以离子液合成法制备硅铝型分子筛与分子筛结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,离子液体作为一种新型的绿色和环境友好溶剂受到了极大的关注。它是由较大的有机阳离子和较小的无机阴离子组成的盐类,与一般的离子化合物不同,它在室温或室温附近呈液态,因而也可以称为低温熔融盐。离子液体具有以下性质:(1)蒸汽压极低、不可燃;(2)溶解能力极佳,可以对各种有机物、无机物及聚合物进行溶解;(3)热稳定性和化学稳定性高、液程宽(-90~300℃);(4)离子电导率高,电化学电位窗大。目前,在多相催化、有机合成、电化学、分离分析化学等化学化工领域中,关于离子液体应用的研究都有大量的报道。将离子液体用于合成分子筛材料的报道始于2004年,Cooper等以[C_2mim]Br为溶剂和模板剂在常压下合成了磷铝型分子筛AlPO_4-11和其它几种类分子筛材料,而利用离子液体热合成法合成硅铝型沸石分子筛的研究却一直未见报道。
     本论文中,首次利用1-乙基-3-甲基咪唑溴盐离子液体通过离子液体热合成法制备了硅铝型分子筛——方钠石。离子液体热合成法与水热和溶剂热合成这些使用分子溶剂的合成方法不同,它将离子液体这种离子化合物同时作为溶剂和模板剂进行分子筛合成。由于离子液体具有液程宽、热稳定性高的特点,在相当宽的温度范围内,离子液体可以作为液体使用,其中的反应可在常压下进行。并且离子液体有很强的自组装能力,它能够在液态下通过氢键形成超分子结构,将离子液体作为模板剂使用,合成过程中不需要另外添加模板剂。我们利用这种方法合成出了晶体呈球形,晶粒约200~500nm的方钠石。通过XRD、BET、SEM等现代表征手段对产物进行表征,考察了晶化时间、晶化温度、硅铝胶与离子液体的比例等合成条件对离子液体热合成沸石分子筛晶化过程的影响,并且对合成机理进行了初步的探讨。研究结果表明:离子液体热合成方钠石,60~90℃为形成方纳石的最佳温度。水与离子液体的比例影响晶化反应的进程,当离子液体与硅铝胶重量比为3时,产品为纯的方纳石;随体系中水含量的增加,样品中出现了X沸石。以Si/Al比为1.1/1~10.0/1的硅铝胶体系合成了方钠石,且结晶度随Si/Al比上升而上升。
Recently, as a new type of green environment-friendly solvent, ionic liquid(ILs) have attracted much interest of the researchers. ILs are salts composed of big organic cations and small inorganic anions. Different from other ionic compounds, melting points of ILs are close to the room temperature. They have unique properties: (1) nonvolatile, nonflammable; (2) good solvents for a wide range of organic, inorganic materials and polymer; (3) high thermal stability and chemical stability, wide range of liquidus temperatures (-90~300℃), (4) good ionic conductivity and large electrochemical window. Up to now, They are widely used in different chemical processes such as heterogeneous catalysis, organic synthesis, electrochemistry and analytical chemistry. However, In contrast to their successful applications above, the use of ILs in zeolite synthesis is still lack of reporting. The research according to the using of ILs in zeolite synthesis was first reported in 2004. Cooper et al. used [C_2mim]Br as both solvents and templates in the synthesis of AlPO_4-11 and molecular sieves with other frameworks under ambient pressure, but there is no report about the synthesis of Si-Al zeolite by this method.
