若干铅基合金真空蒸馏分离提纯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着原生有色金属矿产的日渐枯竭和废旧有色金属资源日益增加,充分有效地对废旧资源进行回收再利用己刻不容缓,而焊料、电子器件等的无铅化大大加深原有铅合金的除铅力度。在有色金属冶金行业中,占地小、操作简单、对环境友好的真空蒸馏工艺一直以来都具有鲜明的特点和强劲的生命力。本文对有色冶金领域几种常见的铅基合金(铅锡二元合金、铅锡锑三元合金和铅基多元合金)进行真空蒸馏分离、提纯的研究,并对铅锡二元合金、铅锡锑三元合金真空蒸馏分离提纯进行工业研发。
     计算合金的热力学性质对于判断合金真空蒸馏分离程度起到关键作用,但由于高温实验的复杂性,目前很多合金体系的热力学性质尚无实验数据可以参考,难以满足科研工作者的需要。分子动力学方法是对材料的各种性质进行微观原子尺度的计算机模拟,目前主要应用在材料学和量子化学领域,在冶金行业应用较少,而对合金的热力学性质的研究则未见报道。本文结合真空蒸馏自身特点和分子动力学方法的优势,采用分子动力学方法对若干Pb-X二元合金的热力学性质进行模拟,计算二元合金体系不同温度下的生成焓、生成自由能、过剩自由能等热力学性质,对分子动力学方法模拟合金真空蒸馏过程进行探索性研究。
     采用分子相互作用体积模型计算铅基合金活度系数并与实验值进行对比,对计算精度较高的Pb-Sn、Pb-Sb和Sb-Sn合金800-1300℃下的活度系数进行预测,为合金真空蒸馏分离热力学和动力学计算提供必要的参考数据。进而对若干铅基合金真空蒸馏进行热力学和动力学分析,计算合金中各组分的纯物质饱和蒸气压、合金的分离系数,绘制合金的气液相平衡成分图,以判断合金真空蒸馏分离的可行性和分离程度。
     对全成分范围内铅锡二元合金进行系统的小型、扩大和工业实验研究。工业实验中,对成分为Sn 22%-Pb 78%的高铅物料,选用的实验条件为蒸馏温度950℃,蒸馏时间为50min,真空度0.5Pa,日处理10吨,得到纯度在99.5%以上的粗铅和含铅量在8%左右的粗锡;对于成分为Sn 86%-Pb 12%的高锡物料,选用的实验条件为蒸馏时间为70min,真空度0.5Pa,日处理8吨,分别在1100℃和1200℃进行两次蒸馏,最后得到铅含量在0.01%以下的精锡。研究过程中,对真空炉内部冷凝结构进行改进,顺利实现铅锡合金真空蒸馏深度脱铅的工业实验研究,生产能耗降低20%左右;对真空炉出料系统进行改进,延长设备运转周期和易耗零部件的使用寿命;扩大真空炉对铅锡二元合金的处理范围,使其适合处理全成分范围的铅锡二元合金;提高设备处理能力,达到日处理10吨的水平;加深合金的分离程度,将锡中铅含量去除至0.01%以下;设计全成分范围铅锡合金真空蒸馏处理工艺流程,并推广应用到美国ECS金属精炼公司、确信爱法金属(深圳)有限公司和云南锡业集团(控股)有限公司等国内外多家大型炼锡企业,均取得较好的经济效益。
     对两种不同成分的铅锡锑三元合金分别进行小型和工业实验研究,并针对两种合金各自的特点,分别设计两种不同形式的工业实验设备,有效地解决高温锑液对不锈钢管的腐蚀问题。对于成分为Sn26%-Pb66%-Sb6%的三元合金,研制连续真空蒸馏设备,实验条件为蒸馏温度1150℃:,蒸馏时间50min,真空度0.5Pa,日处理能力10吨;对于成分为Sn81%-Pb10%-Sb6%的合金,设计半连续真空蒸馏设备,实验条件为蒸馏温度1200℃,蒸馏时间40min,真空度0.5Pa,日处理能力5吨;两种物料经真空蒸馏后得到锡中铅锑含量均在1%左右,满足后续加铝除锑精炼工艺的要求。
     对成分为Au259g/t-Ag3.11%-Cu1.69%-Pb47.48%-Bi5.84%-Sb27%-Sn8.35%-As2.8.%的铅基多元合金进行系统的小型、扩大和重现性实验研究,得到较好的实验结果,其中的贵金属金、银富集5-6倍,残留物中铅、铋的去除率达99%以上。实验结果证明采用真空蒸馏工艺对铅基多元合金进行分离,可以将贵金属金、银、铜与其它有价金属铅、锑、铋分开,减少贵金属在其它有价金属回收过程中的损失,降低回收成本并提高后期工序的回收效率。
With the decrease of the non-ferrous minerals and the increase of the wasted non-ferrous resources, it is exigent to reclaim and reuse the wasted resources. Lead free of solder and electron device greately deepened the deleading degree of lead based alloys. Owing to small space occupied, simple operation and friendly with the environment, vacuum distillation always has distinct characteristics and powerful vitality in non-ferrous metallurgy area. In this paper, certain lead based alloys, (Pb-Sn binary alloy, Pb-Sn-Sb ternary alloy and lead based multi-component alloy) familiar in non-ferrous field, were just separated with vacuum distillation method.
