PLXNB3基因多态性与人类认知能力的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知能力是人们生活中最为重要的能力之一,也是人们关注的焦点,在人群中的遗传度约为50%。近年来,随着神经生物学和分子生物学的发展,利用行为遗传学、行为基因组学和影像遗传学的研究手段和方法对认知能力进行研究,尤其对认知能力与基因关系的研究已成为当前心理学和遗传学交叉研究的热点,不仅对促进正在形成的认知神经遗传学有重要的基础研究意义,而且在优生咨询、新药开发、认知障碍的分子诊断以及儿童未来的个性化教育等方面也有实际的应用前景。
     目前,研究较多的主要是影响神经递质代谢、神经信号传导和神经系统发育的相关基因与人类神经、精神类疾病以及认知能力的关系。在神经系统发育过程中,神经元的轴突只有沿特定的路径延伸,精确的抵达与其建立突触联系的靶细胞的胞体、树突或轴突才能形成具有正常生理功能的神经网络。然而,参与轴突引导过程的PLXNB3基因与人类认知能力关系的研究还很少见有报道。
     本研究选择西安市某高等院校本、专科各专业一年级910名新生作为研究对象,对其进行工作记忆、中央执行功能、空间认知、长时记忆、言语认知和一般流体智力等六类认知能力共15项任务的测验。在PLXNB3基因上选择rs2266879、rs6643791以及rs5987155三个功能SNP位点和rs2266885一个标记SNP位点,用PCR-SSCP和PCR-RFLP对其进行基因分型。最后用FoxPro6.0、Haploview4.0和SPSS10.0软件包完成数据的整理和统计分析。
     基于一般线性模型的单因素方差分析表明,rs2266879在男性和女性人群中都与定位能力显著性相关(p=0.020和p=0.030),并提示可能还与其工作记忆和言语认知能力有关;rs5987155在男性人群中与抑制能力显著性相关(p=0.022),并提示可能还与空间认知能力有关;rs6643791和rs2266885在两种人群中均未发现其与任何一项认知功能具有相关性,但提示rs6643791位点可能与男性人群空间认知能力有关。然而,与国外研究相比,三个功能多态位点在我们的汉族人群中未发现它们与言语认知能力的相关性。
     本研究结果提示,PLXNB3基因在中国汉族人群中选择性地影响其定位和抑制两种特殊认知能力。但是,这一初步结论尚需作进一步的研究和探讨。
Cognitive ability, with about 50% degree of heritability, is one of the most important abilities in people's daily life, and has come into our focus. In recent years, with the development of neurobiology and molecular biology, researches about cognitive ability, especially about the relationship between it and genes using behavioral genetics, behavior genomics and imaging genetics as the methods and tools have become one hotspot in present psychology and genetics fields, which not only is very important to promote the basic researches for emerging cognitive neurogenetics, but also has practical prospects of application for eugenic counseling, development of new medicine, molecular diagnosis of cognitive disorder, children's individualized education in the future.
     At the moment, more researches are mainly about the relationship between related genes and human nervous or mental disorders and cognitive ability, and these genes mainly involve in neurotransmitter metabolism, signal transduction and nervous system development. During the development of nervous system, the generation of physiological and functional neuronal network requires the precise navigation of axons along specific pathways to their appropriate targets, such as cell bodies, dendrites or other axons. However, researches on the relationship between the involved PLXNB3 gene and human cognitive ability are still rare.
     In the study, the subjects were consisting of 910 fresh undergraduate and specialized students from all majors of some a college in Xi'an. A battery of cognitive abilities including working memory, central executive function, spatial cognitive ability, long-term memory, verbal cognitive ability and general fluid intelligence was tested among them. Three functional single nucleotide polymorphisms (SNPs) (rs2266879, rs6643791 and rs5987155) and one genetic marker (rs2266885) in PLXNB3 gene were identified based on PCR-SSCP and PCR-RFLP genotyping methods. At last, the collation of data and statistical analysis were finished using FoxPro6.0, Haploview4.0 and SPSS 10.0 software package.
