分子模拟方法优化脂质纳米给药系统结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构脂质载体(nanostructured lipid carriers,NLC)是不同结构的固体脂质和液体脂质混合作为载体的新一代脂质纳米给药系统。NLC具有的特殊结构可以提高其载药能力和制剂的稳定性,能有效的控制药物的释放。NLC是结构复杂的多相体系,其配方组成以及制备工艺过程决定了NLC的微观结构进而影响着它的最终性能。本研究综合应用分子模拟、理论分析以及实验表征的手段,从分子动力学和介观动力学角度阐述了脂质纳米粒成形的机理,考察了NLC配方组成和制备工艺条件对体系微观结构的影响,把握了复杂结构的NLC给药体系的结构与性能的变化规律,建立起宏观条件-微观结构-药剂学性能的定量关系,从而达到对NLC给药系统的优化设计的目的。
     在NLC给药系统中,药物与载体以及脂质载体之间的相容性是决定NLC的微观和介观结构,载药能力,稳定性等药剂学性质的关键因素。本研究采用Flory-Huggins理论结合分子动力学模拟的方法,模拟计算药物与载体的溶解度参数,预测药物与不同载体以及不同载体之间的共混性能,从而筛选出理想的脂质载体及其配比用量。
     应用耗散粒子动力学(dissipative particle dynamics,DPD)介观模拟方法探讨了脂质纳米给药系统的配方组成和制备工艺对其介观结构与性能的影响。DPD模拟可以直观地反映实验测定难以展现的过程和现象,而且有效地阐述脂质纳米给药系统的介观结构和成形机理,定量地预测实验结果,对处方组成和工艺参数进行筛选和优化,为实验研究奠定了理论基础。
     在分子模拟筛选实验的基础上,采用D-最优混料试验设计方法进行多指标的同步优化脂质纳米给药体系,试验点数较少、结果可靠、预测精度高。对最优化的NLC进行药剂学评价,实验结果较好地吻合了分子模拟的理论预测,进一步证明了分子模拟预测的准确性和可靠性。
     本研究应用分子模拟技术进行脂质纳米给药体系的理论研究和设计优化,减少了反复的探索实验,缩短研究周期,节省大量的研究费用,加快药物制剂研究和开发的进程。分子模拟技术应用在药剂学领域中具有很强的实用价值,有助于促进药物制剂新技术的发展,为药剂学理论的研究开辟了新的研究方法。
Nanostructured lipid carriers (NLC) composed of a solid lipid matrix with a certain content of liquid lipid are a new generation of lipid nanoparticle delivery system. The special structure of NLC improves its drug-loading capacity and stability, and effectively controls the release of drugs. NLC are complex multi-phase systems, whose composition and preparation parameters impose effect on their properties by means of changing their nanostructure. In this study, molecular simulation, theoretical analysis and experimental characterization are integratively used to expound the forming mechanism of lipid nanoparticles from molecular dynamics and mesoscopic dynamics, the effects on their nanostructures imposed by their composition and preparation parameters are studied, the changes of NLC structure and properties are grasped, the quantitative relationship of macroeconomic conditions, nanostructures and pharmaceutical performance are established.
     In NLC drug delivery systems, the compatibility of drug and lipid carriers is the key element to determine the structure of microscopic and mesoscopic, drug-loading capacity and stability. In this study, molecular dynamics simulation method combining Flory-Huggins theory is used to calculate solubility parameter of drug and carriers, predict the blends performance of drug and different carriers, and then screen out the ideal ratio of the amount of lipid carriers.
     The nanostructures and properties of NLC are further investigated with Dissipative Particle Dynamics (DPD) simulation technique. DPD simulation technique can show the processes and phenomena which are difficult to be displayed by experiments, and can effectively analyze mesoscopic structure and forming mechanism of lipid nanoparticle drug delivery system. Their composition and preparation parameters are screened and optimized by mesoscopic simulation and theoretical analysis. DPD simulation technique cannot only ensure qualitatively analysis of the experimental phenomena, but also quantitatively forecast of experimental results.
     In the basis of the molecular modeling experiments, D-optimal mixture experimental design is used to optimize synchronously NLC drug delivery system by multiple indicator, which has fewer test points, reliable results, and high-precision forecast. Based on the evaluation of optimal NLC, the experimental results better match the theoretical prediction of molecular simulation, which further proves the accuracy and reliability of molecular simulation forecasts.
     In this study, molecular simulation technology is used for theoretical research and designing optimization of lipid nanoparticle system, which can reduce repeated experiments, shorten the research cycle, save a lot of research costs, speed up the pharmaceutical process of research and development. Molecular simulation techniques used in the pharmaceutical field have a strong practical value, which contribute to the development of new pharmaceutical techniques and theories.
引文
[1]杨小震,分子模拟与高分子材料,北京:科学出版社,2003,1~11
    [2]Roe RJ, Computer Simulation of Polymers, NJ: Prentice Hall Englewood Cliffs, 1991, 12~19
    [3]杨小震,高分子的计算机模拟研究进展,计算机与应用化学,1999,16 (5):321~324
    [4]Allen MP, Tildesley DJ, Computer Simulation of Liquids, USA: Oxford University Press, 1989, 22~45
    [5]Leach AR, Molecular Modelling: Principles and Applications, USA: Prentice Hall, 2001, 25~36
    [6]Holtje HD, Folkers G, Beier T, et al., Molecular Modeling: Basic Principles and Applications, Weinheim: WILEY-VCH Verlag GmbH & Co, 2000, 15~35
    [7]Frenkel D, Smit B, Understanding Molecular Simulation, UK: Academic Press, 2001, 600~610
    [8]陈鹏飞,张丽华,高分子溶液中分子模拟技术的研究进展,中国胶粘剂,2007,16 (7):14~18
    [9]曹斌,高金森,徐春明,分子模拟技术在石油相关领域的应用,化学进展,2004,16 (2):291~298
    [10]周涵,任强,分子模拟技术在石油化工领域的应用进展,计算机与应用化学,2006,23 (1):15~19
    [11]陈正隆,徐为人,汤立达,分子模拟的理论与实践,北京:化学工业出版社,2007,1~10
    [12]平其能,纳米药物和纳米载体系统,中国新药杂志,2002,11 (1):42~48
    [13]陆彬,药物新剂型与新技术,北京:人民卫生出版社, 1998, 168~210
    [14]高文远,贾伟,药物控释新剂型,北京:化学工业出版社,2005,68~194
    [15]Birrenbach G, Speiser PP, Polymerized micelles and their use as adjuvants in Immunology, Journal of Pharmaceutical Sciences, 1976, 65 (12) : 1763~1766
    [16]Slomkowski S, Biodegradable Nano- and Microparticles as Carriers of Bioactive Compounds, Acta Poloniae Pharmaceutica, 2006, 63 (5) : 351~358
    [17]Jain R, Shah NH, Malick AW, et al. Controlled Drug Delivery by Biodegradable Poly(Ester) Devices: Different Preparative Approaches, Drug Development and Industrial Pharmacy, 1998, 24 (8) : 703~727
    [18]Kas HS, Chitosan: Properties, Preparations and Application to MicroparticulateSystems, Journal of Microencapsulation, 1997, 14 (6) : 689~711
    [19]Jiang W, Gupta RK, Deshpande MC, et al, Biodegradable Poly(Lactic-Co-Glycolic Acid) Microparticles for Injectable Delivery of Vaccine Antigens, Advanced Drug Delivery Reviews, 2005, 57 (3) : 391~395
    [20]Torchilin VP, Liposomes as Targetable Drug Carriers, Critical Reviews in Therapeutic Drug Carrier Systems, 1985, 2 (1) : 65~115
    [21]Samad A, Sultana Y, Aqil M, Liposomal Drug Delivery Systems: An Update Review, Current Drug Delivery, 2007, 4 (4) : 297~305
    [22]Senior JH, Fate and Behavior of Liposomes in Vivo: A Review of Controlling Factors, Critical Reviews in Therapeutic Drug Carrier Systems, 1987, 3 (2) : 123~193.
