortensen,S.B.;Peters,G.H.;Norris,K.;Olsen,O.H.;Jeppesen,C.B.;Lundt,B.F.;Ripka,W.;Moiler,K.B.;Moiler,N.P.H.,Structure-based design of a low molecular weight,nonphosphorus,nonpeptide,and highly selective inhibitor of protein-tyrosine phosphatase 1B J.Biol.Chem.2000,275(14),10300-10307.
    [47]Vazquez,J.;Tautz,L.;Ryan,J.J.;Vuori,K.;Mustelin,T.;Pellecchia,M.,Development of molecular probes for second-site screening and design of protein tyrosine phosphatase inhibitors.J.Med.Chem.2007,50(9),2137-2143
    [48]Liu,G.;Xin,Z.L.;Liang,H.;Abad-Zapatero,C.;Hajduk,P.J.;Janowick,D.A.;Szczepankiewicz,B.G.;Pei,Z.H.;Hutchins,C.W.;Ballaron,S.J.;Stashko,M.A.;Lubben,T.H.;Berg,C.E.;Rondinone,C.M.;Trevillyan,J.M.;Jirousek,M.R.,Selective protein tyrosine phosphatase 1B inhibitors:Targeting the second phosphotyrosine binding site with non-carboxylic acid-containing ligands J.Med.Chem.2003,46(16),3437-3440.
    [49]Shrestha,S.;Bhattarai,B.R.;Chang,K.J.;Lee,K.H.;Cho,H.,Methylenedisalicylic acid derivatives:New PTP1B inhibitors that confer resistance to diet-induced obesity Bioorg.Med.Chem.Lett.2007,17(10),2760-2764.
    [50]Lee,K.;Boovanahalli,S.K.;Nam,K.Y.;Kang,S.U.;Lee,M.J.;Phan,J.;Wu,L.;Waugh,D.S.;Zhang,Z.Y.;No,K.T.;Lee,J.J.;Burke,T.R.,Synthesis of tripeptides as potent Yersinia protein tyrosine phosphatase inhibitors Bioorg.Med.Chem.Lett.2005,15(18),4037-4042.
    [51]Vazquez,J.;Tautz,L.;Ryan,J.J.;Vuori,K.;Mustelin,T.;Pellecchia,M.,Development of molecular probes for second-site screening and design of protein tyrosine phosphatase inhibitors.J.Med.Chem.2007,50(9),2137-2143.
    [52]Combs,A.P.;Yue,E.W.;Bower,M.;Ala,P.J.;Wayland,B.;Douty,B.;Takvorian,A.;Polam,P.;Wasserman,Z.;Zhu,W.Y.;Crawley,M.L.;Pruitt,J.;Sparks,R.;Glass,B.;Modi,D.;McLaughlin,E.;Bostrom,L.;Li,M.;Galya,L.;Blom,K.;Hillman,M.;Gonneville,L.;Reid,B.G.;Wei,M.;Becker-Pasha,M.;Klabe,R.;Huber,R.;Li,Y.L.;Hollis,G.;Bum,T.C.;Wynn,R.;Liu,P.;Metcalf,B.,Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics.J.Med.Chem.2005,48(21),6544-6548.
    [53]Sarma,B.K.;Mugesh,G.,Redox regulation of protein tyrosine phosphatase 1B (PTP1B):A biomimetic study on the unexpected formation of a sulfenyl amide intermediate.J.Am.Chem.Sac.2007,129(28),8872-8881.
    [54]Yang,J.;Groen,A.;Lemeer,S.;Jans,A.;Slijper,M.;Roe,S.M.;den Hertog,J.;Barford,D.,Reversible oxidation of the membrane distal domain of receptor PTP alpha is mediated by a cyclic sulfenamide.Biochemistry 2007,46(3),709-719
    [55]Klopfenstein,S.R.;Evdokimov,A.G.;Colson,A.O.;Fairweather,N.T.;Neuman,J.J.;Maier,M.B.;Gray,J.L.;Gerwe,G.S.;Stake,G.E.;Howard,B.W.;Farmer,J.A.;Pokross,M.E.;Downs,T.R.;Kasibhatla,B.;Peters,K.G.,1,2,3,4-tetrahydroisoquinolinyl sulfamic acids as phosphatase PTP1B inhibitors Bioorg.Med.Chem.Lett 2006,16(6),1574-1578.
    [56]Wiesmann,C.;Barr,K.J.;Kung,J.;Zhu,J.;Erlanson,D.A.;Shen,W.;Fahr,B.J.;Zhong,M.;Taylor,L.;Randal,M.;McDowell,R.S.;Hansen,S.K.,Allosteric inhibition of protein tyrosine phosphatase 1B Nat Struct.Mol.Biol.2004,11(8),730-737.
    [57]Kole,H.K.;Smyth,M.S.;Russ,P.L.;Burke,T.R.,Phosphonate Inhibitors of Protein-Tyrosine and Serine Threonine Phosphatases Biochem.J.1995,311,1025-1031.
    [58]Yao,Z.J.;Ye,B.;Wu,X.W.;Wang,S.M.;Wu,L.;Zhang,Z.Y.;Burke,T.R.,Structure-based design and synthesis of small molecule protein-tyrosine phosphatase 1B inhibitors Bioorgan,Med.Chem.1998,6(10),1799-1810.
    [59]Boutselis,I.G.;Yu,X.;Zhang,Z.Y.;Borch,R.F.,Synthesis and cell-based activity of a potent and selective protein tyrosine phosphatase 1B inhibitor prodrug.J.Med.Chem.2007,50(4),856-864
    [60]Shim,Y.S.;Kim,K.C.;Chi,D.Y.;Lee,K.H.;Cho,H.,Formylchromone derivatives as a novel class of protein tyrosine phosphatase 1B inhibitors Bioorg.Med.Chem.Lett.2003,13(15),2561-2563.