     The one-way ANOVA analysis based on general linear model showed that rs2266879 was significantly associated with localization in both males and females and might be associated with working mermory and verbal cognitive ability. rs5987155 was significantly associated with inhibition only in males, but might be associated with spatial cognitive ability. Both rs6643791 and rs2266885 didn't show association with any cognitive abilities, but the rs6643791 might be associated with spatial cognitive ability in males. Unfortunately, three functional SNPs also did not show association with verbal cognitive ability in the healthy Han population compared with overseas research.
     The results of this study indicated that PLXNB3 gene selectively influences on human cognitive ability in Chinese Han population, but further study and discussion are needed to examine the preliminary findings.
引文
参考文献
    [1]童一,甄宗雷, 卜勇等.智力的遗传基础及其研究方法[J].前沿科学,2008,2(6):34-41.
    [2]Plomin R. and Craig I. Human behavioural genetics of cognitive abilities and disabilities[J]. Bioessays,1997,19(12):1117-24.
    [3]McGue M., Bouchard T. J. J., Iacono W. G, et al. Behavioral genetics of cognitive ability: A life-span perspective [J]. In:Plomin R, McClearn G E, ed. Nature, nurture, and psychology. Washington, DC:American Psychological Association,1993,59-76.
    [4]Chipuer H. M., Rovine M. J., and Plomin R. LISREL modeling:genetic and environmental influences on IQ revisited[J]. Intelligence,1990,14(1):11-29.
    [5]Devlin B., Daniels M., and Roeder K. The heritability of IQ[J]. Nature,1997,388(6641): 468-71.
    [6]Beaujean A. A. Heritability of cognitive abilities as measured by mental chronometric tasks:A meta-analysis[J]. Intelligence,2005,33(2):187-201.
    [7]McGuffin P., Riley B., and Plomin R. Genomics and behavior. Toward behavioral genomics[J]. Science,2001,291(5507):1232-49.
    [8]Plomin R. and Petrill S. A. Genetics and Intelligence:What's New?[J]. Intelligence,1997, 24(1):53-77.
    [9]Petrill S. A. Molarity Versus Modularity of Cognitive Functioning? A Behavioral Genetic Perspective [J]. Current Directions In Psychological Science,1997,6(4):96-99.
    [10]Plomin R. and Spinath F. M. Genetics and general cognitive ability (g)[J]. Trends Cogn Sci,2002,6(4):169-176.
    [11]Plomin R., Kennedy J. K. J., and Craig I. W. The quest for quantitative trait loci associated with intelligence [J]. Intelligence,2006,34(6):513-526.
    [12]Morley K. I. and Montgomery G. W. The genetics of cognitive processes:candidate genes in humans and animals[J]. Behav Genet,2001,31(6):511-31.
    [13]Tsai S. J., Hong C. J., Yu Y. W., et al. Association study of a brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and personality trait and intelligence in healthy young females[J]. Neuropsychobiology,2004,49(1):13-6.
    [14]Wainwright M. A., Wright M. J., Luciano M., et al. A linkage study of academic skills defined by the Queensland core skills test[J]. Behav Genet,2006,36(1):56-64.
    [15]Singer J. J., Falchi M., Macgregor A. J., et al. Genome-wide scan for prospective memory suggests linkage to chromosome 12q22[J]. Behav Genet,2006,36(1):18-28.
    [16]Luciano M., Wright M. J., Duffy D. L., et al. Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q[J]. Behav Genet,2006,36(1):45-55.
    [17]Buyske S., Bates M. E., Gharani N., et al. Cognitive traits link to human chromosomal regions[J]. Behav Genet,2006,36(1):65-76.
    [18]Posthuma D., De Geus E. J., Baare W. F., et al. The association between brain volume and intelligence is of genetic origin[J]. Nat Neurosci,2002,5(2):83-4.
    [19]Peper J. S., Brouwer R. M., Boomsma D. I., et al. Genetic influences on human brain structure:a review of brain imaging studies in twins[J]. Hum Brain Mapp,2007,28(6): 464-73.
    [20]Hulshoff Pol H. E., Schnack H. G, Posthuma D., et al. Genetic contributions to human brain morphology and intelligence [J]. J Neurosci,2006,26(40):10235-42.
    [21]Egan M. F., Kojima M., Callicott J. H., et al. The BDNF va166met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function[J]. Cell,2003,112(2):257-69.