     Thermodynamic properties of an alloy play a key role in calculating separation degree with vacuum distillation, but due to the complexity of high temperature experiment, there is no enough available experimental data of thermodynamic properties to use, this can not meet the requirement of the researchers. Molecular dynamics (MD) method is an atomic level computer simulation, and is mostly used in materials and quantum chemistry science but less in metallurgy engineering. Monographes about thermodynamic properties have not been presented yet. Combined feature of vacuum distillation and advantage of MD method, thermodynamic properties of some Pb-X alloys, such as enthalpy of formation, free energy of formation and excess free energy etc., were simulated with molecular dynamics method. Exploratory research of vacuum distillation progress with MD method was carried out in this paper.
     Activtiy coefficients of some binary alloys, included in the lead based alloy, were calculated witholar interaction volume model(MIVM) and compared with available experimental ones,activity coefficients of Pb-Sn, Sb-Sn and Pb-Sb alloys, at 800-1300℃were predicted to calculate the feasibility and separation degree of vacuum distillation. Thermodynamic and kinetic analyses, such as saturated vapor pressure, separation coefficient and diagram of vapor-liquid phase equilibrium, of lead based alloys with vacuum distillation were performed.
     Based on systemic laboratory experiments of total components Pb-Sn alloy, industrialized experiments were carried out successfully. For the high lead material (Sn 22%-Pb 78%), the distillation temperature was controlled at 950℃, vacuum degree was 0.5Pa, and treatment capacity was 10t/a. The product was the cured lead with the purity over 99.5%and the cured tin in which lead content was about 8%. The high tin material (Sn 86%-Pb 12%) need to be treated two times at 1100℃and 1200℃, and the lead content in the tin was decreased below'0.01%, treatment capacity was 8t/a. With the improvement of condenser inside of the equipment, the industrial vacuum distillation experiment of Pb-Sn alloy was implemented successfully and energy consumption has been decreased about 20%. Modification of the outlet system lengthened service life of the components and parts of the equipment. Treatment scope was extended to total components Pb-Sn alloy and treatment capacity of the equipment was enlarged to 10t/d. The lead in the tin was successfully removed to less 0.01%. Treatment progress of total compoents Pb-Sn alloy with vacuum distillation has been proposed and applied to ECS Refining Texas, LLC, USA, Quexin Aifa Metal (Shenzhen) Co., Ltd, China, Yunnan Tin Group (Holding) Co., Ltd, China etc., and certain economic benefit has been achieved.
