聚丙烯腈基炭—炭复合膜的制备及结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先综述了膜分离的发展状况,并着重从炭膜的分类、制备、分离机理、结构表征、应用及未来发展前景展望等六方面对炭膜进行了系统的介绍。之后,详细阐述了以聚丙烯腈为前驱体,以煤基炭管为支撑体,采用浸渍涂膜法成膜后经干燥、预氧化、炭化制备出聚丙烯腈基复合炭膜的过程。考察了成膜条件(涂膜液浓度,浸渍条件,干燥条件以及涂膜次数等)、预氧化条件、炭化条件以及添加剂对聚丙烯腈基炭膜性能的影响。同时,采用了SEM、TG、FTIR、XRD及Raman等分析手段对PAN炭膜在氩气氛围下形成过程中的复合效果、热解机理、热解反应动力学、炭结构和孔结构的形成进行了研究,并与真空氛围进行了相应的比较。
     实验结果表明:通过调整实验参数能够制备出复合效果较好,膜层厚度均一,孔径分布均匀,表面光滑无缺陷的聚丙烯腈基复合炭膜。聚丙烯腈炭膜形成过程中主要经历乐了三个阶段:脱水和溶剂挥发阶段;分解阶段(发生了环化、交联、链断裂反应);深化交联阶段。在分解阶段其热解反应是分段进行的,各阶段有着各不相同的活化能和频率因子,其反应均为一级反应。随热解温度的升高,炭膜微晶结构在a轴方向得到发展,层间距不断增大,由线型有序结构转变为乱层石墨结构。通过比较聚丙烯腈在氩气和真空氛围下的热解,可以得出聚丙烯腈在真空氛围中的热解反应活化能低于氩气氛围中的活化能,说明真空氛围能够降低热解反应的温度,加速反应的进行。而且真空氛围下制备的聚丙烯腈炭膜微晶有序度高,结构缺陷和孔隙均小于氩气氛围下制备的炭膜。根据聚丙烯炭膜孔结构形成模型,可以推断出真空和惰性氛围中制备的炭膜的孔隙尺寸分别为0.71×1.23×1.28nm和0.72×1.48×1.56nm。
The latest development of membrane separation, especially carbon membranes on the category, preparation, separation mechanism, application and future direction are presented in the thesis. A carbon-carbon composite membrane is prepared by pyrolysing polyacrylonitrile membrane using dip-coating method on tublar carbon support derived from coal. The experiments are carried out to investigate the effects of membrane formation conditions such as concentration of PAN solution, dip-coating parameters, drying parameters and coating numbers, preoxidation conditions, carbonization conditions and additives on the properties of PAN-based carbon membranes. The pyrolysis mechanism, the reaction kinetics, the formation of carbon and pore structure of PAN-based carbon-carbon composite membrane formed in Ar and vacuum are studied by SEM, TG, FTIR , XRD and Raman analysis and their differences are compared.The results indicate that a thin, crack-free PAN-based composite carbon membrane can be prepared by optimizing the experimental parameters. There are three stages during pyrolysis of PAN membrane. In the early stage, dehydration and solvent volatilization of PAN membrane are obvious. Three kinds of reactions such as cyclization, crosslinkling and cleavage of liner PAN chain occur in second stage. In the final stage, the cross-link degree of molecular chain increases and transforms into ladder-shaped reticular structure. The three reactions occurred in the second stage all follow the first order reaction and the corresponding parameters such as activation energy and pre-exponertial factor are different. With the increase of pyrolysis temperature, the graphitic layer planes gradually grow along a axis direction and the doo2 values increase. It indicates that PAN transits from the linear molecular structure to the turbostratic graphitic structure. By comparing the pyrolysis process of PAN in Ar with that in vacuum, it is found that the thermal activation energy in vacuum is lower than that in Ar, which indicates that the vacuum atmosphere favors the degradation reaction. Furthermore, the carbon membrane prepared in vacuum has higher order degree, lower structure defect and smaller pore than that prepared in vacuum. According to pore model, the theoretical pore sizes formed in vacuum and Ar are approximately 0.71×1.23×1.28 nm and 0.72×1.48×1.56nm, respectively.
引文
[1] 王湛.膜分离技术基础.北京:化学工业出版社.2000.