    [61]Urbanek,R.A.;Suchard,S.J.;Steelman,G.B.;Knappenberger,K.S.;Sygowski,L.A.;Veale,C.A.;Chapdelaine,M.J.,Potent reversible inhibitors of the protein tyrosine phosphatase CD45 J.Med.Chem.2001,44(11),1777-1793.
    [62]Liljebris,C.;Martinsson,J.;Tedenborg,L.;Williams,M.;Barker,E.;Duffy,J.E.S.;Nygren,A.;James,S.,Synthesis and biological activity of a novel class of pyridazine analogues as non-competitive reversible inhibitors of protein tyrosine phosphatase 1B(PTP1B)Bioorgan,Med.Chem.2002,10(10),3197-3212.
    [63]Zhu,M.L.;Lu,L.P.;Yang,P.,Studies on the structures and antihyperglycemic effects of Zn2+,Cue(2+),Ni2+-metformin complexes Acta Chim.Sin.2004,62(8),783-788.
    [64]Xie,Y.;Wang,F.;Li,F.F.;Li,M.S.;Deng,L.L.,Efects of binuclear copper(Ⅱ)threonine complex on blood glucose,lipids and protection of the hearts and kidneys in diabetic mice J.Chinese Pharm.Sci.2007,(16),14-17.
    [65]Barthel,A.;Ostrakhovitch,E.A.;Walter,P.L.;Kampkotter,A.;Klotz,L.O.,Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions:Mechanisms and consequences Arch.Biochem.Biophys.2007,463(2),175-182.
    [66]谌喜珠,牛艳芬,刘伟平,李艳蓉,高文桂,李玲,王玉天,余尧.双(2-取代-3-羟基-4-吡喃酮)合铜(Ⅱ)配合物的合成和降血糖作用.化学学报 2006,64(9),879-883.
    [67]Shechter,Y.;Goldwaser,I.;Mironchik,M.;Fridkin,M.;Gefel,D.,Historic perspective and recent developments on the insulin-like actions of vanadium;toward developing vanadium-based drugs for diabetes Coordin.Chem.Rev.2003,237(1-2),3-11.
    [68]Huyer,G.;Liu,S.;Kelly,J.;Moffat,J.;Payette,P.;Kennedy,B.;Tsaprailis,G.;Gresser,M.J.;Ramachandran,C.,Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate J.Blol.Chem.1997,272(2),843-851.
    [69]Thompson,K.H.;McNeill,J.H.;Orvig,C.,Vanadium compounds as insulin mimics Chem.Rev.1999,99(9),2561-2571.
    [70]McNeill,J.H.;Yuen,V.G.;Hoveyda,H.R.;Orvig,C.,Bis(Maltolato)Oxovanadium(Iv) Is a Potent Insulin Mimic J.Med.Chem.1992,35(8),1489-1491.
    [71]Peters,K.G.;Davis,M.G.;Howard,B.W.;Pokross,M.;Rastogi,V.;Diven,C.;Greis,K.D.;Eby-Wilkens,E.;Maier,M.;Evdokimov,A.;Soper,S.;Genbauffe,F.,Mechanism of insulin sensitization by BMOV(bis maltolato oxo vanadium);unliganded vanadium(VO4) as the active component J.Inorg.Biochem.2003,96(2-3),321-330.
    [72]Thompson,K.H.;Orvig,C.Vanadium in diabetes:100 years from Phase 0 to Phase I.J.Inorg.Biochem.2006,100(12),1925-1935.
    [73]Seale,A.P.;de Jesus,L.A.;Kim,S.Y.;Choi,Y.H.;Lim,H.B.;Hwang,C.S.;Kim,Y.S.,Development of an automated protein-tyrosine phosphatase 1B inhibition assay and the screening of putative insulin-enhancing vanadium(Ⅳ) and zinc(Ⅱ)complexes Biotechnol.Lett.2005,27(4),221-225.
    [74]Crans,D.C.,Chemistry and insulin-like properties of vanadium(Ⅳ) and vanadium(Ⅴ) compounds J.Inorg.Biochem.2000,80(1-2),123-131.
    [75]Shaver,A.;Ng,J.B.;Hall,D.A.;Lum,B.S.;Posner,B.I.,Insulin-Mimetic Peroxovanadium Complexes-Preparation and Structure of Potassium Oxodiperoxo(Pyridine-2-Carboxylato)Vanadate(Ⅴ),K_2[VO(O_2)_2(C_5H_4NCOO)].2H_2O,and Potassium Oxodiperoxo(3-Hydroxypddine-2-Carboxylato)Vanadate(Ⅴ),K_2[VO(O_2)_2(OH C_5H_3NCOO)]·3H_2O,and Their Reactions with Cysteine Inorg.Chem.1993,32(14),3109-3113.
    [76]Colpas,G.J.;Hamstra,B.J.;Kampf,J.W.;Pecoraro,V.L.,Functional models for vanadium haloperoxidase:Reactivity and mechanism of halide oxidation J.Am.Chem.Soc.1996,118(14),3469-3478.
    [77]Posner,B.I.;Faure,R.;Burgess,J.W.;Bevan,A.P.;Lachance,D.;Zhangsun,G.Y.;Fantus,I.G.;Ng,J.B.;Hall,D.A.;Lum,B.S.;Shaver,A.,Peroxovanadium Compounds - a New Class of Potent Phosphotyrosine Phosphatase Inhibitors Which Are Insulin Mimetics J.Biol.Chem.1994,269(6),4596-4604.
    [78]Zhou,X.W.;Chen,Z.;Chen,Q.X.;Ye,J.L.;Huang,P.Q.;Wu,Q.Y.,Inhibition effects of some bioactive peroxovanadium complexes on the tyrosine phosphatase Acta Bioch.Bioph.Sin.2000,32(2),133-138.
    [79]Nxumalo,F.;Tracey,A.S.,Reactions of vanadium(Ⅴ) complexes of N,N-dimethylhydroxylamine with sulfur-containing ligands:implications for protein tyrosine phosphatase inhibition J.Biol.Inorg.Chem.1998,3(5),527-533.
