三元合金形成焓理论模型及其在铝合金相变预测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合金的形成焓是合金热力学的最为重要的基本参数之一,多元合金的形成焓对于冶金、材料及其制备过程模拟和工艺优化都具有极为重要的作用。通过实验研究合金的热力学性质需要测定的数据量极为庞大,并且受到实验条件的限制,要测出所有合金的热力学参数是极为困难的,因此,从理论上预测合金热力学性质是必要的。本文针对三元系合金研究影响形成焓的因素并建立预测形成焓的理论模型,对于进一步研究多元系合金的形成焓及实际应用都具有十分重要的意义。
     本文通过分析现有计算三元合金形成焓模型,找出了影响三元合金形成焓的主要因素——组元的电子密度、电负性和原子间接触的表面积的变化。研究发现,当向二元系中添加第三组元时,原组元的电子密度、电负性等参数的变化量与其和第三组元的电负性的平均值成正比,得到三元系中的二元子系形成焓的计算模型,从而建立了三元合金形成焓理论模型。本文就Ni36Zr64Al、Al27Ni73Cu、Ni4Cu6Al、Cu49Al51Ni、Al62Zr38Cu、Zr2Cu8Al等合金的形成焓进行了理论预测,并与实验值和现在较流行的几何模型(周国治模型、Toop模型)进行了比较,计算结果与实验吻合,其精度高于周国治模型和Toop模型的预测结果。将本文模型应用于合金的过剩Gibbs自由能的预测中,计算简便而且效果较好,对合金Sb-Bi-Ga的计算结果与实验值基本吻合。本文还对铝合金相变预测进行了初步研究,利用热力学模型来计算合金的相变点,对Al-Si合金的富Al区的计算结果与相图数据吻合较好。
     通过本文研究得出电子密度、电负性、原子间接触的表面积等影响合金形成焓的主要参数的变化规律,以此建立的三元合金的形成焓理论模型对于凝固过程跨尺度计算机模拟及合金制备过程工艺参数优化具有实用价值。
The formation enthalpy is the most important thermodynamic parameters of alloy. The formation enthalpy of multi-alloy plays an important role in metallurgy, materials processing as well as the multiscal simulation of microstructural evolution and properties of alloys in the forming process. It is hard to experimentally measure all of the thermodynamic parameters for all alloys because of the tremendous amount of data as well as the limited experimental conditions. Therefore, it is necessary to theoretically predict thermodynamic properties of alloys. This paper studied the main factors influencing the formation enthalpy of ternary alloy and has established a theoretical model of formation enthalpy for ternary alloy. It is of great significance for the further study of the formation enthalpy for commercial alloy and practical applications.
     Theoretical analysis shows that the change of the electron density, the electronegativity and the atomic contact surface area has a large influence on the formation enthalpy. It is found that when adding to the binary system a third alloying element, the change of the electron density and electronegativity of the original component is proportional to the average value of electronegativity of said component and the third one. Thus we obtain the contribution of corresponding binary sub-system of the investigated system. Finally the model of formation enthalpy for ternary alloys is established. By using the proposed model, the formation enthalpy of such alloys as Ni64Zr36Cu, Ni36Zr64Cu, Ni36Zr64Al, Al27Ni73Cu, Ni4Cu6Al, Cu49Al51Ni, Al62Zr38Cu, Zr2Cu8Al, etc., is predicted. The calculated results are superior to that of Zhou model and Toop model, and well consistent with the experimental results. The application of the present model to the estimation of the excess Gibbs free energy of alloys is simple and effective. The calculated result for Sb-Bi-Ga alloy is in good agreement with the experimental data. In this paper, a preliminary study was made to calculate the phase-transformation of alloys. The calculated result for Al-Si alloys in Al-rich zone is in agreement with the phase diagram data.
     The influence of the change of the electron density, electronegativity, atomic surface area of contact affect on the formation enthalpy of alloy is obtained in this dissertation. The established model for tenary alloys can be used for the multiscale simulation of the materials forming process as well as the optimization of the processing parameters.
引文
1.关玉龙,屠宝洪,许诚信译Flemings M C凝固过程[M],北京:冶金工业出版社,1981,76-78.
    2.谢水声,黄声宏.半固态金属加工技术及其应用[M],北京:冶金工业出版社,1999,96-100.
    3.康皓.ZL201合金半固态模锻及数值模拟[D],东北大学硕士论文,2006.
    4.谢水声,潘洪平,丁志勇.半固态金属加工技术研究现状与应用[J],塑性工程学报,2002,9(2):1-10.
    5.徐骏,田战峰,曾怡丹,张志峰,石力开.铝合金半固态加工技术的应用研究[J],特种铸造及有色合金,2007压铸专刊,334-338.
    6.杨卯生,毛卫民,钟雪友.半固态合金成形的技术现状与展望[J],包头钢铁学院学报,2001,20(2):187-194.
    7.丁志勇.半固态铝合金触变成形的成形特性及数学模型的研究[D],北京:北京有色金属研究总院,2002.
    8.刘延辉,李宝成.铝和铝合金的特点及铝合金的强化[J],黑龙江科技信息,科苑论谈.