    [2] 黄仲涛,曾昭槐,钟邦克等.无机膜技术及其应用.北京:中国石化出版社,1998.
    [3] 时钧,袁权,高从堦.膜技术手册.北京:化学工业出版社,2001
    [4] [德] R Rautenbach著,王乐夫译.膜工艺—组件核装置设计基础.北京:化学工业出版社,1998.5
    [5] 郑领英,王学松.膜技术.北京:化学工业出版社,2000.
    [6] 汪锰,王湛,李政雄.膜材料及其制备.北京:化学工业出版社,2003.
    [7] 徐南平,邢卫红,赵宜江.无机膜分离技术与应用.北京:化学工业出版社,2003.
    [8] Saufi S M, Ismail A E. Fabrication of carbon membranes for gas separation-a review. Carbon, 2004,42:241-159.
    [9] Ash R, Baker R W, Barrer R W. Sorption and surface flow in graphitized carbon membranes. I. The steady state, Proc. Roy. Soc, 1967, 299:434-454.
    [10] Ash R, Baker R W, Barrer R W. Sorption and surface flow in graphitized carbon membranes. Ⅱ.Time-lag and blind pore character, Proc. Roy. Soc, 1968,304:407-425.
    [11] Koresh J E, Soffer A, Molecular sieve carbons permselective membrane. Part Ⅰ. Presentation of New Device for Gas Mixtures Separation. Sep. Sci. Technol, 1983, 18: 723-734.
    [12] Ismail A E, David L I B. A review on the latest development of carbon membranes for gas separation. J. Membr. Sci, 2001, 193: 1-18.
    [13] 宋成文,王同华,邱介山等.炭膜制备技术的研究进展.化工进展,2003,22:961-964.
    [14] Hatori H, Yamada Y, Shiraishi M. Preparation of macroporous carbon films from polyimideby phase inversion method, Carbon, 1992,30:303.
    [15] 王同华,张宏哲,潘艳秋等.煤基管状炭膜的研究.第二届海峡两岸炭材料研讨会暨第三届全国青年炭素工作者会议.大连,2001.
    [16] Petersen J, Matsuda M. Haraya K. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation, J. Membr. Sci., 1997, 131: 85.
    [17] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon. 1996,34:1427.
    [18] Saufi S M, Ismail A F. Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. J Sci Technol. 2002, 24(Suppl):843
    [19] Schindler E, Maier F. Manufacture of porous carbon membranes. US patent 4919860, 1990.
    [20] Yoneyama H, Nishihara Y. Porous hollow carbon fiber film and method of manufacturing the same. EP patent 0394449, 1990.
    [21] Linkov V M, Sanderson R D, Jacobs E P. Carbon membranes from precursors containing low-carbon residual polymers. Polym Inter 1994,35:239.
    
    [22] Geiszler V C. Polyimide precursors for carbon membranes. University of Texas, PhD thesis, 1997.
    [23] Smith S P J, Linkov V M, Sanderson R D, et al. Preparation of hollow-fibre composite carbon - zeolite membranes. Micro Mat 1995, 4:385
    [24] Linkov V M, Sanderson R D, Rychkov B A. Composite carbon - polyimide membranes, Mater Lett 1994,20:43.
    [25] David L I B, Ismail A F. Influence of the thermostabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. J Membr Sci2003, 213:285
    [26] Sedigh M G, Onstot W J, Xu L F, et al. Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieve membrane. J. phys. Chem. 1998, 102:8580
    [27] Shiflett M B, Foley H C. On the preparation of supported nanoporous carbon membranes. J Membr Sci 2000,179:275
    [28] Acharya M, Foley H C. Sparaycoating of nanoporous carbon membrane for air separation . J Membr Sci ,1999 ,161 :1.
    [29] Sedigh M G, Onstot W J, Xu L, et al. Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieves membranes. J Phys Chem A1998,102:8580
    [30] Huanting W, Lixinong Z. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization . J Membr Sci ,2000 , 177:25.
    [31] Jones C W, Koros W J. Carbon molecular sieve gas separation membranes I --preparation and characterization based on polyimide precursors. Carbon 1994;32:1419-25.
    [32] H Hatori , Y Yamada ,M Shiraishi. Preparation of macroporous carbon films polyimide by phase inversion method. Carbon ,1992 ,30 :303.