    [80]Tracey,A.S.,Hydroxamido vanadates:aqueous chemistry and function in protein tyrosine phosphatases and cell cultures J.Inorg.Biochem.2000,80(1-2),11-16.
    [81]Kim,J.H.;Cho,H.;Ryu,S.E.;Choi,M.U.,Effects of metal ions on the activity of protein tyrosine phosphatase VHR:Highly potent and reversible oxidative inactivation by Cu~(2+) ion Arch.Biochem.Biophys.2000,382(1),72-80.
    [82]Samet,J.M.;Silbajoris,R.;Wu,W.D.;Graves,L.M.,Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells Am.J.Resp.Cell Mol.Biol.1999,21(3),357-364.
    [83]Ojida,A.;Mito-oka,Y.;Sada,K.;Hamachi,I.,Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(Ⅱ)-dipicolylamine)-based artificial receptors J.Am.Chem.Soc.2004,126(8),2454-2463.
    [84]Ritter,E.;Przybylski,P.;Brzezinski,B.;Bartl,F.Schiff bases in biological systems.Curr.Org.Chem.2009,13,241-249.
    [85]Rehman,W.;Saman,F.;Ahmad,I.Synthesis,characterization,and biological study of some biologically potent schiff base transition metal complexes.Russ.J.Coord.Chem 2008,34(9),678-682.
    [86]Li,Y.G.;Shi,D.H.;Zhu,H.L.;Yan,H.;Ng,S.W.Transition metal complexes(M =Cu,Ni and Mn) of Schiff-base ligands:Syntheses,crystal structures,and inhibitory bioactivities against urease and xanthine oxidase.Inorg.Chimica.Acta 2007,360,2881-2889.
    [87]Gaballa,A.S.;Asker,M.S.;Barakat,A.S.;Teleb,S.M.Synthesis,characterization and biological activity of some platinum(Ⅱ) complexes with Schiff bases derived from salicylaldehyde,2-furaldehyde and phenylenediamine.Spectrochimica.Acta A 2007,67,114-121.
    [88]Vanco,J.;Marek,J.;Travnicek,Z.;Racanska,E.;Muselik,J.;Svajlenova,O.Synthesis,structural characterization,antiradical and antidiabetic activities of copper(Ⅱ) and zinc(Ⅱ) Schiff base complexes derived from salicylaldehyde and beta-alanine.J.Inorg.Biochem.2008,102(4),595-605
    [1]Zhang,S.;Zhang,Z.Y.PTP1B as a drug target:recent developments in PTP1B inhibitor discovery.Drug Discov.Today 2007,12(9-10),373-381.
    [2]Alonso,A.;Sasin,J.;Bottini,N.;Friedberg,I.;Friedberg,I.;Osterman,A.;Godzik,A.;Hunter,T.;Dixon,J.;Mustelin,T.Protein tyrosine phosphatases in the human genome.Cell 2004,117(6),699-711.
    [3]Goldstein,B.J.Protein-Tyrosine Phosphatase 1B(PTP1B):A novel therapeutic target for type 2 diabetes mellitus,obesity and related states of insulin resistance.Curr.Drug Targets - Immune,Endocrine & Metabolic Disorders 2001,1(3),265-175.
    [4]Seale,A.P.;de Jesus,L.A.;Kim,S.Y.;Choi,Y.H.;Lira,H.B.;Hwang,C.S.;Kim,Y.S.Development of an automated protein-tyrosine phosphatase 1B inhibition assay and the screening of putative insulin-enhancing vanadium(Ⅳ) and zinc(Ⅱ)complexes.Biotechnol.Lett.2005,27(4),221-225.
    [5]Xie,L.P.;Lee,S.Y.;Andersen,J.N.;Waters,S.;Shen,K.;Guo,X.L.;Moiler,N.P.H.;Olefsky,J.M.;Lawrence,D.S.;Zhang,Z.Y.Cellular effects of small molecule PTP1B inhibitors on insulin signaling.Biochemistry 2003,42(44),12792-12804.
    [6]Yuen,V.G.;Caravan,P.;Gelmini,L.;Glover,N.;McNeill,J.H.;Setyawafi,I.A.;Zhou,Y.;Orvig,C.Glucose-lowering properties of vanadium compounds:Comparison of coordination complexes with maltol or kojic acid as ligands.J.Inorg.Biochem.1997,68(2),109-116.
    [7]Shrestha,S.;Bhattarai,B.R.;Lee,K.H.;Cho,H.Mono- and disalicylic acid derivatives:PTP1B inhibitors as potential anti-obesity drugs.Bioorg.& Med.Chem.2007,15,6535-6548.
    [8]Sparks,R.B.;Polam,P.;Zhu,W.;Crawley,M.L.;Takvorian,A.;McLaughlin,E.;Wei,M.;Ala,P.J.;Gonneville,L.;Taylor,N.;Li,Y.;Wynn,R.;Burn,T.C.;Liu,P.C.C.;Combs,A.P.Benzothiazole benzimidazole(S)-isothiazolidinone derivatives as protein tyrosine phosphatase-1B inhibitors.Bioorg.Med.Chem.Lett.2007,17(3),736-740.
    [9]Maccari,R.;Paoli,P.;Ottana,R.;Jacomelli,M.;Ciurleo,R.;Manao,G.;Steindl,T.;Langer,T.;Vigorita,M.G.;Camici,G.5-arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases.Bioorgan.Med.Chem.2007,15(15),5137-5149.
    [10]Winter,C.L.;Lange,J.S.;Davis,M.G.;Gerwe,G.S.;Downs,T.R.;Peters,K.G.;Kasibhatla,B.A nonspecific phosphotyrosine phosphatase inhibitor,bis(maltolato)oxovanadium(Ⅳ),improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats.Exp.Biol.Med.2005,230(3),207-216.
    [11]Crans,D.C.;Smee,J.J.;Gaidamauskas,E.;Yang,L.Q.The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds.Chem.Rev.2004,104(2),849-902.