    [22]Diamond A., Briand L., Fossella J., et al. Genetic and neurochemical modulation of prefrontal cognitive functions in children[J]. Am J Psychiatry,2004,161(1):125-32.
    [23]Espeseth T., Endestad T., Rootwelt H., et al. Nicotine receptor gene CHRNA4 modulates early event-related potentials in auditory and visual oddball target detection tasks [J]. Neuroscience,2007,147(4):974-85.
    [24]Bishop S. J., Fossella J., Croucher C. J., et al. COMT va1158met genotype affects recruitment of neural mechanisms supporting fluid intelligence [J]. Cereb Cortex,2008, 18(9):2132-40.
    [25]Falek A. and Jarvik L. F. Twin studies, heritability, and intelligence[J]. Science,1997, 278(5342):1385-6; author reply 1386-7.
    [26]Kamin L. J. Twin studies, heritability, and intelligence [J]. Science,1997,278(5342): 1385; author reply 1386-7.
    [27]甄宏,季成叶,杨莉萍等.双生子儿童智力影响因素分析[J].中国行为医学科学,2002,11(6).
    [28]张晓薇,黄颐,高欣等.遗传和环境因素对儿童青少年认知功能和人格的影响分析[J].中国神经精神疾病杂志,2008,34(6).
    [29]张勇,陈淳,徐晋麟等.轴突导向分子及受体结构与功能进展[J].生物化学与生物物理进展,2001,28(3):318-321.
    [30]刘毅,范文红,范明.轴突导向因子semaphor in家族及其信号通路研究进展[J].军事医学科学院院刊,2006,30(1):80-83.
    [31]马振莲,刘少君.轴突导向信号的研究进展[J].军事医学科学院院刊,2006,30(2):180-183.
    [32]Kolodkin A. L., Matthes D. J., O'Connor T. P., et al. Fasciclin Ⅳ:sequence, expression, and function during growth cone guidance in the grasshopper embryo[J]. Neuron,1992, 9(5):831-45.
    [33]Committee S. N. Unified nomenclature for the semaphorins/collapsins. Semaphorin Nomenclature Committee[J]. Cell,1999,97(5):551-2.
    [34]Kolodkin A. L., Matthes D. J., and Goodman C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules[J]. Cell,1993, 75(7):1389-99.
    [35]Puschel A. W., Adams R. H., and Betz H. The sensory innervation of the mouse spinal cord may be patterned by differential expression of and differential responsiveness to semaphorins[J]. Mol Cell Neurosci,1996,7(5):419-31.
    [36]He Z. and Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin Ⅲ[J]. Cell,1997,90(4):739-51.
    [37]Luo Y., Raible D., and Raper J. A. Collapsin:a protein in brain that induces the collapse and paralysis of neuronal growth cones[J]. Cell,1993,75(2):217-27.
    [38]Nakamura F., Kalb R. G, and Strittmatter S. M. Molecular basis of semaphorin-mediated axon guidance[J]. J Neurobiol,2000,44(2):219-29.
    [39]Song H., Ming G, He Z., et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides[J]. Science,1998,281(5382):1515-8.
    [40]Tessier-Lavigne M. and Goodman C. S. The molecular biology of axon guidance[J]. Science,1996,274(5290):1123-33.
    [41]Hall K. T., Boumsell L., Schultze J. L., et al. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation[J]. Proc Natl Acad Sci USA,1996,93(21):11780-5.
    [42]Goshima Y., Ito T., Sasaki Y., et al. Semaphorins as signals for cell repulsion and invasion[J]. J Clin Invest,2002,109(8):993-8.
    [43]Behar O., Golden J. A., Mashimo H., et al. Semaphorin Ⅲ is needed for normal patterning and growth of nerves, bones and heart[J]. Nature,1996,383(6600):525-8.
    [44]Miao H. Q., Soker S., Feiner L., et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility:functional competition of collapsin-1 and vascular endothelial growth factor-165[J]. J Cell Biol,1999,146(1):233-42.
    [45]Christensen C. R., Klingelhofer J., Tarabykina S., et al. Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines[J]. Cancer Res,1998,58(6):1238-44.