    9.吕兰兰.高性能ZL107合金的优化设计及应能研究[D],武汉:武汉理工大学,2006.
    10.刘世兴,张宪铭.变形铝合金通用化和系列化研究[J],航空标准化与质量,1999,(2):12-16.
    11.徐崇义,李念奎.2XXX系铝合金强韧化的研究与发展[J],轻合金加工技术,2005,33(16):13-17.
    12.扬首杰.新型高强铝合金的强韧化研究[D],北京:北京航空材料研究院,2008.
    13.何立子,崔建忠Al-Mg-Si系合金组织性能[D],沈阳:东北大学,2001.
    14.丁向群,何国求,陈成澍,刘小山,朱正宇.6000系汽车车用铝合金的研究应用进展[J],材料科学与工程学报,2005,23(2):302-305.
    15.刘昌斌,夏长清,戴晓元.高强高韧铝合金的研究现状及发展趋势[J],矿冶工程,2003,23(5):74-79.
    16.林学丰.高强高韧铝合金国内外发展趋势[J],铝加工,1999,22(1):52-55.
    17.田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向[J],轻合金加 工技术,2005,33(12):1-9.
    18.林顺岩,林君,田士.铝合金新材料的研制与发展方向[J],铝加工—学术综论,2007,173(1):29-34.
    19.贾泮江,陈邦蜂.高强高韧铸造铝合金的研究现状及发展[J],中国航空学会2007年学术年会,材料专题02.
    20.李元元,郭国文,罗宗强,龙雁.高强韧铸造铝合金材料研究进展[J],特种铸造及有色合金,2000,(6):45-47.
    21. Daw M S, Baskes M. Embedded atom method:Derivation and application to impurities, surfaces, and other defects in metals [J], Phys.Rev.B,1984,33(13):6443-6449.
    22. Daw M S, Baskes M. Semiempirical quantum mechanical calculation of hydrogen embrittlement in metals [J], Phy.Rev.Lett,1983,50(17):1285-1293.
    23. Clementi E, Roetti C. At.Data Nata Nucl.Data Tables,1981,26:197-202.
    24. Rose J H., Smith J R., Guinea F, Ferrante J. Universal features of the equation of the equation of state of metals [J], Phys.Rev.B,1984,29(6):2963-2969.
    25. Johnson R A. Analytic nearest neighbour model for bcc metals [J], Phy.Rev.B,1988, 37(8):3924-3931.
    26. Johnson R A. Alloy models with embedded atom [J], Phys.Rev.B,1989,39(17): 12554-12559.
    27. Johnson R A. Phase stability of fcc alloys with the embedded-atom method [J], Phys.Rev.B,1990,41(14):9717-9720.
    28..Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J], Phys.Rev.B,1992,46(5):2727-2742.
    29. Zhang B W, Ouyang Y F. Theoretical calculation of thermodymic data for bcc binary alloys with the embedded atom method [J], Phys.Rev.B,1993, (48):3022-3029.
    30. Zhang B W, Ouyang Y F. Calculations of the thermodynamic properties for binary hcp alloys with simple embedded atom method model [J], Z.Physik B,1993,92(4): 431-435.
    31. Dong P T. A new model of thermodynamics of liquid mixtures and its application to liquid alloys [J], Thermochimica Acta,2000,363(1-2):105-113.
    32. Dong P T. Prediction of the thermodynamic properties of solutes in Pb-based dilute solutions [J], Themochimica Acta,2002,385(1-2):5-10.
    33. Dong P T, Duen Fang Li, Bin Yang. Prediction of the thermodynamic properties of quaternary liquid alloys by modified coordination equation [J], Thermochimica Acta, 2002,383(1-2):45-51.
    34. Yang H W, Dong P T, Yuan Q M, Yang Y. Predicting the formation enthalpies of Cd-Ga-In-Sn-Zn liquid alloys by the limiting partial enthalpies [J], Fluid Phase Equilibria,2008,275(1-2):64-69.
    35. Yang H W, Dong P T, Zhou Z.H. Prediction of the mixing enthalpies of binary liquid alloys by molecular interaction volume model [J], Acta Metall.SIN.(Engl.lett.),2008, 5(21):336-340.
    36. Dong P T. Molecular entity vacancy model fluid phase equilibria [J],2006,250(1-2): 83-92.
    37. Miedema A R, Chatel P F, Boer F R. Cohesion in alloys-fundamentals of a semi-empirical model [J], Physica 100B,1980,16(2):1-28.
    38. Goncalves P, Almeida M. extended Miedema model:predicting the formation enthalpies of intermetallic phases with more than two elements [J], Physica B,1996, 228(3-4):289-294.
    39. Zhang B W, Jesser W A. Formation energy of ternary alloy systems calculated by an extended Miedema model [J], Physica B,2002,315(1-3):123-132.
    40. Wang W C, Li J H, Yan H F, Liu B X. A thermodynamic model proposed for calculating the standard formation enthalpies of ternary alloy systems [J], Scripta Materialia,2007, (56):975-978.