     According to the features of two, ternary Pb-Sn-Sb alloys, different forms of equipments were designed and the two alloys were separated in industrialized vacuum distillation experiments.The corrosion from high-temperature; antimony liquid to stainless steel tube was effectively slowed. For the Sn26%-Pb66%-Sb6% ternary alloy,.continuous distillation equipment was designed, and the experimental parameter was:.distillation temperature was 1150℃, distillation time was 50min, vacuum degree was 0.5Pa and daily capacity was 10 tons.For the Sn81%-Pb10%-Sb6% alloy, semi-continuous equipment was designed, the experimental parameter was 1200℃,40min,0.5Pa,and daily capacity was 5tons.The antimony content in both obtained crud tin was less than 1%, and the crude tin can meet the requirement of de-antimony with aluminum refining progress.
     Small scale, enlarged scale and repeatable experiments of lead based multi-component alloy-(Au259g/t-Ag3.11%-Cul.69%-Pb47.48%-Bi5.84%-Sb27%-Sn8.35%-As2.8%) were carried. out and the.noble metals, gold.and silver, were enriched .5-6 times, removing rate of lead and bismuth was more than 99%.. It was proved that separating the multi-component alloy with vacuum distillation can decrease the loss of noble metal, decrease the recovery cost, and increase the recovery efficiency of late treatment progress.
引文
[1]李松瑞,田荣璋.铅及铅合金[M].长沙:中南大学出版社.1996,12:1-5
    [2]彭容秋.铅冶金[M].长沙:中南大学出版社,2004,12:13
    [3]陈国发,王德全.铅冶金学[M].北京:冶金工业出版社,2000,4:2-9
    [4]何启贤,陆玺争.铅锑冶金生产技术[M].北京:冶金工业出版社,2005:6-8
    [5]邓听.国外铅锌资源形式概览[J].世界有色金属,2008(10):23-25
    [6]全球铅精矿产量[J].中国铅锌锡锑.2008年第10期:60-64
    [7]我国五大铅锌生产基地[J].现代材料动态.2007年第3期:17-18
    [8]雷力,周兴龙,文书明等.我国铅锌矿资源特点及开发利用现状[J].矿业快报.2007年9月第9期:1-4
    [9]张乐如.现代铅锌冶炼技术的应用与特点[J].世界有色金属.2007年第4期:20-22
    [10]叶国萍.基夫赛特炼铅法[J].有色金属冶炼部分.2000年4月:20-24
    [11]窦明民.基夫赛特(Kivcet)直接熔炼工艺的发展及现状[J].云南冶金.1998年4月:37-42
    [12]廖春发,聂华平,王秀红.基夫赛特工艺中铟的富集规律和机理探讨[J].中国有色冶金.2006年8月:29-34