    [46]Raper J. A. Semaphorins and their receptors in vertebrates and invertebrates [J]. Curr Opin Neurobiol,2000,10(1):88-94.
    [47]Pasterkamp R. J. and Kolodkin A. L. Semaphorin junction:making tracks toward neural connectivity [J]. Curr Opin Neurobiol,2003,13(1):79-89.
    [48]Maestrini E., Tamagnone L., Longati P., et al. A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor [J]. Proc Natl Acad Sci USA, 1996,93(2):674-8.
    [49]Comeau M. R., Johnson R., DuBose R. F., et al. A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR[J]. Immunity,1998,8(4):473-82.
    [50]Tamagnone L., Artigiani S., Chen H., et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates [J]. Cell,1999, 99(1):71-80.
    [51]van der Zwaag B., Hellemons A. J., Leenders W. P., et al. PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis[J]. Dev Dyn,2002,225(3):336-43.
    [52]Winberg M. L., Noordermeer J. N., Tamagnone L., et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance[J]. Cell,1998,95(7):903-16.
    [53]Tamagnone L. and Comoglio P. M. Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors[J]. Cytokine Growth Factor Rev,1997,8(2): 129-42.
    [54]Ebens A., Brose K., Leonardo E. D., et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons [J]. Neuron, 1996,17(6):1157-72.
    [55]Maina F., Hilton M. C., Ponzetto C., et al. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons [J]. Genes Dev,1997,11(24):3341-50.
    [56]Maina F., Hilton M. C., Andres R., et al. Multiple roles for hepatocyte growth factor in sympathetic neuron development[J]. Neuron,1998,20(5):835-46.
    [57]Sandoval I. V. and Bakke O. Targeting of membrane proteins to endosomes and lysosomes[J]. Trends Cell Biol,1994,4(8):292-7.
    [58]Aravind L. and Koonin E. V. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches[J]. J Mol Biol,1999,287(5): 1023-40.
    [59]Bork P., Doerks T., Springer T. A., et al. Domains in plexins:links to integrins and transcription factors[J]. Trends Biochem Sci,1999,24(7):261-3.
    [60]Tamagnone L. and Comoglio P. M. Signalling by semaphorin receptors:cell guidance and beyond[J]. Trends Cell Biol,2000,10(9):377-83.
    [61]Grunwald I. C. and Klein R. Axon guidance:receptor complexes and signaling mechanisms[J]. Curr Opin Neurobiol,2002,12(3):250-9.
    [62]Chen H., Chedotal A., He Z., et al. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema Ⅲ[J]. Neuron,1997,19(3):547-59.
    [63]Kolodkin A. L., Levengood D. V., Rowe E. G, et al. Neuropilin is a semaphorin III receptor[J]. Cell,1997,90(4):753-62.
    [64]Takahashi T., Fournier A., Nakamura F., et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors[J]. Cell,1999,99(1):59-69.
    [65]Rohm B., Ottemeyer A., Lohrum M., et al. Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A[J]. Mech Dev,2000,93(1-2): 95-104.
    [66]Hartwig C., Veske A., Krejcova S., et al. Plexin B3 promotes neurite outgrowth, interacts homophilically, and interacts with Rin[J]. BMC Neurosci,2005,6(53.
    [67]Artigiani S., Conrotto P., Fazzari P., et al. Plexin-B3 is a functional receptor for semaphorin 5A[J]. EMBO Rep,2004,5(7):710-4.
    [68]Sadanandam A., Varney M. L., and Singh R. K. Identification of semaphorin 5A interacting protein by applying apriori knowledge and peptide complementarity related to protein evolution and structure[J]. Genomics Proteomics Bioinformatics,2008,6(3-4): 163-74.
    [69]Driessens M. H., Hu H., Nobes C. D., et al. Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho[J]. Curr Biol,2001,11(5):339-44.
    [70]Driessens M. H., Olivo C., Nagata K., et al. B plexins activate Rho through PDZ-RhoGEF[J]. FEBS Lett,2002,529(2-3):168-72.
    [71]Perrot V, Vazquez-Prado J., and Gutkind J. S. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF[J]. J Biol Chem,2002,277(45):43115-20.