     In the thesis, we investigated the synthesis ionic liquid of [C_2mim]Br and the Si-Al zeolite in the synthesized ionic liquids, namely ionothermal process, which is a novel method for zeolite synthesis. ILs can be used as the synthesis solvent, and reactions is conducted under ambient pressure due to their wide range of liquidus temperatures and high thermal stability in a wide range of temperatures. ILs have feature of self-organization since they have extended hydrogenbond systems in the liquid state and "supramolecular" structure is formed. Therefore, the organic cations of ILs can play a role of templates in the synthesis of zeolite, and synthesized process is template free. Sodalite (SOD) zeolite with micropores are successfully synthesized in our experiments, which has spherical morphology with 200~500 nm diameters. The synthesis started from aqueous basic aluminosilicate precursor gels and the zeolite crystallization completes in an imidazolium-based ionic liquid of 1-ethyl-3-methylimidazolium bromide. The effects of weight ratios of aqueous gels to ionic liquids, Si/Al molar ratios in gels and crystallization variables, such as temperature and time, on the crystallization of SOD zeoliet are investigated, and we dicuss the possible mechanism in the ionothermal synthesis. The results showed that a mixture of sodalite and zeolite X is initially formed in ionic liquid at a ratio 1:3 of aqueous gel to ionic liquid, and finally transformed to pure sodalite as the crystallisation time is prolonged. The best temperature of sodalite synthesis was between 60 and 90℃under ambient pressure. The crystallinity of sodalite increased with the increasing of Si/Al from 1.1 to 10. Increasing the ratio of aqueous gel to ionic liquid, zeolite X was favorable to crystallize, and it is the only product in the hydrothermal condition.
引文
[1] 李汝雄.绿色溶剂—离子液体的合成与应用,第1版,北京:化学工业出版社,2004,5~9.
    [2] Huddleston J G, Visser A E, Reichert W M, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green. Chem., 2001, 3(4): 156~164.
    [3] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev., 1999, 99(8): 2071~2083.
    [4] Denise A, Hussey C L, Sedden K R, et al. Room-temperature ionic liquid as solvents for electronic absorption spectroscopy of halide complexes. Nature, 1994, 323(16): 615~616.
    [5] Wilkes J S, Levisky J A, Wilson R A, et al. Althy-limidazolium Chloroaluminate Melts, A New Class of Room Temperature Ionic Liquids for Electrochemistry Spectroscopy and Systhesis. Inorg. Chem., 1982, 21: 1263~1268.
    [6] Wilks J S, Zaworwtko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commn., 1992, 13: 965~967.
    [7] 顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料.科学通报,2004,49(6):515~521.
    [8] 杨雅立,王晓化,寇元,等.不断壮大的离子液体家族.化学进展,2003,15(6):471~476.
    [9] 刘卉,陶国宏,邵元华,等.功能化的离子液体在电化学中的应用.化学通报,2004,11:795~801.
    [10] Elaiwi A, Hitchcock P B, Seddon K R, et al. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(Ⅲ) ionic liquids. J. Chem. Soc., Dalton Trans., 1995, 21: 3467~3472.
    [11] Antonietti M, Kuang D B, Smarsly B, et al. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Lnt. Ed., 2004, 43: 4988~4992.
    [12] Gordon C M, Holbrey J D, Kennedy A R, et al. Ionic liquid crystals: hexafluorophosphate salts. J. Mater. Chem., 1998, 8(12): 2627~2636.
    [13] Boon J A, Levisky J A, Pflug J L, et al. Friedel-Crafts reactions in ambient-temperature molten salts. J. Org. Chem., 1986, 51: 480~483.
    [14] Bonhote P, Dias A P, Papageorgiou N, et al. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem., 1996, 35(5): 1168~1178.
    [15] Kakiuchi T, Tsujioka N. Cyclic voltammetry of ion transfer across the polarized interface between the organic molten salt and the aqueous solution. Electrochem. Commun., 2003, 5(3): 253~256.
    [16] Huddlestou J G, Willauer H D, Rogers R D. Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction. Chem. Commun., 1998, 16: 1765~1766.
    [17] Sheng D, Ju Y H, Barnes C E. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc. Dalton. Trans., 1999, 8: 1201~1202
    [18] Armstrong D W, Anderson J L. High-Stability Ionic Liquids. A New Class of Stationary Phases for Gas Chromatography. Anal Chem, 2003, 75(18): 4851-4858.