    [12]Rehder,D.Biological and medicinal aspects of vanadium.Inorg.Chem.Commun.2003,6(5),604-617.
    [13]Shechter,Y.;Goldwaser,I.;Mironchik,M.;Fridkin,M.;Gefel,D.Historic perspective and recent developments on the insulin-like actions of vanadium;toward developing vanadium-based drugs for diabetes.Coord.Chem.Rev.2003,237(1-2), 3-11.
    [14]Li,M.;Ding,W.J.;Baruah,B.;Crans,D.C.Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium(Ⅳ) J.Inorg.Biochem.2008,102,1846-1853.
    [15]Thompson,K.H.;Orvig,C.Vanadium in diabetes:100 years from Phase 0 to Phase I.J.Inorg.Biochem.2006,100(12),1925-1935.
    [16]Noblia,P.;Baran,E.J.;Otero,L.;Draper,P.;Cerecetto,H.;Gonzalez,M.;Piro,O.E.;Castellano,E.E.;Inohara,T.;Adachi,Y.;Sakurai,H.;Gambino,D.New vanadium(ⅴ) complexes with salicylaldehyde semicarbazone derivatives:Synthesis,characterization,and in vitro insulin-mimetic activity - Crystal structure of [(VO2)-O-V(salicylaldehyde semicarbazone)].Eur.J.Inorg.Chem.2004,(2),322-328.
    [17]Crans,D.C.;Smee,J.J.Vanadium.Compr.Coord.Chem.2004,Ⅱ4:175-239.
    [18]Ghosh,T.;Bhattacharya,S.;Das,A.;Mukherjee,G.;Drew,M.G.B.Synthesis,structure and solution chemistry of mixed-ligand oxovanadium(Ⅳ) and oxovanadium(Ⅴ) complexes incorporating tridentate ONO donor hydrazone ligands.Inorg.Chim.Acta 2005,358(4),989-996.
    [19]Thompson,K.H.;Orvig,C.Design of vanadium compounds as insulin enhancing agents.Dalton Trans.2000,(17),2885-2892.
    [20]Mukherjee,R.;Dormay,E.G.;Radomski,M.A.;Miller,C.;Redfern,D.A.;Gericke,A.;Damron,D.S.;Brasch,N.E.Vanadium-vitamin B-12 bioconjugates as potential therapeutics for treating diabetes.Chem.Commun.2008,(32),3783-3785.
    [21]Peters,K.G.;Davis,M.G.;Howard,B.W.;Pokross,M.;Rastogi,V.;Diven,C.;Greis,K.D.;Eby-Wilkens,E.;Maier,M.;Evdokimov,A.;Soper,S.;Genbauffe,F.Mechanism of insulin sensitization by BMOV(bis maltolato oxo vanadium);unliganded vanadium(VO4) as the active component.J.Inorg.Biochem.2003,96(2-3),321-330.
    [22]Huyer,G.;Liu,S.,Kelly,J.;Moffat,J.;Payette,P.;Kennedy,B.;Tsaprailis,G.;Gresser,M.J.;Ramachandran,C.Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate.J.Biol.Chem.1997,272(2),843-851.
    [23]Nxumalo,F.;Glover,N.R.;Tracey,A.S.Kinetics and molecular modelling studies of the inhibition of protein tymsine phosphatases by N,N-dim.ethylhydroxylamine complexes of vanadium(Ⅴ).J.Biol.Inorg.Chem.1998,3(5),534-542.
    [24]Clague,M.J.;Keder,N.L.;Butler,A.Biomimics of vanadium bromoperoxidase:Vanadium(Ⅴ)-Schiff base catalyzed oxidation of bromide by hydrogen peroxide.Inorg.Chem.1993,32,4754-4761.
    [25]Dickeson,J.E.;Summers,L.A.Derivatives of 1,10-Phenanthroline-5,6-quinone Aus.J.Chem.1970,23(5),1023-1027.
    [26]Amouyal,E.;Homsi,A.;Chambron,J.C.;Sauvage,J.P.Synthesis and study of a mixed-ligand ruthenium(Ⅱ) complex in its ground and excited states:bis(2,2-bipyridine)(dipyrido[3,2-a:2',3'-c]phenazine-N~4N~5)ruthenium(Ⅱ).J.Chem.Soc.,Dalton Trans.1990,(6),1841-1845.
    [27]Arancibia,A.;Concepcion,J.;Daire,N.;Leiva,G.;Leiva,A.M.;Loeb,B.;Del Rio,R.;Diaz,R.;Francois,A.;Saldivia,M.Electronic effects of donor and acceptor substituents on dipyrido(3,2-a:2',3'-c) phenazine(dppz).J.Coord.Chem.2001,54(3-4),323-336.
    [28]Sheldrick,G.M.Correction Software,University of Gotingen,Germany 1996.
    [29]Sheldrick,G.M.Program for the Solution of Crystal Structure,University of Gotingen,Germany 1997.
    [30]Sheldriek,G.M.Program for the Refinement of Crystal Structure,University of Gotingen,Germany 1997.
    [31]Sheldrick,G.M.SHELXTL/PC.Version 5.1.Bruker AXS Inc.,Madison,Wisconsin,USA 1999.
    [32]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Montgomery,J.A.;Vreven,J.T.;Kudin,K.N.;Burant,J.C.;Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.;Scalmani,G.;Rega,N.;Petersson,G.A.;Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma,K.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.; Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.;Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.;Gonzalez,C.;Pople,J.A.Gaussian 03,Revision E.01,Gaussian,Inc.,Wallingford CT 2004.
    [33]Hay,P.J.;Wadt,W.R.Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg.J.Chem.Phys.1985,82,270-283.
    [34]Hay,P.J.;Wadt,W.R.Ab initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi.J.Chem.Phys.1985,82,284-298.
    [35]Hay,P.J.;Wadt,W.R.Ab initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals.J.Chem.Phys.1985,82,299-310.