    [72]Swiercz J. M., Kuner R., Behrens J., et al. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate Rho A and growth cone morphology [J]. Neuron,2002, 35(1):51-63.
    [73]Aurandt J., Vikis H. G, Gutkind J. S., et al. The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG[J]. Proc Natl Acad Sci U S A,2002,99(19):12085-90.
    [74]Hirotani M., Ohoka Y., Yamamoto T., et al. Interaction of plexin-B1 with PDZ domain-containing Rho guanine nucleotide exchange factors[J]. Biochem Biophys Res Commun,2002,297(1):32-7.
    [75]Worzfeld T., Puschel A. W., Offermanns S., et al. Plexin-B family members demonstrate non-redundant expression patterns in the developing mouse nervous system:an anatomical basis for morphogenetic effects of Sema4D during development[J]. Eur J Neurosci,2004,19(10):2622-32.
    [76]Perala N. M., Immonen T., and Sariola H. The expression of plexins during mouse embryogenesis[J]. Gene Expr Patterns,2005,5(3):355-62.
    [77]Worzfeld T., Rauch P., Karram K., et al. Mice lacking Plexin-B3 display normal CNS morphology and behaviour[J]. Mol Cell Neurosci,2009.
    [78]Rujescu D., Meisenzahl E. M., Krejcova S., et al. Plexin B3 is genetically associated with verbal performance and white matter volume in human brain[J]. Mol Psychiatry, 2007,12(2):190-4,115.
    [79]Baddeley A. D. and Hitch G. J., The psychology of learning and motivation. Working memory [A]. In:Bower G. A. Vol.8.1974:New York, Academic Press.47-89.
    [80]Atkinson R. C. and Shiffrin R. M. The control of short-term memory[J]. Sci Am,1971, 225(2):82-90.
    [81]Daneman D. and Carpenter P. A. Individual differences in working memory and reading[J]. Journal of Verbal Learning and Verbal Behavior,1980,19(4):450-66
    [82]Daneman D. and Tardif T. Working memory and reading skill re-examined [J]. Attention and performance XII:The psychology of reading,1987,7(491-508.
    [83]Hegarty M., Shah P., and Miyake A. Constraints on using the dual-task methodology to specify the degree of central executive involvement in cognitive tasks[J]. Mem Cognit, 2000,28(3):376-85.
    [84]刘昌.数学学习困难儿童的认知加工机制研究[J].南京师大学报(社会科学版),2004,3):81-88.
    [85]Friedman N. P. and Miyake A. The reading span test and its predictive power for reading comprehension ability [J]. Journal of Memory and Language,2004,51(1):136-158.
    [86]Funahashi S. Neuronal mechanisms of executive control by the prefrontal cortex[J]. Neuroscience Research,2001,39(2):147-165.
    [87]Perner J. and Lang B. Development of theory of mind and executive control[J]. Trends Cogn Sci,1999,3(9):337-344.
    [88]Nieuwenhuis S., Ridderinkhof K. R., de Jong R., et al. Inhibitory inefficiency and failures of intention activation:age-related decline in the control of saccadic eye movements[J]. Psychol Aging,2000,15(4):635-47.
    [89]Miyake A., Friedman N. P., Emerson M. J., et al. The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks:a latent variable analysis[J]. Cogn Psychol,2000,41(1):49-100.
    [90]Gordon H. W. The cognitive laterality battery:tests of specialized cognitive function[J]. Int J Neurosci,1986,29(3-4):223-44.
    [91]Clark H. H. and Chase W. G. On the process of comparing sentences against pictures[J]. Cognitive Psychology,1972,3(472-517.
    [92]Tulving E. Remembering and knowing the past[J]. American Scientist,1989, 77(361-367.
    [93]Orita M., Iwahana H., Kanazawa H., et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. Proc Natl Acad Sci USA,1989,86(8):2766-2770.
    [94]Wawer C., Ruggeberg H., Meyer G, et al. A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments[J]. Nucleic Acids Res,1995, 23(23):4928-9.
    [95]Faul F. and Erdfelder E. GPOWER:A priori-, post hoc-, and compromise power analyses for MS-DOS [computer program][J]. Bonn, FRG:Bonn University, Department of Psychology,1992,1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700