    [19] Fuller J, Carlin R T, Long D, et al. Structure of 1-ethyl-3-methyl-imidazolium hexafluoro phosphate, made for room temperature molten salts. J. Chem. Soc. Chem. Commun., 1994, 299~301.
    [20] Koch V R, Milleer L L, Osteryoung R A. Electroinitiated Friedel-Crafts Transalkylations in a Room-Temperature Molten-Salt Medium. J. Am. Chem. Soc., 1976, 98 (17): 5277~5284.
    [21] Robonson J, Osteryoung R A. An Electrochemical and Spectro-scopic study of some Aromatic Hydrocarbons in the room temperature Molten Salts System Aluminm Chloride-n-Butylpyrid-inium Chlorid. J. Am. Chem. Soc., 1979, 102(2): 323~327.
    [22] Ronald A C, Lowell A K, Richard E L, et al. Electric Conductivity and Viscosity of Several N-alkylpyridinium Halides and Their Mixtures With Aluminum Chlorid. J. Am. Chem. Soc., 1979, 126(10): 1644~1647.
    [23] Hussey C L, King L A, Carpio R A. Thee lectrochemistry of copper in a room temperature acidic chloroaluminate melt. J. Electrochem. Soc., 1979, 126(6): 1029~1034.
    [24] Hussey C L, Laher T M. Electrochemical and Spectroscopic Stusdies of Colbalt (Ⅱ) in Molten Alumium Chloride-N-Butyl-pyridium Chlorid. Inorg. Chem., 1981, 112(20): 4201~4206.
    [25] Robinson J, Osteryoung R A. An Investigation into Electrochemical Oxidation of Some Aromatic Amines in the Room-Temperature Molten Salt System Aluminum Chloride-n- Butylpyridinium Chlorid. J. Am. Chem. Soc., 1980, 102(13): 4415~4440.
    [26] Wilkes J S, Levisky J A, Wilson R A, et al. Althy-limidazolium Chloro aluminate Melts, A New Class of Room Temperature Ionic Liquids for Electrochemistry Spectroscopy and Systhesis. Inorg. Chem., 1982, 21: 1263~1268.
    [27] 凌国平,逢清强.室温熔盐电镀的新进展.化学通报,2000,4:35.
    [28] Christopher J A, Martyn J G, Roberts, et al. Friedel-Crafls reactionsin room temperature ionic liquid. Chem. Common., 1998, 19(7): 2097~2098.
    [29] Denise A, Hussey C L, Sedden K R, et al. Room-temperature ionic liquid as solvents for electronic absorption spectroscopy of halide complexes. Nature, 1994, 323(16), 615~616.
    [30] Fuller J, Carlin R T, Osteryaung R A. A. Electrochemical Studies of Chtominm (Ⅲ) and Chtominm (Ⅱ) Chloride Complexes in Basic Alumium Chloride-1-Methyl-3-ethylimidazolium Chloride Room Temperature Molten Salts. J. Electrochem. Soc., 1997, 144, 3881~3385.
    [31] Akihiro N V. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochemica. Acta, 2000, 45: 1265~1270.
    [32] Elaiwi A, Hitchcock P B, Sedden K R. Hydrogen Bonding in Imidazolium Salts and its Implications for Ambient Temperature Halogenoaluminate (Ⅱ) Ionic Liquids. J. Chem. Soc. Dalton Tran., 1995, 3467~3471.
    [33] Pierre B, Ddias A P, Nicholus P K, et al. Hydrophobic, Highly conductive ambient temperature molten salt. Inorg. Chem., 1996, 35: 1186~1178.
    [34] Anna S L, John D H, Fook S T, et al. Designing Ionic Liquids, Imidazolium Melts with Innert Carborane Anion. J. Am. Chem. Soc., 2000, 122(14): 7264~7272.