    [36]Liu G.;Szczepankiewicz B.G.;Pei Z.H.;Janowich D.A.;Xin Z.L.;Hadjuk P.J.;Abad-Zapatero C.;Liang H.;Hutchins C.W.;Fesik S.W.;Ballaron S.J.;Stashko M.A.;Lubben T.;Mika A.K.;Zinker B.A.;Trevillyan J.M.;Jirousek M.R.Discovery and Structure-Activity Relationship of Oxalylarylaminobenzoic Acids as Inhibitors of Protein Tyrosine Phosphatase 1B J.Med.Chem.2003,46,2093-2103.
    [37]Gans,P.;Vaeca,A.;Sabatini,A.Superquad - an Improved General Program for Computation of Formation-Constants from Potentiometric Data J.Chem.Soc.,Dalton Trans.1985,1195-1200.
    [38]Moghimi,A.;Alizadeh,R.;Shokrollahi,A.;Aghabozorg,H.;Shamsipur,M.;Shockravi,A.First Anionic 1,10-Phenanthroline-2,9-dicarboxylate Containing Metal Complex Obtained from a Novel 1:1 Proton-Transfer Compound:Synthesis,Characterization,Crystal Structure,and Solution Studies.Inorg.Chem.2003,42,1616-1624.
    [39]Martell,A.E.;Chaberek,S.;Jr.;;Courtney,R.C.;Westerback,S.;Hyytiainen,H.Hydrolytic Tendencies of Metal Chelate Compounds.I.Cu(I1) Chelates.J.Am.Chem.Soc.1957,79,3036-3041.
    [40]Henry,R.P.;Mitchell,P.C.H.;Prue,J.E.Hydrolysis of Oxovanadium(Iv) Ion and Stability of Its Complexes with 1,2-Dihydroxybenzenato(2-) Ion J.Chem.Soc.,Dalton Trans.1973,1156-1159.
    [41]Davies,C.W.The extent of dissociation of salts in water.Part Ⅷ.An equation for the mean ionic activity coefficient of an electroltye in water,and a revision of the dissociation constants of some sulphates J.Chem.Soc.1938,2093-2098.
    [42]Chruscinska,E.L.;Sanna,D.;Garribba,E.;Micera,G.Potentiometric,spectroscopic,electrochemical and DFT characterization of oxovanadium(Ⅳ) complexes formed by citrate and tartrates in aqueous solution at high ligand to metal molar ratios:the effects of the trigonal bipyramidal distortion in bis-chelated species and biological implications.Dalton Trans.2008,4903-4916.
    [43]Tong,Y.;Guo,M.L.Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogen Pseudomonas aeruginosa.J.Biol.Inorg.Chem.2007,12(6),735-750.
    [44]Zhu,Z.C.;Sun,M.;Zhang,X.Y.;Liu,K.X.;Shi,D.L.;Li,J.D.;Su,J.Q.;Xu,Y.C.;Fu,X.Q.Expression and characterization of catalytic domain of T cell protein tyrosine phosphatase(Delta TC-PTP)-Immunohistochemical study of Delta TC-PTP expression in non-small cell lung carcinomas.Chem.Res.Chinese U.2007,23,(3),289-296.
    [45]Li,W.N.;Zhuang,Y.;Li,H.Purification and Characterization of the Catalytic Domain of Protein Tyrosine Phosphatase SHP-1 and the Preparation of Anti-Delta SHP-1 Antibodies Chem.Res.Chinese U.2008,24,592-596.
    [46]Montalibet,J.;Skorey,K.I.;Kennedy,B.P.Protein tyrosine phosphatase:enzymatic assays.Methods 2005,35(1),2-8.
    [47]李明霞.α-氨基膦酸配合物的合成、表征及对PTP-1B酶抑制活性研究.山西大学硕士学位论文,2008.
    [48]Ember,B.;Kamenecka,T.;LoGrasso,P.Kinetic mechanism and inhibitor characterization for c-jun-N-terminal kinase 3 alpha 1.Biochemistry 2008,47(10),3076-3084.
    [49]Mondal,S.;Rath,S.P.;Rajak,K.K.;Chakravorty,A.A Family of (N-Salicylidene-amino acidato)vanadate Esters Incorporating Chelated Propane-1,3-diol and Glycerol:Synthesis,Structure,and Reaction.Inorg.Chem. 1998,37(8),1713-1719.
    [50]沈同,王镜岩.生物纪学.北京,高等教育出版社,1990.
    [51]Maurya,M.R.;Kumar,A.;Ebel,M.;Rehder,D.Synthesis,characterization,reactivity,and catalytic potential of model vanadium(Ⅳ,Ⅴ) complexes with benzimidazole-derived ONN donor ligands.Inorg.Chem.2006,45(15),5924-5937.
    [52]Root,C.A.;Hoeschele,J.D.;Cornman,C.R.;Kampf,J.W.;Pecoraro,V.L.Structural and spectroscopic characterization of dioxovanadium(Ⅴ) complexes with asymmetric Schiffbase ligands.Inorg.Chem.1993,32(18),3855-3861.
    [53]Amin,S.S.;Cryer,K.;Zhang,B.;Dutta,S.K.;Eaton,S.S.;Anderson,O.P.;Miller,S.M.;Reul,B.A.;Brichard,S.M.;Crans,D.C.Chemistry and Insulin-Mimetic Properties of Bis(acetylacetonate)oxovanadium(Ⅳ) and Derivatives.Inorg.Chem.2000,39(3),406-416.
    [54]Sasmal,P.K.;Patra,A.K.;Nethaji,M.;Chakravarty,A.R.DNA cleavage by new oxovanadium(Ⅳ) complexes of N-salicylidene alpha-amino acids and phenanthroline bases in the photodynamic therapy window.Inorg.Chem.2007,46(26),11112-11121.
    [55]Zamian,J.R.;Dockal,E.R.;Castellano,G.;Oliva,G.Synthesis and characterization of[n,n'-ethylenebis(3-ethoxysalicylideneaminato)]oxovanadium(ⅳ).Polyhedron 1995,14(17-18),2411-2418.