    [13]周敬元,游力辉.国内外铅冶炼技术进展及发展动向[J].世界有色金属.1999年6期:7-12
    [14]陈海清,马兆华,刘亚雄.QSL炼铅法在我国的工业实践及主要操作参数的研究[J].湖南有色金属.2006年12月:12-16
    [15]杨斌.浅析QSL炼铅工艺的渣型选择[J].中国有色冶金.2004年8月:27-28
    [16]何国才.白银QSL炼铅工艺实践的回顾与展望[J].中国有色冶金.2004年8月:24-26
    [17]陈海清,马兆华,刘亚雄.QSL炼铅法在我国的工业实践及主要操作参数的研究.湖南有色金属:2006(6)22:12-16
    [18]王忠实.氧气底吹熔炼-鼓风炉还原炼铅工艺的开发和应用[J].中国有色金属学会第五届学术年会论文集.2003年8月:149-177
    [19]李东波,张兆祥.氧气底吹熔炼——鼓风炉还原炼铅新技术及应用[J].有色金属(冶炼部分).2003年5期:12-17
    [20]贺善持,李冬元.水口山炼铜法[J].中国有色冶金.2006年6期:6-9
    [21]李炬,王忠实.顶吹炼铅及其实践[J].有色冶炼.2001年12月:9-12
    [22]管国平.采用Ausmelt法改造会泽铅锌矿铅冶炼系统的设想[J].工程设计与研究.1997年12月:4-7
    [23]李俊良.浅析影响Ausmelt吹炼炉喷枪寿命的因素及对策[J].大众科技.2005年第9期:217-218
    [24]刘军,盛玉永.卡尔多炉炼铅设备运行及整改实践[J].工程设计与研究.2007,6:23-24
    [25]许冬云.卡尔多炉炼铅生产实践[J].工程设计与研究.2006年12月:7-8
    [26]刘金庭.卡尔多炉炼铅主体设备的转化设计[J].有色设备.2007年1期:23-26
    [27]宋光辉.瓦纽科夫法直接炼铅及其进展[J].工程设计与研究.2004年6月:5-8
    [28]郭明,许惟玲,刘中华,段继铭.瓦纽可夫熔炼炉直接炼铅新工艺探讨[J].有色金属(冶炼部分).2003年6期:24-26
    [29]赵秦生,彭长宏,李炬.瓦纽可夫熔池熔炼法炼铅[J].有色冶炼.2001年2月:15-16
    [30]宋光辉,张乐如.氧气侧吹直接炼铅新工艺的开发与应用[J].工程设计与研究.2005年9月:13-17
    [31]蔺公敏,宾万达.氧气侧吹直接炼铅炉[J].中国有色冶金.2005年12月:48-50
    [32]蔺公敏,宾万达.硫化铅精矿氧气侧吹熔池熔炼直接炼铅新技术.中国有色冶金.2005年2月:16
    [33]屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保[M].北京:化学工业出版社,2002.12:134-136
    [34]邱定蕃,吴义千,符斌,徐传华.我国有色金属资源循环利用[J].有色冶金节能.2005年8月:6-13
    [35]宋善明.再生有色金属利用与节能[J].世界有色金属.2006年3月:21-23
    [36]徐传华.中国再生有色金属生产现状及前景[J].世界有色金属.2004年4期:9-12
    [37]李一夫,戴永年,刘红湘.中国有色金属二次资源的回收利用[J].矿冶.2007年3月:87-89
    [38]2006年我国再生有色金属产业快速发展[J].资源节约与环保.2007年2期
    [39]曹异生.中国有色金属二次资源再生利用[J].世界有色金属.2005年6月:12-17
    [40]尚辉良.中国再生金属产业“十一·五”开局之年大盘点[J].世界有色金属.2007年2期:30-33
    [41]尚辉良,阮海峰.我国再生锌产业现状及预测[J].有色金属再生与利用.2006年5期:24-25
    [42]我国再生有色金属业发展迅速[J].资源节约与环保.2007年5月:16-17
    [43]奔凯.中国再生有色金属产业快速发展[J].上海有色金属.2007年6月
    [44]汪镜亮.从废弃的含锡资源中回收锡[J].矿产综合利用.1989.1
    [45]朱安云,孟广寿.2006年锡市回顾及2007年锡市简析.中国金属通报[J].2007,15:11-13.
    [46]王明玉,隋智通,涂赣峰.我国废旧金属的回收利用与再生.中国资源综合利用[J].2005,2:11-13.