    41. Li H Q, Yang Y S, Tong W H, Wang Z Y. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model [J], Journal of alloys and compounds,2007, (428):185-189.
    42. Cao W, Chang Y A, Zhu J, Chen S, Oates W A. thermodynamic modeling of the Cu-Ag-Au system usingthe cluster/site approximation [J], Intermetallics,2007, (15): 1438-1446.
    43. Arthur D P. A general "geometric" thermodynamic model for multicomponent solutions [J], Calphad,2001,25(2):319-328.
    44. Chou K C. A new solution model for predicting thermodynamic properties of multicomponent system from binaries [J], Calphad,1995,19(3):315-325.
    45.乐启炽,张建新,崔建忠,路贵民.金属合金溶液热力学模型研究进展[J],金属学报,2003,39(1):35-42.
    46.王海川,董元篪.金属熔体热力学模型的研究进展[J],安徽工业大学学报,2001,18(1):1-4.
    47.周鸿翼.镁合金的热力学性质计算研究[D],重庆:重庆大学,2006.
    48.郑志刚.合金热力学性质的Miedema理论计算[D],南宁:广西大学,2005.
    49. Wang Z C, Luck R, Predel B. New models for computing thermodynamic properties and phase diagrams of ternary systems Part 1:three-factor models [J], Calphad,1990, 3(4):217-234.
    50. Wang Z C, Luck R, Predel B. New models for computing thermodynamic properties and phase diagrams of ternary systems Part 2:multi-factor models [J], Calphad,1990, 3(4):235-256.
    51. Zheng F, Zhang Q R. A new model for predicting thermodynamic properties of ternary metallic solution from binary components [J], Chem. Thermodynamics,2006, (38): 1079-1083.
    52. Zheng F, Guan Z Q. A metallic solution model with adjustable parameter for describing ternary thermodynamic properties from its binary constituents [J], Chem.Thermodynamics,2007, (39):1241-1246.
    53.何燕霖,李麟,吴晓春.计算热力学在钢中非金属夹杂物中的应用[J],上海:上海金属,2004,26(1):1-6.
    54.乔芝郁.冶金和材料计算物理化学[M],北京:北京工业出版社,1999,1-14.
    55.沙维Thermo-Calc热力学计算系统及其在材料研究中的应用[J],材料科学与工程,1992,10(2):40-43.
    56. Munster A. Statistical thermodynamics [J], New York:Academic Press,1974, (Ⅱ): 321-372.
    57. Fang F, Shu X L, Deng H Q, Hu W Y, Zhu M. Modified analytic EAM potentials for the binary immiscible alloys systems [J], Materials Science and Engineering,2003, (355):357-367.
    58. Yang H W, Dong P T, Zhou Z. H. Prediction of the mixing enthalpies of binary liquid alloys by molecular interaction volume model [J], Acta Metall Sinica Engl Lett,2008, 21(5):336-340.
    59. Ouyang Y F, Zhong X P, Du Y, Jin Z P, He Y H, Yuan Z H. Formation enthalpies of Fe-Al-RE ternary alloys calculated with a geometric model and Miedema's theory [J], Journal of Alloys and Compounds,2006, (416):148-154.
    60. Miedema A R. Energy effects and charge transfer in metal physics modelling in real space [J], Physica B,1992, (182):1-17.
    61. Miedema A R, Chattel P F, Boer F R. Cohesion in alloys-fundamentals of a semi-empirical model [J], Physica B,1980, (100):1-28.
    62.张邦维.合金系统形成热的Miedema理论[J],上海:上海金属,1993,15(5):23-30.
    63. Ouyang Y F, Zhang B W, Liao S Z. Thermodynamical calculation of formation enthalpies for alkaling metal alloys [J], Tarnsactions of nfsoc,1995,5(1):94-100.
    64.陈红梅,阳义平.贵金属与钙二元合金形成热Miedema理论计算[J],南宁:广西大学学报,2000,25(1):32-34.
    65.周鸿翼,刘天模,王金星Mg-Zn合金的热力学性质计算[J],重庆:重庆大学学报,2006,29(12):68-71.
    66.路贵民,乐启炽,崔建忠Zn-Mn和Zn-Ti二元合金热力学性质[J],沈阳:中国有色金属学报,2001,11(1):95-98.
    67.刘晓芝,陈红梅,欧阳义芳,吴伟明,文慧.铝基碱土金属二元合金形成热的经验理论计算[J],南宁:广西物理,2001,22(4):2-4.
    68. Miedema A R. Energy effects and charge transfer in metal physics modeling in real space [J], Physica B,1992, (182):1-17.
    69. Ouyang Y F, Zhong X P, Du Y, Yuan P F, He Y H. Enthalpies of formation for the Al-Cu-Ni-Zr quaternary alloys calculated via a combined approach of geometric model and Miedema theory [J], Journal of Alloys and Compounds,2006, (42):175-181.
    70.李文超.冶金热力学[M],北京:冶金工业出版社,1995,131-137.
    71.飞思科技产品研发中心MATLAB 6.5甫助优化计算与设计[M],北京:电子工业出版社,2003,156-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700