    [23]Janknegt R, De Marie S, Bakker-Woudenberg IA, et al. Liposomal and Lipid Formulations of Amphotericin B. Clinical Pharmacokinetics, Clinical Pharmacokinetics, 1992, 23 (4) : 279~291
    [24]Wissing SA, Kayser O, Müller RH, Solid Lipid Nanoparticles for Parenteral Drug Delivery, Advanced Drug Delivery Reviews, 2004, 56 (9) : 1257~1260
    [25]Mehnert W, Solid Lipid Nanoparticles: Production, Characterization and Applications, Advanced Drug Delivery Reviews, 2001, 47 (2) : 165~172
    [26]Hou D, Xie C, Huang K, et al. The Production and Characteristics of Solid Lipid Nanoparticles (SLN), Biomaterials, 2003, 24 (10) : 1781~1790.
    [27]Müller RH, Mader K, Gohla S, Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery-A Review of the State of the Art, European Journal of Pharmaceutics And Biopharmaceutics, 2000, 50 (1) : 161~167
    [28]Müller RH, Ruhl D, Runge S, et al. Cytotoxicity of Solid Lipid Nanoparticles as a Function of the Lipid Matrix and the Surfactant, Pharmaceutical Research, 1997, 14 (4) : 458~466
    [29]Müller RH, Keck CM, Challenges and Solutions for the Delivery of Biotech Drugs-A Review of Drug Nanocrystal Technology and Lipid Nanoparticles, Journal of Biotechnology, 2004, 113 (3) : 151~170
    [30]Müller RH, Radtke M, Wissing SA, Nanostructured Lipid Matrices for Improved Microencapsulation of Drugs, International Journal of Pharmaceutics, 2002, 242 (2) : 121~129
    [31]Müller RH, Petersen RD, Hommoss Aet al., Nanostructured Lipid Carriers (NLC) in Cosmetic Dermal Products, Advanced Drug Delivery Reviews, 2007, 59 (6) : 522~530
    [32]Olbrich C, Gessner A, Schroder W, et al. Lipid-Drug Conjugate Nanoparticles of the Hydrophilic Drug Diminazene-Cytotoxicity Testing and Mouse Serum Adsorption, Journal Of Controlled Release, 2004, 96 (3) : 425~435
    [33]Olbrich C, Gessner A, Kayser O, et al. Lipid-Drug-Conjugate (LDC) Nanoparticles as Novel Carrier System for the Hydrophilic Antitrypanosomal Drug Diminazenediaceturate, Journal of Drug Targeting, 2002, 10 (5) : 387~396
    [34]Gessner A, Olbrich C, Schroder W, et al. The Role of Plasma Proteins in Brain Targeting: Species Dependent Protein Adsorption Patterns On Brain-Specific Lipid Drug Conjugate (LDC) Nanoparticles, International Journal of Pharmaceutics, 2001, 214 (1-2) : 87~91
    [35]Manjunath K, Reddy JS, Venkateswarlu V, Solid Lipid Nanoparticles as Drug Delivery Systems, Methods and Findings in Experimental and Clinical Pharmacology, 2005, 27 (2) : 127~144
    [36]Radomska-Soukharev A, Stability of Lipid Excipients in Solid Lipid Nanoparticles, Advanced Drug Delivery Reviews, 2007, 59 (6) : 411~418
    [37]Müller RH, Keck CM, Challenges and Solutions for the Delivery of Biotech Drugs-A Review of Drug Nanocrystal Technology and Lipid Nanoparticles, Journal of Biotechnology, 2004, 113 (1-3) : 151~162
    [38]Mehnert W, Mader K, Solid Lipid Nanoparticles: Production, Characterization and Applications, Advanced Drug Delivery Reviews, 2001, 47 (2-3) : 165~196
    [39]Jenning V, Lippacher A, Gohla SH, Medium Scale Production of Solid Lipid Nanoparticles (SLN) by High Pressure Homogenization, Journal of Microencapsulation, 2002, 19 (1) : 1~10
    [40]Dingler A, Gohla S, Production of Solid Lipid Nanoparticles (SLN): Scaling Up Feasibilities, Journal of Microencapsulation, 2002, 19 (1) : 11~16
    [41]Wan F, You J, Sun Yet al., Studies On Peg-Modified Slns Loading Vinorelbine Bitartrate (I): Preparation and Evaluation in Vitro., International Journal Of Pharmaceutics, 2008.
    [42]Zur MA, Schwarz C, Mehnert W, Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery--Drug Release and Release Mechanism, European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45 (2) : 149~155
    [43]Illing A, Unruh T, Koch MH, Investigation On Particle Self-Assembly in Solid Lipid-Based Colloidal Drug Carrier Systems, Pharmaceutical Research, 2004, 21 (4) : 592~597
    [44]Bunjes H, Drechsler M, Koch MH, et al. Incorporation of the Model Drug Ubidecarenone Into Solid Lipid Nanoparticles., Pharmaceutical Research, 2001, 18 (3) : 287~293
    [45]Attama AA, Effect of Beeswax Modification On the Lipid Matrix and Solid Lipid Nanoparticle Crystallinity, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315 (1-3) : 189~195
    [46]Gokce EH, Sandri G, Bonferoni MC, et al. Cyclosporine a Loaded SLNs:Evaluation of Cellular Uptake and Corneal Cytotoxicity, International Journal of Pharmaceutics, 2008, 364 (1) : 76~86
    [47]Mei Z, Li X, Wu Q,et al. The Research On the Anti-Inflammatory Activity and Hepatotoxicity of Triptolide-Loaded Solid Lipid Nanoparticle, Pharmacological Research, 2005, 51 (4) : 345~351
    [48]Ye J, Wang Q, Zhou X, et al. Injectable Actarit-Loaded Solid Lipid Nanoparticles as Passive Targeting Therapeutic Agents for Rheumatoid Arthritis, International Journal of Pharmaceutics, 2008, 352 (1-2) : 273~279
    [49]Siekmann B, Westesen K, Investigations On Solid Lipid Nanoparticles Prepared by Precipitation in O/W Emulsions, European Journal of Pharmaceutics And Biopharmaceutics, 1996, 42 (2) : 104~109
    [50]Li XW, Lin XH, Zheng LQ, et al. Effect of Poly(Ethylene Glycol) Stearate On the Phase Behavior of Monocaprate/Tween80/Water System and Characterization of Poly(Ethylene Glycol) Stearate-Modified Solid Lipid Nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317 (1-3) : 352~359
    [51]Gasco MR, Method for Producing Solid Lipid Microspheres Having a Narrow Size Distribution, US: Patent 5250236, 1993
    [52]Quintanar-Guerrero D, Tamayo-Esquivel D, Ganem-Quintanar A, et al. Adaptation and Optimization of the Emulsification-Diffusion Technique to Prepare Lipidic Nanospheres, European Journal of Pharmaceutical Sciences, 2005, 26 (2) : 211~218
    [53]Trotta M, Debernardi F, Caputo O, Preparation of Solid Lipid Nanoparticles by a Solvent Emulsification-Diffusion Technique, International Journal of Pharmaceutics, 2003, 257 (1-2) : 153~160
    [54]Yang S, Zhu J, Lu Y, et al. Body Distribution of Camptothecin Solid Lipid Nanoparticles After Oral Administration, Pharmaceutical Research, 1999, 16 (5) : 751~757
    [55]Hou DZ, Xie CS, Huang KJ, et al. The Production and Characteristics of Solid Lipid Nanoparticles (SLNs), Biomaterials, 2003, 24 (10) : 1781~1785
    [56]Han F, Li S, Yin R, et al. Effect of Surfactants On the Formation and Characterization of a New Type of Colloidal Drug Delivery System: Nanostructured Lipid Carriers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315 (1-3) : 210
    [57]Olbrich C, Kayser O, Müller RH, Lipase Degradation of Dynasan 114 and 116 Solid Lipid Nanoparticles (SLN)-Effect of Surfactants, Storage Time and Crystallinity, International Journal Of Pharmaceutics, 2002, 237 (1-2) : 119~128