    [56]Marques,A.P.D.;Dockal,E.R.;Skrobot,F.C.;Rosa,I.L.V.Synthesis,characterization and catalytic study of[N,N'-bis(3-ethoxysalicylidene)-m-xylylene diamine]oxovanadium(Ⅳ) complex.Inorg.Chem.Commun.2007,10,255-261.
    [57]Westland,A.D.;Tarafder,M.T.H.Novel peroxo complexes of uranium containing organic ligands.Inorg.Chem.1981,20(11),3992-3995.
    [58]Bhattacharya,S.;Ghosh,T.,Synthesis,spectral and electrochemical studies of alkoxo-bonded mixed-ligand oxovanadium(Ⅳ) and oxovanadium(Ⅴ) complexes incorporating tridentate ONO donor azophenolalcoholate/aldiminealcoholates.Transit.Metal Chem.2002,27(1),89-94.
    [59]Soliman,A.A.;Mohamed,G.G.Study of the ternary complexes of copper with salicylidene-2-aminothiophenol and some amino acids in the solid state.Thermochim.Acta 2004,421(1-2),151-159.
    [60]Raman,N.;Raja,S.J.;Joseph,J.;Raja,J.D.Molecular designing,structural elucidation,and comparison of the cleavage ability of oxovanadium(Ⅳ) Schiff base complexes.Russ.J.Caord.Chem.2007,33(1),7-11.
    [61]Mathieu,M.;Van Der Voort,P.;Weckhuysen,B.M.;Rao,R.R.;Catana,G.;Schoonheydt,R.A.;Vansant,E.F.Vanadium-incorporated MCM-48 materials:Optimization of the synthesis procedure and an in situ spectroscopic study of the vanadium species.J.Phys,Chem.B 2001,105(17),3393-3399.
    [62]Pessoa,J.C.;Cavaco,I.;Correia,I.;Costa,D.;Henriques,R.T.;Gillard,R.D.Preparation and characterisation of new oxovanadium(Ⅳ) Schiff base complexes derived from salicylaldehyde and simple dipeptides.Inorg.Chim.Acta 2000,305(1),7-13.
    [63]Ghosh,T.;Bandyopadhyay,C.;Bhattacharya,S.;Mukherjee,G.Synthesis,spectral and electrochemical studies of mixed-ligand oxovanadium(Ⅳ) and oxovanadium(Ⅴ)complexes incorporating the tridentate ONO donor Schiff base derived from acetylacetone and benzoylhydrazine.Transit.Metal Chem.2004,29(4),444-450.
    [64]Dutta,S.K.;Kumar,S.B.;Bhattacharyya,S.;Tiekink,E.R.T.;Chaudhury,M.Intramolecular electron transfer in(BzImH)[(LOV)_2O](H_2L=S-Methyl 3-((2-Hydroxyphenyl)methyl)dithiocarbazate):a novel -oxo dinuclear Oxovanadium (Ⅳ/Ⅴ) Compound with a Trapped-Valence(V_2O_3)~(3+) Core.Inorg.Chem.1997,36(22),4954-4960.
    [65]Stepanenko,I.N.;Krokhin,A.A.;John,R.O.;Roller,A.;Arion,V.B.;Jakupec,M.A.;Keppler,B.K.Synthesis,structure,spectroscopic properties,and antiproliferative activity in vitro of novel osmium(Ⅲ) complexes with azole heterocycles.Inorg.Chem.2008,47(16),7338-7347.
    [66]Wild,S.;Roglic,G.;Green,A.;Sicree,R.;King,H.Global prevalence of diabetes-Estimates for the year 2000 and projections for 2030.Diabetes Care 2004,27(5),1047-1053.
    [67]Jayasekhar,P.;Rao,S.B.,Santhakumari,G.Synthesis and anti-inflammatory activity of Schiff base of mesalazine.Indian J.Pharm.Sei.1997,59(1),8-12.
    [68]陈玉红,丁克强,王庆飞,崔敏,崔维真,童汝亭.席夫碱应用研究新进展.河北师范大学学报(自然科学),2003,27(1),71-74.
    [69]赵文岩,牛雪平,张蕊.新型水杨醛-芳胺席夫碱化合物的合成及生物活性.中国药学杂志,2005,40(1),63-66.
    [70]Zielek,M.;Filipczak,K.;Maciejewski,A.Spectroscopic and photophysical properties of salicylaldehyde azine(SAA) as a photochromic Schiff base suitable for heterogeneous studies.Chem.Phys.Lett.2008,464,181-186.
    [71]Maurya,M.R.;Kumar,A.;Bhat,A.R.;Azam,A.;Bader,C.;Rehder,D.Dioxo-and oxovanadium(Ⅴ) complexes of thiohydrazone ONS donor ligands:Synthesis,characterization,reactivity,and antiamoebic activity.Inorg.Chem.2006,45,1260-1269.
    [72]Maurya,R.C.;Rajput,S.Oxovanadium(Ⅳ) complexes of bioinorganic and medicinal relevance:Synthesis,characterization and 3D molecular modeling and analysis of some oxovanadium(Ⅳ) complexes involving the O,N-donor environment of pyrazolone-based sulfa drug Schiff bases.J.Mol.Struct.2006,794,24-34.
    [73]Baseer,M.A.;Jadhav,V.D.;Phule,R.M.Synthesis and antibacterial activity of some new Schiffbases.Orien.J.Chem.2000,16(3),553-556.
    [74]Yasui,H.;Tamura,A.;Takino,T.;Sakurai,H.Structure-dependent metallokinetics of antidiabiabetic vanadyl-picolinate complexes in rats:studies on solution structure,insulinomimetic activity,and metallokinetics.J.Inorg.Biochem.2002,91,327-338
    [76]Butler,A.;Carter-Franklin,J.N.The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products.Nat.Prod.Rep.2004,21,180-188.
    [75]Khan,M.I.;Cevik,S.;Doedens,R.J.Inorganic-organic hybrids derived from oxovanadium sulfate motifs:synthesis and characterization of [V~ⅣO(μ_3-SO_4)(2,2'-bpy)]_∞.Chem.Commun.2001,1930.