    [35] Leone A M, Weatherly S C, Williams M E. An Ionic Liquid Form of DNA, Redox-Active Molten Salts of Nucleic Acids. J. Am. Chem. Soc., 2001, 123(2): 218~222.
    [36] Ohno H, Nishimura N. Ion conductive characteristics of DNA film containing ionic liquids. J. Electrochem. Soc., 2001, 148(4): 168~170.
    [37] Zulfiqar F, Kitazume T. Lewis acid-catalyzed sequential reaction in ionic liquid. Green. Chem., 2000, 2(6): 296~297.
    [38] Tames H D, AndKerri J, Forrester J. Thazolium-ion based orgnic ionic liquids (QILs), novel QILs which promote the benzoin condesatio. Tetrahedron Letters, 1999, 40, 1621~1622.
    [39] Abbott A P, Lapper G, David D L, et al. Preparation of novel, moister-stable, Lewis-active ionic liquids containing quaternary ammonium salts with functional sidechain. Chem. Comm., 2001, 15: 2020~2011.
    [40] Tao G H, He L, Sun N, et al. New generation ionic liquids: cations derived from amino acids. Chem. Commun., 2005, 3562~3564.
    [41] Ni B, Headley A D, Li G G. Design and Synthesis of C-2 Substituted Chiral Imidazolium Ionic Liquids from Amino Acid Derivatives. J. Org. Chem., 2005, 70, 10600-10602
    [42] 桂劲松.室温离子液体性质的研究:(硕士学位论文).沈阳:沈阳师范大学,2005.
    [43] Chauvin Y, Hirschauer A, Olivier H. Alkylation of isobutane with 2-butene using 1-butyl-3-methylimidazolium chloride aluminum chloride molten salts as catalysts, Journal of Molecular Catalysis, 1994, 92(1): 155~165.
    [44] Christopher J A, Martyn J G, Roberts, et al. Friedel-Crafts reactions in room temperature ionic liquids, Chem. Common. 1998, 19(7): 2097~2098.
    [45] Deng Y Q, Shi F, Beng J, Qiao K. Ionic liquid as a green catalystic reaction medium for esterifications. J. Mol.Catal. A, Chem., 2001, 165(1-2): 33~36.
    [46] Wheeler C, West K N, Charles E A, et al. Ionic liquids as catalytic green solvents for nucleophilic displacement reactions, Chem. Common. 2001, 10: 887~888.
    [47] Earle M J, Seddon K R. Diels-Alder reactions in ionic liquids, Green Chemistry, 1999, 23~25.
    [48] Gordon M, Holbrey J, Kennedy R, et al. Ionic Liquid Crystals, hexafluorophosphate Salts, J. Mater. Chem., 1998, 8: 2627~2633.
    [49] 阎立峰,朱清时.离子液体及其在有机合成中应用.化学通报,2001,11,673~679.
    [50] Zhu H P, Yang F, Tang J, et al. Brφnsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chem, 2003, 5: 38~39.
    [51] 邓友全,石峰,彭家建,等.微孔材料装载金属络合物——离子液体催化剂.中国专利,CN1389298A,2003.
    [52] Bao W, Wang Z, Li Y. Synthesis of chiral ionic liquids from natural amino acids. J. Org. Chem., 2003, 68: 591~593.
    [53] Isser A E, Swatloski R P, Rogers R D. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun, 2001, 135~136.
    [54] Harmon C D, Smith W H, Costa D A. Criticability calculations for plutonium metal at room temperature in ionic liquid solutions. Radn Phy Chem, 2001, 60: 157~159.
    [55] Zhang S, Zhang Q, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind. Eng. Chem. Res., 2004, 43(2): 614~622.
    [56] Blanchard L A, Dan Hancu, Beckman E J. Green processing using ionic liquids and CO2 Nature, 1999, 399(6731), 28~29.