    [58]Asasutjarit R, Lorenzen S I, Sirivichayakul S, et al. Effect of Solid LipidNanoparticles Formulation Compositions On their Size, Zeta Potential and Potential for in Vitro pHIS-HIV-hugag Transfection, Pharmaceutical Research, 2007, 24 (6) : 1098~1107
    [59]Ahlin P, Kristl J, Optimization of Procedure Parameters and Physical Stability of Solid Lipid Nanoparticles in Dispersions, Acta Pharmaceutica, 1998, 48 (4) : 259~267
    [60]Müller RH, Mehnert W, Lucks JS, et al. Solid Lipid Nanoparticles (SLN): An Alternative Colloidal Carrier System for Controlled Drug Delivery, European Journal of Pharmaceutics and Biopharmaceutics, 1995, 41 (1) : 62~69
    [61]Siekmann B, Westesen K, Melt-Homogenized Solid Lipid Nanoparticles Stabilized by the Non Ionic Surfactant Tyloxapol.ⅡPhysicochemical Characterization and Lyophilisation, Pharmaceutical and Pharmacological Letters, 1994, 3: 225~228
    [62]Cavalli R, Caputo O, Marengo E, et al. The Effect of the Components of Microemulsions On Both Size and Crystalline Structure of Solid Lipid Nanoparticles (SLN) Containing a Series of Model Molecules, Pharmazie, 1998, 53 (6) : 392~396
    [63]Müller R H, Runge SA, Ravelli V,et al. Cyclosporine-Loaded Solid Lipid Nanoparticles (SLN): Drug-Lipid Physicochemical Interactions and Characterization of Drug Incorporation, European Journal of Pharmaceutics And Biopharmaceutics, 2008, 68 (3) : 535~544
    [64]Morel S, Ugazio E, Cavalli R, et al. Thymopentin in Solid Lipid Nanoparticles, International Journal of Pharmaceutics, 1996, 132 (1-2) : 259~261
    [65]Himawan C, Starov VM, Stapley AG, Thermodynamic and Kinetic Aspects of Fat Crystallization, Advances In Colloid And Interface Science, 2006, 122 (1-3) : 3~33
    [66]侯冬枝,谢长生,杨祥良等,雷公藤内酯醇新型固体脂质纳米粒微观结构研究,药学学报,2007,42 (4):429~433
    [67]Lim S J, Kim CK, Formulation Parameters Determining the Physicochemical Characteristics of Solid Lipid Nanoparticles Loaded with All-Trans Retinoic Acid, International Journal of Pharmaceutics, 2002, 243 (1-2) : 135~146
    [68]Müller RH, Mader K, Gohla S, Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery-A Review of the State of the Art., European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50 (1) : 161~166
    [69]Müller RH, Radtke M, Wissing SA, Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations, Advanced Drug Delivery Reviews, 2002, 54: 131~140
    [70]Mühlen AZ, Mehnert W, Drug Release and Release Mechanism of PrednisoloneLoaded Solid Lipid Nanoparticles, Pharmazie, 1998, 53 (8) : 552~555
    [71]Freitas C, Müller RH, Effect of Light and Temperature On Zeta Potential and Physical Stability in Solid Lipid Nanoparticle (SLN) Dispersions, International Journal of Pharmaceutics, 1998, 168 (2) : 221~228
    [72]Jenning V, Gohla SH, Encapsulation of Retinoids in Solid Lipid Nanoparticles (SLN), Journal of Microencapsulation, 2001, 18 (2) : 149~155
    [73]Wissing S, Müller R, Manthei L, et al. Structural Characterization of Q10-Loaded Solid Lipid Nanoparticles by NMR Spectroscopy, 2004, 21 (3) : 400~405
    [74]Souto EB, Wissing SA, Barbosa CM,et al. Development of a Controlled Release Formulation Based On SLN and NLC for Topical Clotrimazole Delivery, International Journal of Pharmaceutics, 2004, 278 (1) : 71~77
    [75]Müller RH, Radtke M, Wissing SA, Nanostructured Lipid Matrices for Improved Microencapsulation of Drugs, International Journal of Pharmaceutics, 2002, 242 (1-2) : 121~128
    [76]Jenning V, Mader K, Gohla SH, Solid Lipid Nanoparticles (SLN) Based On Binary Mixtures of Liquid and Solid Lipids: A (1)H-NMR Study, International Journal of Pharmaceutics, 2000, 205 (1-2) : 15~21
    [77]Zimmermann E, Müller RH, Electrolyte- And pH-Stabilities of Aqueous Solid Lipid Nanoparticle (SLN) Dispersions in Artificial Gastrointestinal Media, European Journal of Pharmaceutics and Biopharmaceutics, 2001, 52 (2) : 203~214
    [78]Freitas C, Müller RH, Stability Determination of Solid Lipid Nanoparticles (SLN) in Aqueous Dispersion After Addition of Electrolyte, Journal Of Microencapsulation, 1999, 16 (1) : 59~71
    [79]Freitas C, Müller RH, Effect of Light and Temperature On Zeta Potential and Physical Stability in Solid Lipid Nanoparticle (SLN) Dispersions, International Journal of Pharmaceutics, 1998, 168 (2) : 221~229
    [80]Siekmann B, Westesen K, Thermoanalysis of the Recrystallization Process of Melt-Homogenized Glyceride Nanoparticles, Colloids and Surfaces B: Biointerfaces, 1994, 3 (3) : 159~175
    [81]Westesen K, Siekmann B, Investigation of the Gel Formation of Phospholipid-Stabilized Solid Lipid Nanoparticles, International Journal of Pharmaceutics, 1997, 151 (1) : 35~44
    [82]Mehnert W, Mader K, Solid Lipid Nanoparticles: Production, Characterization and Applications, Advanced Drug Delivery Reviews, 2001, 47 (2-3) : 165~172
    [83]Wang JX, Sun X, Zhang ZR, Enhanced Brain Targeting by Synthesis of 3',5'-Dioctanoyl-5-Fluoro-2'-Deoxyuridine and Incorporation Into Solid LipidNanoparticles, European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54 (3) : 285~290
    [84]Borner K, Hartwig H, Leitzke S, et al. HPLC Determination of Clofazimine in Tissues and Serum of Mice After Intravenous Administration of Nanocrystalline or Liposomal Formulations, International Journal of Antimicrobial Agents, 1999, 11 (1) : 75~79
    [85]Bargoni A, Cavalli R, Zara GP,et al. Transmucosal Transport of Tobramycin Incorporated in Solid Lipid Nanoparticles (SLN) After Duodenal Administration to Rats. Part IⅡ-Tissue Distribution, Pharmacological Research, 2001, 43 (5) : 497~502
    [86]Sanna V, Gavini E, Cossu M, et al. Solid Lipid Nanoparticles (SLN) as Carriers for the Topical Delivery of Econazole Nitrate: In-Vitro Characterization, Ex-Vivo and in-Vivo Studies, Journal of Pharmacy and Pharmacology, 2007, 59 (8) : 1057~1064
    [87]Stecova J, Mehnert W, Blaschke T, et al. Cyproterone Acetate Loading to Lipid Nanoparticles for Topical Acne Treatment: Particle Characterisation and Skin Uptake, Pharmaceutical Research, 2007, 24 (5) : 991~1000
    [88]Uner M, Wissing SA, Yener G, et al. Skin Moisturizing Effect and Skin Penetration of Ascorbyl Palmitate Entrapped in Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) Incorporated Into Hydrogel, Pharmazie, 2005, 60 (10) : 751~755
    [89]Wissing S A, Müller RH, Solid Lipid Nanoparticles (SLN)-A Novel Carrier for UV Blockers, Pharmazie, 2001, 56 (10) : 783~786
    [90]Wissing S A, Müller RH, Cosmetic Applications for Solid Lipid Nanoparticles (Sln)., International Journal Of Pharmaceutics, 2003, 254 (1) : 65~68.