    [33] Ogawa M, Nakano Y. Gas permeation through carbonized hollow fiber membranes prepared by gel modification of polyamic acid. J Membr Sci 1999;162:189-98.
    [34] Yamamoto M, Kusakabe K, Hayashi J,et al. Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube. JMembr Sci 1997:133:195-205.
    [35] Hayashi J, Yamamoto M, Kusakabe K, et al. Simultaneous improvement of permeance and permselectivity of 3,304,40-biphenyltetracarboxylic dianhydride-4,40-oxydianiline polyimide membrane by carbonization. Ind Eng Chem Res 1995:34:4364-70.
    [36] Fuertes A B, Centeno T A. Carbon molecular sieve membranes from polyetherimide.Microporous Mesoporous Mater 1998;26:23-6.
    
    [37] Sedigh M G, Xu L, Tsotsis T T, et al. Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes. Ind Eng Chem Res 1999:38:3367-80.
    [38] Coutinho M B, Salim V M M, Borgees C P. Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon 2003:41:1707-14.
    [39] Fuertes A B. Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramictubes . Separa Purif Techno ,2001,25 :379 -384.
    [40] Fuertes A B. Adsorption2selective carbon membranefor gas separation . J Membr Sci . 2000, 177 : 9-16.
    [41] Hayashi J, Mizuta H, Yamamoto M el at. Pore size control of carbonized BPDA2pp' ODA polyimide membrane by chemical vapor deposition of carbon. J Membrane Sci, 1997,124 : 2432251.
    [42] Fuertes A B, Nevskaia D M, Centeno T A. Carbon molecular sieve membranes from polyetherimide, Microporous and Mesoporous Materials, 1999, 33 : 115
    [43] Huanting W, Lixiong Z, Gavalas G R. Preparation of supported nanoporous carbon membranes, J. Membr. Sci, 2000, 177 : 25
    [44] Shiflett M B, Foley H C. On the preparation of supported nanoporous carbon membranes. J. Membr. Sci, 2000,179:275
    [45] Kusuki Y, Shimazaki H, Tanihara N et al. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyamide hollow fiber membrane. J Membr Sci 1997,134:245-53.
    [46] Centeno T A, Fuertes A B. Carbon molecular sieve membranesderived from a phenolic resin supported on porous ceramic tubes. Sep. Purif. Tech. 2001,25:379-84.
    [47] Centeno T A, Fuertes A B. Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). Carbon 2000,38:1067-73
    [48] Chen J C. Modification of polyacrylonitrile (PAN) precursor fiber via post-spinning plasticization and stretching. The Pennsylvania State University, PhD thesis, 1998.
    [49] Schindler E, Maier F. Manufacture of porous carbon membranes. US patent 4919860, 1990.
    [50] Soffer A, Gilron J, Saguee S, et al. Process for the production of hollow carbon fiber membranes. European patent 0671202, 1995.
    [51] Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results . J Membrane Sci, 2003,211:3112334.
    [52] Kawabuchi Y, Kishino M , Kawano S et al. Langmuir, 1996, 12:4281
    [53] Hayashi J , Mizuta H , Yamamoto M et al. Pore size control of carbonized BPTA-ppODA polyimide membrane by chemical vapor deposition of carbon, J. Membr. Sci, 1997,124:243
    [54] Zhonghua H, Vansant E F. Carbon molecular sieves produced from walnut shell, Carbon, 1995,33:561
    
    [55] Fuertes A B. Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes, Carbon, 2001,39:697
    [56] Smith S P J, Linkov V M, Sanderson R D et al. Preparation of hollow-fibre composite carbon-zeolite membranes, Microporous Materials, 1995,4:385
    [57] Jones C W, Koros W J. Characterization of ultramicroporous carbon membranes with humidified feeds, lnd Eng Chem Res, 1995,34:158
    [58] Jones C W, Eoros W J. Carbon composite membranes:a solution to adverse humidity effects, Ind Eng Chem Res, 1995,34:164
    [59] Menendze I, Fuertes A B. Aging of carbon membranes under different environments, Carbon, 2001,39:733
    [60] Staudt B C, Koros W J. Improvement of CO_2/CH_4 separation characteristics of polyimides by chemical crosslinking, J. Membr. Sci, 1999,155:145
    [61] Kita H, Inada T, Tanaka K et al. Gas permselecivity of carbonized polypyrrolone membrane, J. Membr. Sci, 1997,124:161
    [62] 梁长海,李德付,郭树才.炭膜气体分离性能研究,炭素.1996,4:23-27
    [63] 王树森等,分子筛炭膜的孔径分布和气体的临界尺寸,北京工业大学学报,1995,21(4):56-62
    [64] 魏微,刘淑琴,王同华等.气体分离用炭膜,炭素技术,1999,6:37-39
    [65] Geiszler V C, Koros W J. Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties, Ind Eng Chem Res. 1996,35:85
    [66] Shusen W, Meijun Z, Zhizhong W. Carbon membrane for gas separation, Sep Sci Technol. 1996,31:2299-2306
    [67] 李传峰,钟顺和,无机膜的气体传递机理和模型,膜科学与技术,2000,20(3):33-37
    [68] Jones C W, Koros W J. Carbon molecular sieve gas separation membranes. Part Ⅱ. Regeneration following organic exposure, Carbon, 1994,32:1427-1432
    [69] Centeno T A, Fuertes A B. Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl choride), Carbon, 2000,38:1067-1073
    [70] 李琳译.膜技术基本原理.第二版,清华大学出版社,1999.