    [47]戴永年,杨斌.有色金属真空冶金[M].2版.北京:冶金工业出版社,2009,2:2-5
    [48]D. P. Tao. A new model of thermodynamics of liquid mixtures and its application to liquid alloys. Thermochimica Acta [J].2000,363:105-113
    [49]D.P. Tao. Prediction of the thermodynamic properties of solutes in Bi-based ternary dilute solutions [J]. Metall Mater Trans B,2002,33B:502-506
    [50]C. Wagner. Thermodynamics of Alloys [M]. MA:Addison-Wesley,1952,51-53
    [51]陶东平.分子相互作用体积模型的基本特征和应用[J].昆明理工大学学报(理工版),29,2004,4:15-22
    [52]刘海江Ag/Ni, Cu/Ni, Ag/Cu异质界面的分子动力学模拟.东北大学硕士学位论文,2004
    [53]N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, et al. Teller Chem. Phys.,1953,21:1087
    [54]D.Raabe计算材料学(项金钟,吴兴惠译)[M],北京:化学工业出版社,2002
    [55]Frankel and Smith.分子模拟-从算法到应用(汪文川等译)[M],北京:化学工业出版社,2002
    [56]Furio Ercolessi. A molecular dynamics primer [M], Spring Collegein Computational Physics, ICTP,Trieste,1997
    [57]D.W. Heermann.理论物理学中的计算机模拟方法(秦克诚译)[M],北京:北京大学出版社,1996.8
    [58]M.P. Allen, D.J.Tildesley. Computer simulation of liquids [M], Oxford:Oxford Science,1996
    [59]陈魁英,李庆春.液态贵金属Au,Ag的局域结构与键取向序[J].物理学报,1992,41(11),1813
    [60]Z.H. Jin, K. Lu, Z.Q. Hu, et al. Atomic structures and electrical resistivities of ternary liquid alloys. J. Phys. Condense Matter.1997,9:1393-1406
    [61]Z.H. Jin, K.Y. Chen, K. Lu. Short-range order in liquid Na-Cd alloys. J. Phys. Condense Matter. 1996,8:8105-8119
    [62]H.B. Liu, K.Y. Chen. Atomic simulation of amorphization and crystallization of Ni3Al during rapid solidification. Philosophical Magazine B,1997,76(1):75-89
    [63]H.B. Liu, K.Y. Chen. Properties of the liquid-vapor interface of fcc metals calculated using the tight-binding potential. Philosophical Magazine A, 1997,75 (4)1067-1074
    [64]李辉.液态金属微观结构深化及遗传性研究.博士学位论文.山东工业大学,1999
    [65]R.S. Liu, S. Wang. Anomalies in the structure factor for some rapidly quenched metals. Phys. Rev. B,1992,46,12001-12003
    [66]刘让苏,李基永,周群益.非晶态金属形成过程中微观结构转变特性的模拟研究.科学报,1995,40(11)979
    [67]李基永,刘让苏,周征.液态金属的初始状态对凝固微结构影响的模拟研究.原子与分子物理学报,1998,15(2)193
    [68]李基永,刘让苏.液态金属铝及其凝固过程的微观结构转变特性.中国有色金属学1997,17(3),81
    [69]刘让苏,李基永.液态金属高温结构转变特性的模拟研究.物理学报,1995,44(10)1582
    [70]张爱龙.液态金属镍凝固过程的分子动力学模拟研究.湖南大学硕士学位论文.2005
    [71]J. Anusz, L.M. Holender. Molecular-dynamics studies of the thermal properties of the solid and liquid fcc metals Ag, Au, Cu and Ni using many-body interactions. Phys. Rev. B,1990,41(12),8054-8061
    [72]L.M. Holzman, J.B. Adams, et al. Properties of the liquid-vapor interface of fcc metals calculated using the embedded atom method. J. Mater. Res,1991,6(2)298
    [73]C. Regnaut. Thermodynamics and structure of liquid metals:the varational approach versus the optimized random phase approximation. J. Phys. F,1986,16,295-308