    [91]Müller RH, Radtke M, Wissing SA, Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations, Advanced Drug Delivery Reviews, 2002, 54 Suppl 1: 131~155
    [92]Almeida AJ, Souto E, Solid Lipid Nanoparticles as a Drug Delivery System for Peptides and Proteins, Advanced Drug Delivery Reviews, 2007, 59 (6) : 478~490
    [93]Jaspart S, Bertholet P, Piel G, et al. Solid Lipid Microparticles as a Sustained Release System for Pulmonary Drug Delivery, European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65 (1) : 47~56
    [94]Chattopadhyay P, Shekunov BY, Yim D, et al. Production of Solid Lipid Nanoparticle Suspensions Using Supercritical Fluid Extraction of Emulsions for Pulmonary Delivery Using the AERx System, Advanced Drug Delivery Reviews, 2007, 59 (6) : 444~453
    [95]Sanna V, Kirschvink N, Gustin P, et al. Preparation and in Vivo Toxicity Study of Solid Lipid Microparticles as Carrier for Pulmonary Administration, AAPS PharmSciTech, 2004, 5 (2) : 27~36
    [96]Müller RH, Runge SA, Ravelli V, et al. Cyclosporine-Loaded Solid Lipid Nanoparticles (SLN): Drug-Lipid Physicochemical Interactions and Characterization of Drug Incorporation, European Journal of Pharmaceutics And Biopharmaceutics, 2008, 68 (3) : 535~544
    [97]Casadei MA, Cerreto F, Cesa S, et al. Solid Lipid Nanoparticles Incorporated in Dextran Hydrogels: A New Drug Delivery System for Oral Formulations, International Journal of Pharmaceutics, 2006, 325 (1-2) : 140~146
    [98]Luo Y, Chen D, Ren L, et al. Solid Lipid Nanoparticles for Enhancing Vinpocetine's Oral Bioavailability, Journal of Controlled Release, 2006, 114 (1) : 53~59
    [99]Westesen K, Bunjes H, Koch MH, Physicochemical Characterization of Lipid Nanoparticles and Evaluation of their Drug Loading Capacity and Sustained Release Potential, Journal of Controlled Release, 1997, 48 (2-3) : 223~236
    [100]Zimmermann E, Souto EB, Müller RH, Physicochemical Investigations On the Structure of Drug-Free and Drug-Loaded Solid Lipid Nanoparticles (SLN) by Means of DSC and 1H NMR, Pharmazie, 2005, 60 (7) : 508~513
    [101]Zimmermann E, Müller RH, Electrolyte- And pH-Stabilities of Aqueous Solid Lipid Nanoparticle (SLN) Dispersions in Artificial Gastrointestinal Media, European Journal Of Pharmaceutics And Biopharmaceutics, 2001, 52 (2) : 203~210
    [102]Schwarz C, Mehnert W, Freeze-Drying of Drug-Free and Drug-Loaded Solid Lipid Nanoparticles (SLN), International Journal Of Pharmaceutics, 1997, 157 (2) : 171~179.
    [103]Cavalli R, Caputo O, Carlotti M Eet al., Sterilization and Freeze-Drying of Drug-Free and Drug-Loaded Solid Lipid Nanoparticles, International Journal of Pharmaceutics, 1997, 148 (1) : 47~54
    [104]Shahgaldian P, Gualbert J, Aissa K, et al. A Study of the Freeze-Drying Conditions of Calixarene Based Solid Lipid Nanoparticles, European Journal Of Pharmaceutics And Biopharmaceutics, 2003, 55 (2) : 181~184
    [105]张馨欣,甘勇,杨星钢等,聚乙二醇修饰的羟基喜树碱纳米脂质载体的制备及其小鼠组织分布,药学学报,2008,43 (1):91~99
    [106]戴幼琴,张瑜,鲁小峰等,尼莫地平纳米脂质微粒大鼠体内药动学及生物利用度研究,中国药学杂志,2007,42 (24):68~74
    [107]侯冬枝,谢长生,杨祥良等,雷公藤内酯醇新型固体脂质纳米粒微观结构研究,药学学报,2007,42 (4):429~433
    [108]朱姚亮,刘卫,陈华兵等,醋酸曲安奈德纳米结构脂质载体的制备及其透皮吸收研究,中国药科大学学报,2007,38 (1):66~71
    [109]杨凯亮,陈大为,王书典等,莪术油纳米脂质载体给药系统的制备及其评价,中国药学杂志,2006,41 (24):1881~1886
    [110]侯冬枝,谢长生,米非司酮固体脂质纳米粒冷冻干燥性能的研究,中国药科大学学报,2004,35 (5):409~413
    [111]耿叶慧,杨丽,张瑜等,吡喹酮固体脂质纳米粒的制备及其理化性质研究,中国药房,2007,18 (28):2197~2199
    [112]孙洁胤,周芝芳,刘放等,苦参素固体脂质纳米粒的药动学和体内分布,中国药学杂志,2007,42 (14):1012~1015
    [113]孙学惠,郭涛,何进等,大蒜油固体脂质纳米粒大鼠体内药动学的研究,中国药学杂志,2007,42(8):605~608
    [114]王馨,黄华,醋酸泼尼松龙固体脂质纳米粒的试制,中国医药工业杂志,2007,38 (7):241~244
    [115]Westesen K, Siekmann B, Koch MH, Investigations On the Physical State of Lipid Nanoparticles by Synchrotron Radiation X-Ray Diffraction, International Journal of Pharmaceutics, 1993, 93 (1-3) : 189~199
    [116]Morel S, Ugazio E, Cavalli R, et al. Thymopentin in Solid Lipid Nanoparticles, International Journal of Pharmaceutics, 1996, 132 (1-2) : 259~261
    [117]Langley MS, Sorkin EM, Nimodipine. A Review of its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Potential in Cerebrovascular Disease, Drugs, 1989, 37 (5) : 669~699
    [118]Scriabine A, Van Den Kerckhoff W, Pharmacology of Nimodipine. A Review, Annals of the New York Academy of Sciences, 1988, 522: 698~706
    [119]Yuan H, Huang LF, Du YZ, et al. Solid Lipid Nanoparticles Prepared by Solvent Diffusion Method in a Nanoreactor System, Colloids and Surfaces B: Biointerfaces, 2008, 61 (2) : 132~137
    [120]Hu FQ, Jiang SP, Du YZ, et al. Preparation and Characterization of Stearic Acid Nanostructured Lipid Carriers by Solvent Diffusion Method in an Aqueous System, Colloids and Surfaces B: Biointerfaces, 2005, 45 (3-4) : 167~173
    [121]Hu FQ, Jiang SP, Du YZ, et al. Preparation and Characteristics of Monostearin Nanostructured Lipid Carriers, International Journal of Pharmaceutics, 2006, 314 (1) : 83~89
    [122]Schubert MA, Solvent Injection as a New Approach for Manufacturing Lipid Nanoparticles-Evaluation of the Method and Process Parameters, European Journal of Pharmaceutics and Biopharmaceutics, 2003, 55 (1) : 125~131
    [123]Liu J, Xiao Y, Allen C, Polymer-Drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine, Journalof Pharmaceutical Sciences, 2004, 93 (1) : 132~143