    [57] Scurto A M, Aki S N V K, Brennecke J F. CO_2 as a separation switch for ionic liquid/organic mixtures. J Am Chem Soc, 2002, 124: 10276~10277.
    [58] Bosmann A, Franciò G, Janssen E, et al. Activation, tuning, and immobilization of homogeneou s catalysts inan ionic liquid/compressed CO_2 continuous-flow system. Angew. Chem. Int. Ed. Engl., 2001, 40(14): 2697~2699.
    [59] 肖小化,刘淑娟,刘霞,等.离子液体及其在分离分析中的研究进展.分析化学评述与进展,2005,4(33):569~574.
    [60] 韩熠,李正宇,孟霞,等.离子液体在色谱分析中的应用.化学试剂,2005,27(11),662~664;701
    [61] Armstrong D W, He L F, Liu Yansong. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Ana. Chem., 1999, 71(17): 3873~3876.
    [62] He L J, Zhang W Z, Zhao L, et al. Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. J. Chromatogr. A, 2003, 1007 (1-2): 39~45.
    [63] Yanes E G, Gratz S R, Stalcup A M. Tetraethylammonium tetrafluoroborate: A novel electrolyte with a unique role in the capillary electrophoretic separation of polyphenols found in grape seed extracts. Analyst, 2000, 125 (11): 1919~1923.
    [64] Yanes E G, Gratz S R, Baidwin M J, et al. Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Anal. Chem., 2001, 73 (16): 3838~3844.
    [65] Erbeldinger M, Mesiano M, Russell A J. Enzymatic catalysis of formation of Z-aspartame in ionic liquid - An alternative to enzymatic catalysis in organic solvents. Biotechnol. Prog., 2000, 16: 1129~1131.
    [66] Lau R M, Van R F, Seddon K R, et al. Lipase-Catalyzed Reactions in Ionic Liquids. Org. Lett., 2000, 26(2): 4189~4191.
    [67] Van R F, Lau R M, Sheldon R A. Biocatalytic transformations in ionic liquids. Trends in Biotechnology, 2003, 21(3): 131~138.
    [68] Sheldon R A, Lau R M, Sorgedrager M J, et al. Biocatalysis in ionic liquids. Green Chem., 2002, 4: 147~151.
    [69] Park S, Kazlauskas RJ. Biocatalysis in ionic liquids - advantages beyond green technology. Current Opinion in Biotechnology, 2003, 14: 432~437.
    [70] 刘庆彬,张占辉,张福军.离子液体中的生物催化反应.化工进展,2005,17(6):1060~1066.
    [71] Wilkes J S. A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem., 2002, 4: 73~80.
    [72] Ue M, Takeda M, Takahashi T, et al. Ionic liquids with low melting points and their application to double-layer capacitor electrolytes. Electrochem. Solid. St., 2002, 5(6): A 119~A 121.
    [73] Nakagawa H, Izuchi S, Kuwana K, et al. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J. Electrochem. Soc., 2003, 150 (6): A 695~A 700.
    [74] 杨立玲.以伊利石合成4A沸石分子筛的实验研究:(硕士学位论文).西安:西安科技大学,2005.
    [75] 杨华名,邱冠周.分子筛的研究现状与发展前景.矿产综合利用,1996,5,24~28.
    [76] 顾天雁.石油化工用的一种新分子筛催化剂.石油炼制与化工,1995,4:69.
    [77] 贡长生,鲁先国.磷酸铝系分子筛的合成和应用.湖北化工,1995,4:25~28.
    [78] 杨骏,黄止而,王定珠.超高比表面炭载钼煤气甲烷化催化剂.燃料化学学报,1994,22(03):264~268.
    [79] He Z L, Bailigar V C, Marens D C, et al. Effect of byproducts, nitrogen fertilier, and Zeolite on phosphate rock dissolution and extractable phosphorus in acid soil. Plant and Soil, 1999, 208(2).