    [74]M. Sampoli, P. Benassi, et al. Numerical study of the low-frequency atomic dynamics in a Lennard-Jones glass. Philosophical Magazine.B,1998,77(2)473-484
    [75]H. Frank, R. Stillinger. Spectral dimension of a fractal structure with long-range interactions. Phys. Rev. B,1986,34 (8)456-459
    [76]S.K. Lai. Nonlocal pseudopotential calculation of the surface tension of simple liquid metals. J. Chem. Phys.1987,86 (4),2095-2104
    [77]S.P. Chen, A.F. Voter, R.C. Albers, et al.Investigation of the effects of boron on Ni3Al grain boundaries by atomistic simulations. J. Mater Res,1990,5(5),955
    [78]J.Q. Broughton, X.P. Li. Phase diagram of silicon by molecular dynamics. Phys. Rev. B,1987, 35(17),9120-9127
    [79]K. Ohno, Y. Maruyama, K. Esfarjani,et al. Ab initio molecular dynamics simulations for collision between C60 and alkali-metal ions. Phys. Rev. Lett,1996,76 (3),3590-3593
    [80]D.H. Li, X.R. Li, S. Wang. Variational calculation of helmholtz free energies with applications to the sp-type liquid metals. J. Phys. F. Met. Phys,1986,16,309-321
    [81]N.Q. Lam, L. Dagens. Calculations of the propertiesof single and multipled effects in nickel. J. Phys. F. Met. Phys,1986,16,1373-1384
    [82]J.F. Lutsko, D. Wolf, S. Yip, et al. Molecular-dynamics method for the simulation of bulk-solid interfaces at high temperatures. Phys. Rev. B,1988,38(16),11572-11581
    [83]C. Nihareadu, K.G. Swapan. A perturbative density functional approach to the structure of colloidal suspension. J. Chem. Phys.1998,108(17),7493-7500
    [84]P. Soderlind, L.H. Yang, J.A. Moriarty. First-principles formation energies of mono-vacancies in bcc transition metals [J]. Phys. Rev. B,2000,61(4):2579-2586
    [85]A. Satta, F. Willaime, S. de Gironcoli. First-principles study of vacancy formation and migration energies in tantalum [J]. Phys. Rev. B,1999,60(10):7001-7005
    [86]G. Bester, B. Meyer, M. Fahnle. Atomic defects in DO3-NiSb:an ab intitio study[J]. Phys. Rev. B, 1998,57(18):R11019-R11022
    [87]M.S. Stott, E. zaremba. Quasiatoms:an approach to atoms in nonuniform electronic systems [J] Phys. Rev.,1980, B22:1564-1583
    [88]J.K. Ncprskov, N.D. Lang. Effective-medium theory of chemical binding:application to chemisorption [J].Phys. Rev.,1980,B21:2131-2136
    [89]M.S. Daw, M.I. Baskes. Semiempirical quantum mechanical calculation of hydrogen embrittlement in metals [J]. Phys. Rev. Lett.,1983,50:1285
    [90]M.S. Daw, M.I. Baskes. Embedded-atom method:derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev.,1984,B29:6443-6453
    [91]R.A. Johnson. Analytic nearest-neighbor model for fcc metals [J].Phys. Rev.,1988, B37:3924-3931
    [92]D.J. Oh, R.A. Johnson. Simple embedded atom method model for fcc and hcp metals [J]. J. Mater. Res.,1988,34:71-478.