    [71] 丁祥金,张继周,宝志琴等.泡点法测定孔径分布的改进.无机材料学报,2000,15(3):493-498
    [72] Junichiro H, Hirotaka M, Masatake Y et al. Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon. J Memb Science, 1997,124:243
    [73] Suda H, Haraya K. Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide. J Phys them B , 1997,101:398823994.
    [74] Hidetoshi Kita, HlMaeda, KlTanaka, et allCarbonmolecular sieve membrane prepared from phenolic resin. Polymeric Materials Science and Engineering, 1997,77:323-324
    [75] C. W. Jones, V. J. Koros. Carbon molecular sieve gas separation membranes preparation and characterizationbased on polyimide precursors. Carbon, 1994,32(8):1419-1425
    
    [76] Suda H, Haraya K. Alkene/alkane permselectivities of a carbon molecular sieve membrane, J. Chem. Soc. Chem. Commun, 1997:93-94
    [77] Kenjo. International symposium on Carbon. Japan. 1998:560
    [78] Geiszler V C, Koros W J. Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties, Ind Eng Chem Res, 1996,35:2999-3003
    [79] Bauer J M, Eyassini J, Moncorge G et al. New developments and applications of carbon membranes. Key Engineering Materials, 1991, 61:207-212
    [80] 王同华,魏微,刘素琴等.管状多孔炭膜的研究.新型炭材料,2000,15(1):6-11
    [81] 徐根良,曾静,翁建庆.含油废水处理技术综述.水处理技术,1991,17(1):1-12
    [82] 张玉忠,李然,李泓.中空纤维超滤膜处理含油污水.环境化学,1997,16(3):241-246
    [83] 宋航,Field R, Arnot T. 用微滤处理乳化含油废水.水处理技术,1994,20(2):95-98
    [84] 李永发,李阳初,孙亮.含油污水的超滤法处理.水处理技术,1995,21(3):145-148
    [85] 王细凤,潘艳秋,王同华等.炭膜处理含油污水的研究.膜科学与技术,2001,21(6):59-62
    [86] Baudu J M, Cloriec P L, Martin G. Pollutant adsorption onto activated carbon membrane. Wat Sci Tech, 1991,23(7):1659-1666
    [87] Luis E S, Joyce D. Determination of chlorophenolics in water by membrane solid phase extraction: Comparison between C18 and activated carbon membranes and between modes of extraction and elution. Journal of Chromatography A, 1999, 840(1):21-30.
    [88] Sojo L E. Application of activated carbon membranes for on21ine cleanup of vegetable and fruit extracts in the determination of pesticide multiresidues by gas chromatography with mass selective detection. Journal of Chromatography A, 1997, 788(1-2):141-154.
    [89] Lapkin A A, Tennison S R, Thomas W J. A porous carbon membrane reactor for the homogeneous catalytic hydration of propene. Chemical Engineering Science, 2002,57(13):2357-2369.
    [90] Exeeva O K, Iitchenko N L, Komskya O A et al. Adsorption catalytic purification by carbon fibers. Automotive Industry in Expanding Countries. Buenos Aires, Argent:SAE, 1991, 261-270.