    [80] 郑展望,雷乐成,张珍,等.非均相UV/Fe-Cu-Mn-Y/H_2O_2反应催化降解4BS染料废水.环境科学学报,2004,24(06):1032~1038.
    [81] 王聪海.分子筛吸附干燥在CFCl2生产中的应用.有机氟工业,1994,2:29~31.
    [82] 陈元培,赵旭,王毅,等.催化裂化分子筛干燥工艺的开发与应用.化工机械,2000,04:220~225;238.
    [83] 孙发民,刘百军,查显俊,等.微波技术在催化材料制备领域的研究进展.工业催化,2004,11(12):50~53.
    [84] 董瑞林,郭亮天.无银13X分子筛吸附后处理厂溶解废气中放射性碘的实验研究.辐射防护,1994,14(02):110~117.
    [85] 赵修松,王清遐.沸石合成进展.化工进展,1994,(03):32~35.
    [86] 徐如人,庞文琴.沸石分子筛结构与合成.长春:吉林大学出版社,1987.
    [87] 冯芳霞,窦涛.干粉法合成中孔分子筛MCM-41.石油学报,1998,14(3):89~92.
    [88] 冯芳霞,窦涛.分子筛特种合成路线.化工进展,1997,1:64~65.
    [89] 陈利娟,张晟卯,吴志申,等.离子液体中ZnO纳米棒的制备与表征.应用化学,2005,22(5):554~556.
    [90] Cheng L J, Zhang S M, Wu Z S, et al. Preparation of PbS-type PbO nanocrystals in a room-temperature ionic liquid. Mater. Lett., 2005, 59: 3119~3121.
    [91] Wang J, Cao J M, Fang B Q, et al. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids. Mater. Lett., 2005, 59: 1405~1408.
    [92] 曹洁明,王军,房宝青,等.离子液体中不同形貌ZnO纳米材料的合成及表征.物理化学学报,2005,21(6):668~672.
    [93] Wang W W, Zhu Y J. Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg. Chem. Commun., 2004, 7: 1003~1005.
    [94] Dupont J, Fonseca G S, Umpierre A P, et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions. J. Am. Chem. Soc., 2002, 124: 4228~4229.
    [95] Scheeren C W, Machado G, Dupont J, et al. Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids: Synthesis from an Organometallic Precursor, Characterization, and Catalytic Properties in Hydrogenation Reactions. Inorg. Chem., 2003, 42: 4738~4742.
    [96] Zhu Y J, Wang W W, Qi R J, et al. Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids. Angew. Chem. Int. Ed., 2004, 43: 1410~1414.
    [97] Mu X D, Meng J Q, Li Z C, et al. Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation. J. Am. Chem. Soc., 2005, 127: 9694~9695.
    [98] Dai S, Ju Y H, Gao H J, et al. Preparation of silica aerogel using ionic liquids as solvents. Chem. Commun., 2000, 243~244.
    [99] Craythorne S J, Crozier A R, Lorenzini F, et al. The preparation of silica entrapped homogeneous hydrogenation catalysts by conventional and ionic liquid mediated sol-gel routes. J. Organomet. Chem., 2005, 1~4.
    [100] Liu Y, Wang M J, Li Z Y, et al. Preparation of Porous Aminopropylsilsesquioxane by a Nonhydrolytic Sol-Gel Method in Ionic Liquid Solvent. Langmuir, 2005, 21: 1618~1622.
    [101] Zhou Y, Antonietti M. Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates. J. Am. Chem. Soc., 2003, 125: 14960~14961.
    [102] Du J M, Liu Z M, Li Z H, et al. Synthesis of mesoporous SrCO3 spheres and hollow CaCO3 spheres in room-temperature ionic liquid. Micropor. Mesopor. Mater, 2005, 83: 145~149.
    [103] Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO_2 Microspheres in Ionic Liquids. J. Am. Chem. Soc., 2003, 125: 6386~6387.
    [104] Trewyn B G, Whitman C M, Lin V S Y. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano. Lett., 2004, 4(11): 2139~2143.