    [124]Aso Y, Yoshioka S, Kojima S, Molecular Mobility-Based Estimation of the Crystallization Rates of Amorphous Nifedipine and Phenobarbital in Poly (Vinylpyrrolidone) Solid Dispersions, Journal of Pharmaceutical Sciences, 2004, 93 (2) : 384~391
    [125]Nair R, Nyamweya N, G Nen S, et al. Influence of Various Drugs On the Glass Transition Temperature of Poly(Vinylpyrrolidone): A Thermodynamic and Spectroscopic Investigation, International Journal of Pharmaceutics, 2001, 225 (1-2) : 83~96
    [126]Yoshioka S, Aso Y, Kojima S, The Effect of Excipients On the Molecular Mobility of Lyophilized Formulations, as Measured by Glass Transition Temperature and NMR Relaxation-Based Critical Mobility Temperature, Pharmaceutical Research, 1999, 16 (1) : 135~140
    [127]Puttipipatkhachorn S, Nunthanid J, Yamamoto K, et al. Drug Physical State and Drug–Polymer Interaction On Drug Release From Chitosan Matrix Films, Journal of Controlled Release, 2001, 75 (1-2) : 143~153
    [128]Lin SY, Lee CJ, Lin YY, Drug-Polymer Interaction Affecting the Mechanical Properties, Adhesion Strength and Release Kinetics of Piroxicam-Loaded Eudragit E Films Plasticized with Different Plasticizers, Journal of Controlled Release, 1995, 33 (3) : 375~381
    [129]Aso Y, Yoshioka S, Miyazaki T, et al. Miscibility of Nifedipine and Hydrophilic Polymers as Measured by 1 H-NMR Spin–Lattice Relaxation, Chemical & Pharmaceutical Bulletin, 2007, 55 (8) : 1227~1231
    [130]游长江,石小华,溶解度参数预测共混物的相容性,高分子材料科学与工程,2001,17 (1):162~166
    [131]董萌,王汝敏,姚梅,改善聚合物共混材料界面相容性的研究进展,涂料涂装与电镀,2006,4(5):15~20
    [132]Loozen E, Nies E, Heremans K, et al. The Influence of Pressure On the Lower Critical Solution Temperature Miscibility Behavior of Aqueous Solutions of Poly(Vinyl Methyl Ether) and the Relation to the Compositional Curvature of the Volume of Mixing, Journal of Physical Chemistry B, 2006, 110 (15) : 7793~7802
    [133]Liu J, Xiao Y, Allen C, Polymer-Drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine, Journal of Pharmaceutical Sciences , 2004, 93 (1) : 132~143
    [134]Greenhalgh DJ, Williams AC, Timmins P, et al. Solubility Parameters as Predictors of Miscibility in Solid Dispersions, Journal of Pharmaceutical Sciences, 1999, 88 (11) : 1182~1190
    [135]Suzuki H, Sunada H, Influence of Water-Soluble Polymers On the Dissolution of Nifedipine Solid Dispersions with Combined Carriers, Chemical & Pharmaceutical Bulletin, 1998, 46 (3) : 482~487
    [136]Liao Q, Jin X, Formation of Segmental Clusters During Relaxation of a Fully Extended Polyethylene Chain at 300 K: A Molecular Dynamics Simulation, The Journal of Chemical Physics, 1999, 110: 8835~8841
    [137]Shimizu T, Yamamoto T, Melting and Crystallization in Thin Film of N-Alkanes: A Molecular Dynamics Simulation, The Journal of Chemical Physics, 2000, 113: 3351~3357
    [138]Welch P, Muthukumar M, Molecular Mechanisms of Polymer Crystallization From Solution, Physical Review Letters, 2001, 87 (21) : 218302~218306
    [139]Zhang XB, Li ZS, Lu ZY, et al. Roles of Branch Content and Branch Length in Copolyethylene Crystallization: Molecular Dynamics Simulations, Macromolecules, 2002, 35 (1) : 106~111
    [140]Pant P, Han J, Smith GD, et al. A Molecular Dynamics Simulation of Polyethylene, The Journal of Chemical Physics, 1993, 99: 597~560
    [141]Boyd RH, Gee RH, Han J, et al. Conformational Dynamics in Bulk Polyethylene: A Molecular Dynamics Simulation Study, The Journal of Chemical Physics, 1994, 101: 788~793
    [142]Neyertz S, Brown D, Colombini D, et al. Volume Dependence of Molecular Flexibility in Poly (Ethylene Oxide) Under Negative Pressure, Macromolecules, 2000, 33 (4) : 1361~1369
    [143]Lyulin AV, Balabaev NK, Michels MAJ, Molecular-Weight and Cooling-Rate Dependence of Simulated Tg for Amorphous Polystyrene, Macromolecules, 2003, 36 (22) : 8574~8575
    [144]Li DX, Liu BL, Liu Y, et al. Predict the Glass Transition Temperature of Glycerol-Water Binary Cryoprotectant by Molecular Dynamic Simulation, Cryobiology, 2008, 56 (2): 114~119
    [145]Simperler A, Kornherr A, Chopra R, et al. The Glass Transition Temperatures of Amorphous Trehalose-Water Mixtures and the Mobility of Water: An Experimental and in Silico Study, Carbohydrate Research, 2007, 342 (11) : 1470~1479
    [146]Soldera A, Metatla N, Glass Transition of Polymers: Atomistic Simulation Versus Experiments, Physical review. E, Statistical, nonlinear, and soft matter physics, 2006, 74 (6 ) : 61803~61806
    [147]Prathab B, Aminabhavi TM, Atomistic Simulations to Compute Surface Properties of Poly(N-Vinyl-2-Pyrrolidone) (PVP) and Blends of PVP/Chitosan, Langmuir, 2007, 23 (10) : 5439~5442
    [148]Jawalkar SS, Raju KV, Halligudi SB, et al. Molecular Modeling Simulations to Predict Compatibility of Poly(Vinyl Alcohol) and Chitosan Blends: A Comparison with Experiments, Journal of Physical Chemistry B, 2007, 111 (10) : 2431~2436
    [149]Ahunbay MG, Molecular Simulation of Adsorption and Diffusion of Chlorinated Alkenes in Zsm-5 Zeolites, The Journal of Chemical Physics, 2007, 127 (4) : 44706~44707
    [150]Zhengxia CQ, Molecular Dynamics Simulation of Water Diffusion Inside an Amorphous Polyacrylate Latex Film, Journal of Polymer Science Part B: Polymer Physics, 2007, 45 (8) : 884~891
    [151]Dermitzaki E, Bauer J, Walter Het al., Molecular Dynamics Simulation for the Diffusion of Water in Amorphous Polymers Examined at Different Temperatures, London, 2007.