    [93]R.A. Johnson. Alloy models with the embedded-atom method, Phys. Rev.1989,B39:12554
    [94]R.A. Johnson, D.J. Oh. Analytic embedded atom method model for bcc metals [J]. J. Mater. Res., 1989,4:1195-1201
    [95]R.A. Johnson. Phase stability of fcc alloys with the embedded-atom method [J]. Phys. Rev., 1990,B41:9717-9720
    [96]R.A. Johnson. Many-body effects on calculated defect properties in hcp metals [J] Philo. Mag., 1991,A 63:865-872
    [97]龙朝辉.二元合金边际固溶度的嵌入原子方法研究.湖南师范大学硕士学位论文.2007
    [98]M.I. Baskes, J.S. Nelson, A.F. Wright. Semi-empirical modified embedded-atom potentials for silicon and germanium [J]. Phys. Rev. B,1989,40(9):6085-6100
    [99]Y.F. Ouyang, B.W. Zhang. Analytic embedded-atom potential for bcc metals:Applicatin to calculating the thermodynamic data of bcc alloys [J]. Phys. Lett. A,1994,192:79
    [100]B.W. Zhang, Y.F. Ouyang, S.Z. Liao et al. An analytic MEAM model for all BCC transition metals [J]. Physical B,1999,262(3-4):218-225
    [101]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用.湖南大学出版社.(2004)12:245-256
    [102]X.W. Zhou, H.N.G. Wadley, R.A. Johnson. Simulations of an interface crack nucleation during nanoindentaion:molecular dynamics and finite element coupling approach [J].Acta mater, 2001;49:4005
    [103]H.N.G. Wasley, X.W. Zhou, R.A. Johnson, M. Neurock. Mechanisms, model and methods of vapor deposition [J]. Progress Materic Scienc,2001;46:329
    [104]G.H. William. Equilibrium phase-space distributions [J]. Phys. Rev,1985; A 31:1695
    [105]J.M. Haile. Molecular dynamics simulation-elementary methods. New York:Wiley Inter Science, 1997:159
    [106]S. Nose. A unified formulation of the constant temperature molecular dynamics methods, J Chem Phys,1984,81:5-11
    [107]M. Parrinello, A. Rahman. Polymorphic transitions in single crystals:A new molecular dynamics method [J]. J. Appl. Phys,1981;52:7182
    [108]叶大伦,胡建华.实用无机物热力学手册.冶金工业出版社,2002
    [109]R. Hultgren, P.D. Dessai, D.T. Hawkins et al. Selected of the thermodynamic properties of binary alloy. Metal Park, Ohio:ASM,1973
    [110]D.P. Tao. Prediction of the thermodynamic properties of solutes in Pb-based dilute solutions. Thermochimica Acta [J].2002,385:5-10
    [111]D.P. Tao, D.F. Li, B. Yang. Prediction of the thermodynamic properties of quaternary liquid alloys by modified coordination equation. Thermochimica Acta [J].2002,383:45-51
    [112]D.P. Tao, B.Yang, D.F. Li. Prediction of the thermodynamic properties of quinary liquid alloys by modified coordination equation. Fluid Phase Equilibria [J].2002,193:167-177
    [113]D.P. Tao. Predication of the thermodynamic properties of binary continuous solid solutions by infinite dilute activity coefficients. Thermochimica Acta [J].2003,408:67-74
    [114]D.P. Tao. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions. Materials Science and Engineering [J].2004, A366:239-247
    [115]D.P. Tao, Z. Chen and D.F. Li etal. Comparison of the molecular interaction volume model with Wagner formulae in the Zn-Pb-In and Zn-Sn-Cd-Pb dilute solutions. J. Mater. Sci. Technol., 2004,20:279-284
    [116]D.P. Tao. Prediction of thermodynamic properties of the C-Fe-Co-Ni solid solutions by binary infinite dilute activity coefficients. Materials Science and Engineering [J].2005, A390:70-75
    [117]D.P. Tao. A new model of thermodynama of liquid mixtures and its application to liquid alloys [J]. Thermochim. Acta,2000,363:105-113
    [118]J.M. Prausnitz, R.N. Liehtenthaler, E.G.D. Azevedo. Molecular thermodynamics of fuild-phase equilibria [M].2nd Edition, Prentice-Hall, Englewood Cliffs, NJ,1986,286
    [119]胡英.流体的分子热力学[M]北京:高等教育出版社1982:486-487
    [120]T. Iida, R.I.L. Guthrie. The physieal properties of liquid metals. Clarendon Press, oxford, 1988:71-72.