    [105] Adams C J, Bradley A E, Seddon K R. The Synthesis of Mesoporous Materials Using Novel Ionic Liquid Templates in Water. Aust. J. Chem., 2001, 54, 679~681.
    [106] Zhou Y, Schattka J H, Antonietti M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique. Nano. Lett., 2004, 4(3): 477~481.
    [107] Zhou Y, Antonietti M. A Series of Highly Ordered, Super-Microporous, Lamellar Silicas Prepared by Nanocasting with Ionic Liquids. Chem. Mater, 2004, 16, 544~550.
    [108] Kuang D B, Brezesinski T, Smarsly B. Hierarchical Porous Silica Materials with a Trimodal Pore System Using Surfactant Templates. J. Am. Chem. Soc., 2004, 126: 10534~10535.
    [109] Brezesinski T, Erpen C, Iimura K, et al. Mesostructured Crystalline Ceria with a Bimodal Pore System Using Block Copolymers and Ionic Liquids as Rational Templates. Chem. Mater., 2005, 17: 1683~1690.
    [110] Yoo K S, Choi H, Dionysiou D D. Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis. Catal. Commun., 2005, 6: 259~262.
    [111] Kim K S, Demberelnyamba D, Lee H. Size-Selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-Functionalized Ionic Liquids. Langmuir, 2004, 20: 556~560.
    [112] Cooper E R, Andrews C D, Wheatley P S, et al. Ionic liquids and eutectic mixtures as solvent and remplate in synthesis of zeolite analogues. Nature, 2004, 430: 1012~1015.
    [113] 徐云鹏,田志坚,徐竹生,等.溴化N-烷基取代咪唑中离子热合成硅磷酸铝分子筛.催化学报,2005.26:446~448.
    [114] Endres F. Electrodeposition of a thin germanium film on gold from a room temperature ionic liquid. Phys. Chem. Chem. Phys., 2001, 3(15): 3165~3174.
    [115] Endres F, Bukowski M, Hempelmann R, et al. Electrodeposition of Nanocrystalline Metals and Alloys from Ionic Liquids. Angew. Chem. Int. Ed., 2003, 42(29): 3428~3430.
    [116] Abedin S Z E, Moustafa E M, Hempelmann R, et al. Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid. Electrochem. Commun., 2005, 7(11): 1111~1116.
    [117] Mukhopadhyay I, Freyland W. Electrodeposition of Ti Nanowires on Highly Oriented Pyrolytic Graphite from an Ionic Liquid at Room Temperature. langmuir, 2003, 19(6): 1951~1953.
    [118] He P, Liu H T, Li Z Y, et al. Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect. langmuir, 2004, 20(23): 10260~10267.
    [119] 龙英才.光至变色材料方钠石的合成.复旦大学学报(自然科学版),1994,33:18~21.
    [120] Hasha D, Saldarriaga L d, Saldarriaga C, et al. Studies of Silicoaluminophosphates with the Sodalite Structure. J. Am. Chem. Soc., 1988, 110: 2127~2135.
    [121] Richard F R S, Barter M. Zeolites and their synthesis. Zeolites, 1981, 1: 130~140.
    [122] 冯芳霞,窦涛,萧墉壮,等.一种合成方钠石的新方法.燃料化学学报,1997,25(14):378~381.
    [123] Bibby D M, Dale M P. Synthesis of silica-sodalite form non-aqueous systems. Nature, 1985, 317: 157~158.
    [124] 郑育英,黄慧民,邓淑华,等.水热法制备高纯超细CeO_2-ZrO_2复合氧化物.无机化学学报,2005,21(8):1227~1231.
    [125] 徐如人,庞文琴.分子筛与多孔材料化学,北京:自然科学出版社,2004.
    [126] Delprato F, Delmotte L, Guth J L, et al. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-ether-based supramolecules as templates ZEOLITES, 1990, 10, 546~552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700