    [91] Damle A S, Gangwal S K, Venkataraman V K. Gas separation and purification, 1994,8(3): 137-147.
    [92] Itoh N, Haraya K. A carbon membrane reactor, Catalysis today. 2000, 56:103-111.
    [93] 王同华,刘淑琴,尤隆渤.煤基管状炭膜支撑体的研究(Ⅰ)原料性质对支撑体孔结构性能的影响.煤炭转化.1998,21(3):73-76.
    [94] 戴英,朱秀玲,蹇锡高等.新型聚醚砜酮超滤膜的制备及性能研究.大连理工大学学报.1999,39(4):509-513.
    [95] 魏微,胡浩权,尤隆渤.酚醛树脂基气体分离炭膜制备.大连理工大学学报.2000,40(6):692-695.
    [96] Venkataraman K, Choate W T, Torre E R et al. Characterization studies of ceramic membranes: a novel technique using a coulter porometer, J Membr Sci, 1988(39):259-271.
    
    [97] 李青山,沈新元.腈纶生产工学.北京:中国纺织出版社,2000.
    [98] Thomas J X, Michael A M, Charles A W. The thermal degradeation of polyacrylonitrile. poly Degra Stab, 1997,58:193
    [99] 王茂章,贺福.碳纤维的制造性质及其应用.北京:科学出版社,1984.50
    [100] Surianarayanan M, Uchida J, Wakakura M. Evolved gases by simultaneous TG-MS technique and associated thermal hazard in drying of polyacrylonitrile. J Loss preve pro Indus, 1998, 11:99
    [101] 王曾辉,高晋生.碳素材料.上海:华东化工学院出版社,1991.
    [102] Huron J L, Meyback J. Eur Polym J, 1977, 13:553
    [103] 沈兴.差热、热重分析与非等温固相反应动力学.北京:冶金工业出版社,1995.
    [104] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985.
    [105] 李余增.热分析.北京:清华大学出版社,1987.
    [106] 韩永霞,姚昭章.升温速度对煤热解动力学的影响.华东冶金学院学报,1999,16:318
    [107] 朱学栋,朱子彬,张成芳.煤热失重动力学研究.高校化学工程学报,1999,13:223
    [108] Coleman M M, Petcavicr R J. J Polym Sci Polym Phys, 1978,16:821
    [109] Fochler, Mooney H S, Ball J et al. J G Spectrochim Acta, 1985,41A:271
    [110] Shimada I, Takahagi T, Fukuhara M et al. J Polym Sci: Polym Chem, 1986,24A:1989
    [111] Painter P C, Yamada Y, Jenkias R G et al. Fuel, 1979,58:293
    [112] Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separateion-a review. Carbon, 2004,42:241-259
    [113] Vincent C G, William J K. Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane propertyes. Ind Eng Chem Res, 1996, 35:2999-3003.
    [114] Centeno T A, Vilas J L, Fuertes A B. Effects of phenolic resin pyrolysis condition on carbon membrane performance for gas separation. J Membr Sci, 2004,228:45-54.
    [115] Dichens B. Thermally degradeing polyethylene studied by means of factor-jump thermogravimetry. J Polym Sci, Polym Chem, 1982a, 20:1065
    [116] Dichens B. Thermally degradation study of isotactic polyethylene using factor-jump thermogravimetry. J Polym Sci, Polym Chem, 1982a, 20:1169.
    [117] 贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1997.
    [118] Leroy S, C Boiziau, Perreau J et al. Molecular structure of an electropolymerized polyacrylonitrile film and its pyrolyzed deriveatives. J Molecular structure, 1985, 128:269-281.
    [119] Tsehao K, Wenshyong K, Yinghuang C. Raman study of the microstructure changes of phenolic resin during pyrolysis. Polymer Composites, 2000,21:745-750.
    
    [120] Andrew K K, Dennis C N. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis. Carbon, 2003,41:15-27.
    [121] Yu W, Santiago S, Jorge J et al. Raman characterization of carbon nanofibers prepared using electrospinning. Synth Metals, 2003,138:423-427.
    [122] Tuinstra F, Koening J L. Raman spectrum of graphite. J Chem Phys, 1970,53:1126
    [123] 王曾辉,高晋生.碳素材料.上海:华东化工学院出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700