    [121]高胜利,陈三平,谢刚.化学元素周期表[M].北京:科学出版社.2006
    [122]D.P.Tao. Predication of the thermodynamic properties of multicomponent liquid alloys by infinite dilute activity coefficients [J]. Metall Mater Trans. B,2001,32B:1205-1211
    [123]D.P.Tao. Prediction of the thermodynamic properties of solutions in Bi-based ternary dilute solutions [J]. Metall Mater Trans B,2002,33B:502-506
    [124]陶东平。液态合金和熔融炉渣的性质.理论.模型.计算[M].云南科技出版社.1996:313-315
    [125]D.P. Tao. Comparison of the molecular interaction volume model with the unified interaction parameter formalism in the Fe-Cr-Ni liquid alloys at 1873K. J. Mater. Sci. Technol.,2006, 22:559-564
    [126]H.W. Yang, D.P. Tao, Z.H. Zhou. Prediction of the mixing enthalpies of binary liquid alloys by molecular interaction volume model. Acta Metallurgica Sinica (English Letters) [J].2008, 21:336-340
    [127]D.P. Tao. Prediction of activities of all components in the lead-free solder systems Bi-In-Sn and Bi-In-Sn-Zn. Journal of Alloys and Compounds [J].2008,457:124-130
    [128]H.W. Yang, D.P. Tao, Q.M. Yuan, Y. Yang. Predicting the formation enthalpies of Cd-Ga-In-Sn-Zn liquid alloys by the limiting partial enthalpies. Fluid Phase Equilibria [J].2009, 275:64-69
    [129]D.P. Tao. Prediction of component activities in the molten aluminosilicate slag CaO-Al2O3-SiO2 by molecular interaction volume model. J. Master. Sci. Technol [J].2008,24:797-802
    [130]H.W. Yang, D.P. Tao, X.M. Yang, Q.M. Yuan. Prediction of the formation enthalpies of Bi-Cd-Ga-In-Pb-Sn-Zn liquid alloys by binary infinitely dilute enthalpies. Joural of Alloys and Compounds [J].2009,480:625-628
    [131]戴永年,赵忠.真空冶金[M].北京:冶金工业出版社,1988
    [132]戴永年,杨斌.有色金属材料的真空冶金[M].北京:冶金工业出版社,2000
    [133]叶大伦,胡建华编著.实用无机物热力学数据手册[M],北京:冶金工业出版社,2001
    [134]丘克强等.金属在真空状态下的蒸发速率.有色金属[J],2002,54:30-34
    [135]戴永年等.金属在真空中的挥发性.昆明工学院学报[J],1994,19(6):26
    [136]韩其勇.冶金过程动力学[M].北京:冶金工业出版社,1983:195-200
    [137]孙余一.铅锡合金真空蒸馏炉设计探讨[J].有色金属设计.1995年第3期,12-17
    [138]T.B. Massalski. Binary alloy phase diagrams, second edition plus updates. ASM International, The Materials Information Society,1996.
    [139]黄位森.锡[M].北京:冶金工业出版社,2000,1:591-594
    [140]I. Karakaya, W.T. Thompson. Bull. Alloy phase diagrams,9(2), Apr 1988.
    [141]J.L. Murray. Phase diagrams of binary titanium alloys,1987.
    [142]S.V. Nagender Naidu, A.M. Sriramamurthy, P. Rama Rao. Alloy phase diagrams,2(1), Jan 1986.
    [143]屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保[M].北京:化学工业出版社,2002:355-360
    [144]何纯孝,李关芳.贵金属合金相图及化合物结构参数.北京:冶金工业出版社,2007.
    [145]M. Hansen, K.Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, or General Electric Co., Business Growth Services, Schenectady, NY (1985).
    [146]D.J. Chakrabarti, D.E. Laughlin. Bull. Alloy Phase Diagrams,5(2), Apr 1984.
    [147]R.P.Elliott, Constitution of Binary Alloys, First Supplement, McGraw-Hill, New York, (1965).
    [148]肖若珀.砷的提取、环保和应用方向.广西金属协会出版社.广西.1992年12月
    [149]Metals Handbook, Metallography, Structures and Phase Diagrams, Vol.8.th ed., American Society for Metals, Metals Park, OH (1973).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700