    [1]Dubyak,G.R.;Kleinzeller,A.The insulin-mimetic effects ofvanadate in isolated rat adipoeytes-Dissociation from effects of vanadate as a(Na+-K+)ATPase inhibitor J.Biol.Chem.1980,255,5306-5312.
    [2]Heyliger,C.E.;Tahiliani,A.G.;McNeill,J.H.Effect of vanadate on elevated blood-glucose and depressed cardiac-performance of diabetic rats Science 1985,227(4693),1474-1477.
    [3]唐玲,张英,沈竹芳,谢明智,钒类化合物的抗糖尿病作用,中国临床药理学杂志,2001,17(4),298-302.
    [4]Ganguly,R.;Sreenivasulu,B.;Vittal J.J.Amino acid-containing reduced Schiff bases as the building blocks for metallasupramolecular structures.Coord.Chem.Rev.2008,252,1027-1050
    [5]Soliman,A.A.;Linert,W.Structural Features of ONS-Donor Salicylidene Schiff Base Complexes.Monatsh.Chem.2007,138,175-189
    [6]Cozzi,P.G.Metal-Salen Schiff base complexes in catalysis:practical aspects.Chem.Soc.Rev.2004,33,410-421.
    [7]Yamada,S.;Kuma,H.;Yamanouchi,K.Synthesis and properties of cobalt complexes with Schiff bases obtained from pyridoxal and amines.Inorg.Chim.Acta.1974,10,151-155.
    [8]Taha,A.,El-Shetary,S,;Linert,W.Metal chelates of triazine-Schiff-base:Complex formation of 3-(α-phenyl) ethylidenehydrazino-5,6-diphenyl-1,2,4- triazine with copper(Ⅱ).Monatsh.Chem.1993,124,135-147.
    [9]H Yasui,A Tamura,et al.Structure-Dependent Metallokinetics of Antidiabetic Vanadyl-Picolinate Complexes in Rats:Studies on Solution Structure,Insulin Mimetic Activity and Metallokinetics.J.Inorg.Biochem.,2002,91(1):327-338.
    [10]T Sasagawa,Y Yoshikawa,et al.Bis(6-Ethylpicolinato) Oxovanadium(Ⅳ) Complex with Normoglycemic Activity in KK-A~y Mice.J.Inorg.Biochem.,2002,88(1):108-112.
    [11]Wang,X.;Zhang,X.M.;Liu,H.X.Synthesis,properties and structure of vanadium(Ⅳ) Schiff base complex(VO)[salphen]·CH_3CN.Polyhedron 1995,14(2),293-296.
    [12]Gong,Y.;Hu,C.W.;Li,H.;Tang,W.;Huang,K.L.;Hou,W.B.Synthesis,crystal structure and calcination of three novel complexes based on 2-aminopyridine and polyoxometalates.J.Mol.Struc.2006,784,228-238.
    [13]Bhattacharya,S.;Ghosh,T.Synthesis,spectral and electrochemical studies of alkoxo-bonded mixed-ligand oxovanadium(Ⅳ) and oxovanadium(Ⅴ) complexes incorporating tfidentate ONO donor azophenolalcoholate/aldiminealcoholates.Transit Metal Chem.2002,27,89-94.
    [14]黎中良,黄志伟,卿玲,双-(5-溴水杨醛)缩邻苯二胺双席夫碱的合成研究.化工时刊,2006,20(11),43-45.
    [15]Cornman,C.R.;Zovinka,E.P.;Boyajian,Y.D.;Geiser-Bush,K.M.;Boyle,P.D.;Singh,P.Structural and EPR studies of vanadium complexes of deprotonated amide ligands:effects on the ~(51)V hyperfine coupling constant,Inorg.Chem.1995,34,4213-4219.
    [16]Aureliano,M.;Crans,D.C.Decavanadate(V_(10)O_(28)~(6-)) and oxovanadates oxametalates with many biological activities.J.Inorg.Biochem.2009,103,536-546.
    [1]Lynch,C.J.;Patson,B.J.;Goodman,S.A.;Trapolsi,D.;Kimball,S.R.Am.J. Physiol.Endocrinol.Metab.2001,281,E25.
    [2]Adachi,Y.;Yoshida,J.;Kodera,Y.A new insulinmimetic bis(allixinato) zinc(Ⅱ)complex:structure activity relationship of zinc(Ⅱ) complexes.Jr.Biol.Inorg.Chem.2004,9(7),885-895.
    [3]Al-Saleh,E.;Nandakumaran,M.;A1-Rashdan,I.Al-Harmi,J.;Al-Shammari,M.Maternal-foetal status of copper,iron,molybdenum,selenium and zinc in obese gestational diabetic pregnancies.Acta Diabetologica,2007,44(3),106-113
    [4]李卫娟,胡小炜,周丽丽.2型糖尿病患者血清锌、铜水平分析.上海预防医学杂志,2005,17(11),534-543.
    [5]Kazi,T.G;Afridi,H.I.;Kazi,N.;Jamali,M.K.;Main,M.B.;Jalbani,N.;Kandhro,G.A.Copper,chromium,manganese,iron,nickel,and zinc levels in biological samples of diabetes mellitus patients.Biol.Trace Elem.Rex.2008,122(1),1-18.
    [6]Sorenson,J.R.J.Copper complexes offer a physiological approach to treatment of chronic diseases.Progr.Med.Chem.1989,26,437-568
    [7]Yasumatsu,N.;Yoshikawa,Y.;Adachi,Y.;Sakurai,H.Antidiabetic copper(Ⅱ)-picolinate:Impact of the first transition metal in the metallopicolinate complexes.Bioorg.Med.Chem.2007,15(14),4917-4922.
    [8]Masad,A.;Hayes,L.;Tabner,B.J.;Turnbull,S.;Cooper,L.J.;Fullwood,N.J.;German,M.J.;Kametani,F.;E1-Agnaf,O.M.A.;Allsop,D.Copper-mediated formation of hydrogen peroxide from the amylin peptide:A novel mechanism for degeneration of islet cells in type-2 diabetes mellitus? Febs Lett.2007,581(18),3489-3493.