    [152]Zhao ZJ, Wang Q, Zhang L, Size Effect On Competition of Two Diffusion Mechanisms for Drug Molecules in Amorphous Polymers, The journal of physical chemistry. B, 2007, 111 (46) : 13167~13172
    [153]Popova H, Milchev A, Structure, Dynamics, and Phase Transitions of Tethered Membranes: A Monte Carlo Simulation Study, The Journal of Chemical Physics, 2007, 127 (19) : 194903~194907
    [154]Heuchel M, Hofmann D, Pullumbi P, Molecular Modeling of Small-Molecule Permeation in Polyimides and its Correlation to Free-Volume Distributions, Macromolecules, 2004, 37 (1) : 201~214
    [155]Jang SS, Goddard WA, Kalani MY, Mechanical and Transport Properties of the Poly(Ethylene Oxide)-Poly(Acrylic Acid) Double Network Hydrogel From Molecular Dynamic Simulations, Journal of Physical Chemistry B, 2007, 111 (7) : 1729~1737
    [156]Wittkop M, Kreitmeier S, G Ritz D, Monte Carlo Simulations of a Single Polymer Chain Under Extension Above and Below the Theta Temperature, Physical Review E, 1996, 53 (1) : 838~845
    [157]Alder BJ, Wainwright T E, Studies in Molecular Dynamics, The Journal of Chemical Physics, 1957, 27: 1208~1209
    [158]Born M, Oppenheimer R, Zur Quantentheorie Der Molekeln, Annalen der Physik, 1927, 84: 457~462
    [159]Mayo SL, Olafson BD, Goddard Iii WA, Dreiding: A Generic Force Field for Molecular Simulations, The Journal of Physical Chemistry, 1990, 94 (26) : 8897~8909
    [160]RappéAK, Casewit CJ, Colwell KS, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulation, Journal of theAmerican Chemical Society, 1992, 114: 10024~10030
    [161]Sun H, Rigby D, Polysiloxanes: Ab Initio Force Field and Structural, Conformational and Thermophysical Properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1997, 53 (8) : 1301~1323
    [162]Rigby D, Sun H, Eichinger BE, Computer Simulations of Poly (Ethylene Oxide): Force Field, PVT Diagram and Cyclization Behaviour, Polymer International, 1997, 44 (3) : 311~330
    [163]Sun H, Compass: An Ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details On Alkane and Benzene Compounds, Journal of Physical Chemistry B, 1998, 102: 7338~7364
    [164]吉青,杨小震,分子力场发展的新趋势,化学通报,2005, 68 (2):111~116
    [165]任译,Sun H,分子力场进展,化学研究与应用,1998,10 (1):1~14
    [166]Verlet L, Computer Experiments On Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, 1967, 159 (1) : 98~103
    [167]Hockney RW, Potential Calculation and some Applications, Methods Computer Physics, 1970, 9: 135~211
    [168]Swope WC, Andersen HC, Berens PH, et al. A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters, The Journal of Chemical Physics, 1982, 76: 637~641
    [169]Beeman D, Some Multistep Methods for Use in Molecular Dynamics Calculations, Journal Of Computational Physics, 1976, 20: 130~133
    [170]Verlet L, Computer Experiments On Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, 1967, 159 (1) : 98~103
    [171]Berendsen HJC, Postma JPM, Van Gunsteren WF, et al. Molecular Dynamics with Coupling to an External Bath, The Journal of Chemical Physics, 1984, 81: 3684~3688
    [172]NoséS, A Unified Formulation of the Constant Temperature Molecular Dynamics Methods, The Journal of Chemical Physics, 1984, 81: 511~513
    [173]Nose S, Constant-Temperature Molecular Dynamics, Journal of Physics: Condensed Matter, 1990, 2:115~119
    [174]Hoover WG, Canonical Dynamics: Equilibrium Phase-Space Distributions, Physical Review A, 1985, 31 (3) : 1695~1697
    [175]Andersen HC, Molecular Dynamics Simulations at Constant Pressure and/or Temperature, The Journal of Chemical Physics, 1980, 72: 2384~2388.
    [176]Parrinello M, Rahman A, Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, Journal of Applied Physics, 1981, 52: 7182~7186
    [177]Parrinello M, Rahman A, Strain Fluctuations and Elastic Constants, The Journal of Chemical Physics, 1982, 76: 2662~2665
    [178]Hansen CM, The Three-Dimensional Solubility Parameter-Key to Paint Component Affinities: Solvents, Plasticizers, Polymers, and Resins. II. Dyes, Emulsifiers, Mutual Solubility and Compatibility, and Pigments. III. Independent Calculation of the Parameter Components, Journal of paint technology, 1967, 39 (511) : 505~510
    [179]Bagley EB, Nelson TP, Scigliano JM, Three-Dimensional Solubility Parameters and their Relationship to Internal Pressure Measurements in Polar and Hydrogen Bonding Solvents, Textile Research Journal, 1971, 43 (555) : 35~42
    [180]马静,董秀芹,张敏华,超近临界水溶剂特性的分子动力学模拟,计算机与应用化学,2007,24 (7):872~875
    [181]高春梅,奚旦立,杨晓波等,聚偏氟乙烯/聚氯乙烯相容性研究,膜科学与技术,2006,26 (5):21~25
    [182]肖雪春,李文刚,黄象安,PET/PTT共混体系相容性的研究,合成纤维,2003,32 (6):22~26
    [183]俞春芳,黑恩成,刘国杰,聚合物的溶剂选择与新的两维溶解度参数,化工学报,2001,52 (4):288~291
    [184]Hancock BC, York P, Rowe RC, The Use of Solubility Parameters in Pharmaceutical Dosage Form Design, International Journal of Pharmaceutics, 1997, 148 (1) : 1~21
    [185]Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Advanced Drug Delivery Reviews, 2001, 46 (1-3) : 3~26
    [186]Sloan KB, Koch S, Siver KG, et al. Use of Solubility Parameters of Drug and Vehicle to Predict Flux through Skin, Journal Of Investigative Dermatology, 1986, 87 (2) : 244~252
    [187]Martini LG, Avontuur P, George A, et al. Solubility Parameter and Oral Absorption, European Journal Of Pharmaceutics And Biopharmaceutics, 1999, 48 (3) : 259~263
    [188]Breitkreutz J, Prediction of Intestinal Drug Absorption Properties by Three-Dimensional Solubility Parameters, Pharmaceutical Research, 1998, 15 (9) : 1370~1375
    [189]Rowe RC, Interactions in Coloured Powders and Tablet Formulations: A Theoretical Approach Based On Solubility Parameters, International Journal of Pharmaceutics, 1989, 53 (1) : 47~51
    [190]Greenhalgh DJ, Williams AC, Timmins P, et al. Solubility Parameters as Predictors of Miscibility in Solid Dispersions, Journal Of Pharmaceutical Sciences, 1999, 88 (11) : 1182~1186
    [191]Verheyen S, Augustijns P, Kinget R, et al. Determination of Partial Solubility Parameters of Five Benzodiazepines in Individual Solvents, International Journal of Pharmaceutics, 2001, 228 (1-2) : 199~207
    [192]Forster A, Hempenstall J, Tucker I, et al. Selection of Excipients for Melt Extrusion with Two Poorly Water-Soluble Drugs by Solubility Parameter Calculation and Thermal Analysis, International Journal of Pharmaceutics, 2001, 226 (1-2) : 147~161
    [193]Hildebrand JH, Scott RL, The Solubility of Nonelectrolytes, New York: 1950, 89~98
    [194]Huynh L, Grant J, Leroux JC, et al. Predicting the Solubility of the Anti-Cancer Agent Docetaxel in Small Molecule Excipients Using Computational Methods, 2008, 25 (1) : 147~157
    [195]Belmares M, Blanco M, Goddard WA, et al. Hildebrand and Hansen Solubility Parameters From Molecular Dynamics with Applications to Electronic Nose Polymer Sensors, Journal Of Computational Chemistry, 2004, 25 (15) : 1814~1818