    [9]Cooper,G.J.;Young,A.A.;Gamble,G.D.;Occleshaw,C.J.;Dissanayake,A.M.;Cowan,B.R.;Baker,J.R.;Doughty,R.N.Hyperglycemia-induced disorder of cardiac copper regulation is a newly-recognised mechanism of lett ventricular disease in diabetes.J.Cardiac failure.2006,12(6),S71-S71.
    [10]Chen,X.Z.;Niu,Y.F.;Liu,W.P.;Li,L.;Wang,Y.T.;Li,Y.R.;Gao,W.G.;Yu,Y.Synthesis and anti-hyperglycemic effect of copper(Ⅱ) bis(2-substituted3-hydroxy-4-pyronate).Acta Chim.Sinica 2006,64(9),879-883.
    [11]Gong,D.;Lu,J.;Chen,X.;Reddy,S.;Crossman,D.J.;Glyn-Jones,S.;Choong,Y.-S.;Kennedy,J.;Barry,B.;Zhang,S.;Chart,Y.-K.;Ruggiero,K.;Phillips,A.R. J.;Cooper,G.J.S.A copper(Ⅱ)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria,and suppresses pathogenic TGF-β activation in the kidneys of rats used as a model of diabetes.Diabetologia 2008,51,1741-1751.
    [12]朱苗力,卢丽萍,杨频.Zn~(2+),Cu~(2+)及Ni~(2+)对二甲双胍的配合作用及降血糖活性研究.化学学报 2004,62(8),783-788.
    [13]Kim,J.H.;Cho,H.;Ryu,S.E.;Choi,M.U.Effects of Metal Ions onthe Activity of Protein Tyrosine Phosphatase VHR:Highly Potent and Reversible Oxidative Inactivation by Cu~(2+) Ion.Arch.Biochem.Biophys.2000,382(1) 72-80.
    [14]Vanco,J.;Marek,J.;Travnicek,Z.;Racanska,E.;Muselik,J.;Svajlenova,O.Synthesis,structural characterization,antiradical and antidiabetic activities of copper(Ⅱ) and zinc(Ⅱ) Schiff base complexes derived fi'om salicylaldehyde and beta-alanine.J.Inorg.Biochem.2008,102(4),595-605.
    [15]Han,Q.F.;Jian,F.F.;Lu,L.D.;Yang,X.J.;Wang,X.Structure and characterization of bis(N-p-chloro-phenyl-salicylideneaminate) Schiff base copper(Ⅱ)complex:Cu[N-p-Cl-Ph-Sal]_2.J.Chem.Cystal.2002,31(5),247-250.
    [16]Liu,X.L.;Chen,H.L.;Miao,F.M.双-[N-(4-取代苯基)-水杨醛亚胺]合锌(Ⅱ)的晶体结构.有机化学,1992,(5),522-526.
    [17]姚淑琴.水杨醛缩苯甲酸Schiff碱配合物的合成与表征.山西大学高校教师人员申请硕士学位论文.2006.
    [18]建方方,李琳,孙萍萍,肖海连.N-邻羟苄亚基苯胺Schiff碱铜配合物的合成、结构和性能表征.无机化学学学报 2004,20(11),1295-1298
    [19]Colpas,G.J.;Hamstra,B.J.;Kampf,J.W.;Pecoraro,V.L.,Functional models for vanadium haloperoxidase:Reactivity and mechanism of halide oxidation.J.Am.Chem.Soc.1996,118,(14),3469-3478.
    [20]Xie,Y.;Wang,F.;Li,F.F.;Li,M.S.;Deng,L.L.Efects of binuclear copper(Ⅱ)threonine complex on blood glucose,lipids and protection of the hearts and kidneys in diabetic mice.J.Chin.Pharm.Sci,2007,16,14-17.
    [21]Anderson,O.P.Crystal and molecular structure of tris-(1,10-phenanthroline)eopper(Ⅱ) perchlorate.J.Chem.Soc.Dalton Trans.1973,1237-1241.
    [1]石宁.两种DOK蛋白PTB结构域晶体结构及其相关功能的研究.中国协和医科大学博士学位论文.2003.
    [2]刘勇.酵母蛋白Doal(Ufd3)的原核表达、纯化、晶体生长及结构生物学研究.西北大学硬士学位论文.2008.
    [3]Barford,D;Flint,A.J.;Tonks,N.K.Crystal structure of human protein tyrosine phosphatase 1B,Science 1994,263,1397-1404
    [4]Potterton,E.;Briggs,P.;Turkenbutg,M.;Dodson,E.A graphical user interface to the CCP4 program suite.Acta Cryst.2003,D59,1131-1137.
    [5]Collaborative Computational Project,Number 4.The CCP4 suite:Programs for protein Crystallography.Acta Cryst.1994,D50,760-763.
    [6]Emsley,P.;Cowtan,K.Coot:model-building tools for molecular graphics.Acta Cryst.2004,D60,2126-2132..
    [7]Laskowski,R.A.;Macarthur,M.W.;Moss,D.S.;Thornton,J.M.PROCHECK:a program to check the sterochemical quality of protein structures.J.Appl.Crystallogr.1993,26,283-291.
    [8]Peters,K.G..;Davis,M.G.,;Howard,B.W.;Pokross,M.;Rastogi,V.;Diven,C.;Greis,K.D.;Eby-Wilkens,E.;Maier,M.;Evdokimov,A.;Soper,S.;Genbauffe,F.Mechanism of insulin sensitization by BMOV(bis maltolato oxo vanadium);unliganded vanadium(VO_4) as the active component.J.Inorg.Biochem.2003,96,321-330.
    [9]Montfort,R.L.M.Van;Congreve,M.;Tisi,D.;Carr,R.;Jhoti,H.Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.Natrure 2003,423,773-777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700