    [196]赵殊,张菲,张雯雯等,反相气相色谱测定丙烯酸纤维素的溶解度参数,科学通报,2007,52 (16):1879~1882
    [197]孙志娟,张心亚,黄洪等,溶解度参数的发展及应用,橡胶工业,2007,54 (1):54~56
    [198]Vicente MS, Gottifredi JC, Estimation of Solvent Activities in Polymers Solutions Using a Group-Contribution Method, Separation And Purification Technology, 2001, 22: 671~679
    [199]Marrero J, Gani R, Group-Contribution Based Estimation of Pure Component Properties, Fluid Phase Equilibria, 2001, 183: 183~208
    [200]Fedors RF, A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids, Polymer Engineering And Science, 1974, 14 (2) : 147~154
    [201]Small PA, Some Factors Affecting the Solubility of Polymers, Journal of Applied Chemistry, 1953, 3 (10) : 71~77
    [202]夏庆,殷开梁,分子动力学模拟计算有机溶剂的溶解度参数,江苏工业学院学报,2004,16 (1):40~42
    [203]Theodorou DN, Suter UW, Geometrical Considerations in Model Systems with Periodic Boundaries, The Journal of Chemical Physics, 1985, 82: 955~958
    [204]Patnaik SS, Pachter R, A Molecular Simulations Study of the Miscibility in Binary Mixtures of Polymers and Low Molecular Weight Molecules, Polymer,2002, 43 (2) : 415~418
    [205]Barton A, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, USA: CRC Press, 1991, 545~658
    [206]Esposito E, Fantin M, Marti M, et al. Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine, Pharmaceutical Research, 2008, 25 (7): 1521~1530
    [207]Souto EB, Mehnert W, Müller RH, Polymorphic Behaviour of Compritol 888 ATO as Bulk Lipid and as SLN and NLC, Journal of Microencapsulation, 2006, 23 (4) : 417~433
    [208]Jores K, Haberland A, Wartewig S, et al., Solid Lipid Nanoparticles (SLN) and Oil-Loaded SLN Studied by Spectrofluorometry and Raman Spectroscopy, Pharmaceutical Research, 2005, 22 (11) : 1887~1897
    [209]Souto EB, Müller RH, SLN and NLC for Topical Delivery of Ketoconazole, Journal of Microencapsulation, 2005, 22 (5) : 501~510
    [210]Garcia-Fuentes M, Alonso MJ, Torres D, Design and Characterization of a New Drug Nanocarrier Made From Solid-Liquid Lipid Mixtures, Journal of Colloid and Interface Science, 2005, 285 (2) : 590~598
    [211]Prego C, Garci M, Torres D, et al. Transmucosal Macromolecular Drug Delivery, Journal of Controlled Release, 2005, 101 (1) : 151~162
    [212]Jores K, Mehnert W, Ma K, Physicochemical Investigations On Solid Lipid Nanoparticles and On Oil-Loaded Solid Lipid Nanoparticles: A Nuclear Magnetic Resonance and Electron Spin Resonance Study, Pharmaceutical Research, 2003, 20 (8) : 1274~1283
    [213]Fan CF, Olafson BD, Blanco M, et al. Application of Molecular Simulation to Derive Phase Diagrams of Binary Mixtures, Macromolecules, 1992, 25 (14) : 3667~3676
    [214]Gee RH, Fried LE, Cook RC, Structure of Chlorotrifluoroethylene/Vinylidene Fluoride Random Copolymers and Homopolymers by Molecular Dynamics Simulations, Macromolecules, 2001, 34 (9) : 3050~3059
    [215]Choi P, Blom HP, Kavassalis TA, et al. Immiscibility of Poly(Ethylene) and Poly(Propylene): A Molecular Dynamics Study, Macromolecules, 1995, 28 (24) : 8247~8250
    [216]Heine D, Wu DT, Curro JG, et al. Role of Intramolecular Energy On Polyolefin Miscibility: Isotactic Polypropylene/Polyethylene Blends, The Journal of Chemical Physics, 2002, 118: 914~917
    [217]Spyriouni T, Vergelati C, A Molecular Modeling Study of Binary Blend Compatibility of Polyamide 6 and Poly (Vinyl Acetate) with Different Degrees of Hydrolysis: An Atomistic and Mesoscopic Approach, Macromolecules(USA), 2001, 34 (15) : 5306~5309
    [218]Jawalkar SS, Adoor SG, Sairam M, et al. Molecular Modeling On the Binary Blend Compatibility of Poly(Vinyl Alcohol) and Poly(Methyl Methacrylate): An Atomistic Simulation and Thermodynamic Approach, Journal of Physical Chemistry B, 2005, 109 (32) : 15611~15620
    [219]Sandoval C, Castro C, Gargallo L, et al. Specific Interactions in Blends Containing Chitosan and Functionalized Polymers. Molecular Dynamics Simulations, Polymer, 2005, 46 (23) : 10437~10442
    [220]Moolman FS, Meunier M, Labuschagne PW, et al. Compatibility of Polyvinyl Alcohol and Poly(Methyl Vinyl Ether-Co-Maleic Acid) Blends Estimated by Molecular Dynamics, Polymer, 2005, 46 (16) : 6192~6200
    [221]Notman R, Noro MG, Anwar J, Interaction of Oleic Acid with Dipalmitoylphosphatidylcholine (DPPC) Bilayers Simulated by Molecular Dynamics, Journal of Physical Chemistry B, 2007, 111 (44) : 12748~12755
    [222]Jang YH, Blanco M, Creek J, et al. Wax Inhibition by Comb-Like Polymers: Support of the Incorporation-Perturbation Mechanism From Molecular Dynamics Simulations, Journal of Physical Chemistry B, 2007, 111 (46) : 13173~13179
    [223]Leach AR, Molecular Modelling: Principles and Applications, USA: Prentice Hall, 2001, 402~404.
    [224]Hoogerbrugge PJ, Koelman J, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhys. Lett, 1992, 19 (3) : 155~159
    [225]Groot RD, Warren PB, Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation, The Journal of Chemical Physics, 1997, 107 (11) : 4423~4430
    [226]Espaňol P, Warren P, Statistical Mechanics of Dissipative Particle Dynamics, Europhysics Letters, 1995, 30: 191~196
    [227]Groot RD, Madden TJ, Dynamic Simulation of Diblock Copolymer Microphase Separation, The Journal of Chemical Physics, 1998, 108 (20) : 8713~8716
    [228]Rekvig L, Frenkel D, Molecular Simulations of Droplet Coalescence in Oil/Water/Surfactant Systems, The Journal of Chemical Physics, 2007, 127 (13) : 134701~134711
    [229]Thakre AK, Den OW, Briels WJ, Domain Formation and Growth in Spinodal Decomposition of a Binary Fluid by Molecular Dynamics Simulations, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2008, 77 (1) : 11503~11506
    [230]Zeng QH, Yu AB, Lu GQ, Multiscale Modeling and Simulation of Polymer Nanocomposites, Progress In Polymer Science, 2008, 33 (2) : 191~269
    [231]Revalee JD, Laradji M, Sunil PB, Implicit-Solvent Mesoscale Model Based On Soft-Core Potentials for Self-Assembled Lipid Membranes, The Journal of Chemical Physics, 2008, 128 (3) : 35102~35107
    [232]Gao L, Shillcock J, Lipowsky R, Improved Dissipative Particle Dynamics Simulations of Lipid Bilayers, The Journal of Chemical Physics, 2007, 126: 15101~15106
    [233]Huang CI, Fang HK, Lin CH, Morphological Transition Behavior of Abc Star Copolymers by Varying the Interaction Parameters, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2008, 77 (3) : 31804~31808
    [234]Liu D, Zhong C, Multicompartment Micelles Formed From Star-Dendritic Triblock Copolymers in Selective Solvents: A Dissipative Particle Dynamics Study, Polymer, 2008, 49 (5) : 1407~1413
    [235]Li YM, Xu GY, Chen YJ, et al. Computer Simulations of Surfactants and Surfactant/Polymer Assemblies, Computational Materials Science, 2006, 36 (4) : 386~396
    [236]Yuan S, Xu G, Luan Y, et al. The Interaction Between Polymer and AOT or Nadehp in Aqueous Solution: Mesoscopic Simulation Study and Surface Tension Measurement, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 256 (1) : 43~50
    [237]Groot RD, Mesoscopic Simulation of Polymer-Surfactant Aggregation, Langmuir, 2000, 16 (19) : 7493~7502
    [238]Hoogerbrugge PJ, Koelman J, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhys. Lett, 1992, 19 (3) : 155~159
    [239]Maiti A, Mcgrother S, Bead--Bead Interaction Parameters in Dissipative Particle Dynamics: Relation to Bead-Size, Solubility Parameter, and Surface Tension, The Journal of Chemical Physics, 2004, 120 (3) : 1594~1601
    [240]Vicente L, Soto C, Pacheco-S H, et al., Application of Molecular Simulation to Calculate Miscibility of a Model Asphaltene Molecule, Fluid Phase Equilibria, 2006, 239 (1) : 100~106
    [241]Li Y, Xu G, Luan Y, et al. Studies On the Interaction Between Tetradecyl Dimethyl Betaine and Sodium Carboxymethyl Cellulose by Dpd Simulations, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258: 385~390
    [242]Jores K, Haberland A, Wartewig Set al., Solid Lipid Nanoparticles (SLN) and Oil-Loaded SLN Studied by Spectrofluorometry and Raman Spectroscopy., Pharmaceutical Research, 2005, 22 (11) : 1887~1897
    [243]Jores K, Mehnert W, Drechsler M, et al. Investigations On the Structure of SolidLipid Nanoparticles (SLN) and Oil-Loaded Solid Lipid Nanoparticles by Photon Correlation Spectroscopy, Field-Flow Fractionation and Transmission Electron Microscopy., Journal of Controlled Release, 2004, 95 (2) : 217~227
    [244]Jores K, Mehnert W, Mader K, Physicochemical Investigations On Solid Lipid Nanoparticles and On Oil-Loaded Solid Lipid Nanoparticles: A Nuclear Magnetic Resonance and Electron Spin Resonance Study., Pharmaceutical Research, 2003, 20 (8) : 1274~1283
    [245]Freitas C, Müller RH, Correlation Between Long-Term Stability of Solid Lipid Nanoparticles (SLN) and Crystallinity of the Lipid Phase, European Journal Of Pharmaceutics And Biopharmaceutics, 1999, 47 (2) : 125~132
    [246]Cortesi R, Esposito E, Luca G, et al. Production of Lipospheres as Carriers for Bioactive Compounds, Biomaterials, 2002, 23 (11) : 2283~2294
    [247]Quintanar-Guerrero D, Tamayo-Esquivel D, Ganem-Quintanar A, et al. Adaptation and Optimization of the Emulsification-Diffusion Technique to Prepare Lipidic Nanospheres, European Journal of Pharmaceutical Sciences, 2005, 26 (2) : 211~218
    [248]Bunjes H, Koch MH, Saturated Phospholipids Promote Crystallization but Slow Down Polymorphic Transitions in Triglyceride Nanoparticles, Journal of Controlled Release, 2005, 107 (2) : 229~232
    [249]Schubert MA, Muller-Goymann CC, Characterisation of Surface-Modified Solid Lipid Nanoparticles (SLN): Influence of Lecithin and Nonionic Emulsifier, European Journal of Pharmaceutics And Biopharmaceutics, 2005, 61 (1-2) : 77~86
    [250]Heike BM, Influence of Emulsifiers On the Crystallization of Solid Lipid Nanoparticles, Journal Of Pharmaceutical Sciences, 2003, 92 (7) : 1509~1520
    [251]Westesen K, Bunjes H, Koch MH, Physicochemical Characterization of Lipid Nanoparticles and Evaluation of their Drug Loading Capacity and Sustained Release Potential, Journal of Controlled Release, 1997, 48 (2-3) : 223~236
    [252]Bunjes H, Koch M, Westesen K, Influence of Emulsifiers On the Crystallization of Solid Lipid Nanoparticles, Journal Of Pharmaceutical Sciences, 2003, 92 (7) : 1509~1520
    [253]江体乾,化工流变学,上海:华东理工大学出版社,2004,191~263
    [254]Cui Y, Zhong C, Xia J, Multicompartment Micellar Solutions in Shear: A Dissipative Particle Dynamics Study, Macromolecular Rapid Communications, 2006, 27 (17) : 1437~1441
    [255]Liu D, Zhong C, Dissipative Particle Dynamics Simulation of Microphase Separation and Properties of Linear-Dendritic Diblock Copolymer Melts Under Steady Shear Flow, Macromolecular Rapid Communications, 2005, 26 (24) :1960~1964
    [256]Kindt P, Briels WJ, The Role of Entanglements On the Stability of Microphase Separated Diblock Copolymers in Shear Flow, The Journal of Chemical Physics, 2008, 128 (12) : 124901~124909
    [257]Thakre AK, Padding JT, Otter WK, et al. Molecular Dynamics Simulation of Phase Separating Binary Liquids in Cylindrical Couette Flow, The Journal of Chemical Physics, 2008, 128 (15) : 154707~154710
    [258]Wijmans CM, Smit B, Simulating Tethered Polymer Layers in Shear Flow with the Dissipative Particle Dynamics Technique, Macromolecules, 2002, 35 (18) : 7138~7148
    [259]Symeonidis V, Em Karniadakis G, Caswell B, Dissipative Particle Dynamics Simulations of Polymer Chains: Scaling Laws and Shearing Response Compared to Dna Experiments, Physical Review Letters, 2005, 95 (7) : 76001~76006
    [260]Chen S, Phan-Thien N, Fan XJ, et al. Dissipative Particle Dynamics Simulation of Polymer Drops in a Periodic Shear Flow, Journal Of Non-Newtonian Fluid Mechanics, 2004, 118 (1) : 65~81
    [261]Singh B, Chakkal SK, Ahuja N, Formulation and Optimization of Controlled Release Mucoadhesive Tablets of Atenolol Using Response Surface Methodology, AAPS PharmSciTech, 2006, 7 (1) : 3~7
    [262]Choisnard L, Geze A, Bigan M, et al. Efficient Size Control of Amphiphilic Cyclodextrin Nanoparticles through a Statistical Mixture Design Methodology, Journal of Pharmacy And Pharmaceutical Sciences, 2005, 8 (3) : 593~601
    [263]Chopra S, Patil GV, Motwani SK, Release Modulating Hydrophilic Matrix Systems of Losartan Potassium: Optimization of Formulation Using Statistical Experimental Design, European Journal of Pharmaceutics And Biopharmaceutics, 2007, 66 (1) : 73~82
    [264]Holm R, Jensen IH, Sonnergaard J, Optimization of Self-Microemulsifying Drug Delivery Systems (Smedds) Using a D-Optimal Design and the Desirability Function, Drug Development & Industrial Pharmacy, 2006, 32 (9) : 1025~1032
    [265]Petrovic A, Cvetkoviae N, Trajkovic S, et al. Mixture Design Evaluation of Drug Release From Matrix Tablets Containing Carbomer and HPMC, Journal of Controlled Release, 2006, 116 (2) : 104~106
    [266]Borges CN, Bruns RE, Almeida AA, et al. Mixture-Mixture Design for the Fingerprint Optimization of Chromatographic Mobile Phases and Extraction Solutions for Camellia Sinensis, Analytica Chimica Acta, 2007, 595 (1-2) : 28~37
    [267]Souto EB, Mehnert W, Müller RH, Polymorphic Behaviour of Compritol 888ATO as Bulk Lipid and as SLN and NLC, Journal of Microencapsulation, 2006, 23 (4) : 417~433
    [268]Souto EB, Wissing SA, Barbosa CM, et al. Evaluation of the Physical Stability of SLN and NLC Before and After Incorporation Into Hydrogel Formulations, European Journal of Pharmaceutics And Biopharmaceutics, 2004, 58 (1) : 83~90
    [269]Olbrich C, Müller RH, Enzymatic Degradation of SLN-Effect of Surfactant and Surfactant Mixtures, International Journal of Pharmaceutics, 1999, 180 (1) : 31~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700