纳米结构金属膜的制备与丙烷脱氢膜反应过程的数学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有序纳米结构金属材料在催化、电池、燃料电池及传感器等领域有潜在的应用前景,溶致液晶模板法是合成这种新型材料的主要方法之一。本文以非离子表面活性剂Brij56形成的溶致液晶为模板,在不同基体上分别采用化学沉积和电化学沉积法合成了有序纳米结构金属/双金属膜,模拟了它们在膜反应器中对丙烷脱氢反应的催化性能。
     以非离子表面活性剂分别与金属盐、双金属盐水溶液构建层状、六方相液晶,用偏光显微镜、低角XRD等手段研究金属盐性质、水相组成对液晶结构及其稳定性的影响。
     在多孔α-Al2O3基体上,利用水合肼与溶解在液晶水相的金属前驱物的反应,制得与基体紧密结合、结构高度有序的层状及六方纳米结构金属(Pd、Pt)膜。
     在多孔α-Al2O3基体上,用水合肼同时还原液晶水相中的两种金属前驱物,合成沉积在多孔基体上的层状和六方纳米结构PdAg、PdPt双金属膜。分析了产物组成及两种组分在其中的分布情况。
     用化学镀法在多孔α-Al2O3基体上制备致密Pd膜,考察合成条件对Pd膜性能的影响。以表面处理后的Pd膜为基体,在其上电化学沉积六方纳米结构金属Pt膜,制得Pt-Pd/α-Al2O3复合材料。分析产物组成,通过低角XRD、TEM等手段表征产物结构,考察沉积电势、液晶水相中金属前驱物浓度等对Pt膜结构及结构参数的影响,用循环伏安法测定纳米结构Pt膜比表面积为13.8 m2 g-1。
     研究产物与液晶模板之间结构对应关系,初步探讨引起二者尺寸不匹配的原因。分析认为,化学沉积或电化学沉积时基体提供的沉积界面、液晶模板中金属前驱物浓度等对产物结构参数有一定影响。该结果为调控纳米结构提供了一种新的、简便的方法。
     以丙烷催化脱氢为模型反应,模拟氧化铝基体上Pt膜及Pt-Pd双层膜在膜反应器中的行为,并与固定床反应器及传统Pd膜反应器进行比较,考察吹扫气流量、压力、温度及反应体积等对丙烷转化率的影响。模拟结果显示,除可免除填充催化剂颗粒外,双层膜反应器可在更加微小的反应器中保持较高的丙烷转化率,具有传统膜反应器不可比拟的优势。
Well-defined periodic nanostructured metal materials are promising candidates with potential applications in catalysis, batteries, fuel cells and sensors. Lyotropic liquid crystalline templating strategy is a versatile approache for the synthesis of this new kind of materials. In this thesis, ordered nanostructured metal / bimettalic films were deposited chemically or electrochemically on different substrates by using lyotropic liquid crystalline templates exhibited by the nonionic surfactant Brij56. The performance of the as-resulted membrane reactors composed of nanostructured Pt films on Al2O3 or on dense Pd membranes was compared with that of conventional fixed-bed and Pd membrane reactors for the catalytic dehydrogenation of propane. The major research works might be summarized as follows:
     Lamellar and hexagonal liquid crystalline phases were formed by mixing Brij56 and aqueous precursor solutions containing one or two metal salts. The effects of the precursor nature and the composition of the templating mixture on the nanostructure and stability of the liquid crystalline phase were investigated by means of POM and low-angle XRD.
     Reactions between hydrazine hydrate and metal salts dissolved in aqueous domains of the liquid crystalline templates resulted in the nanostructured metal Pd and Pt films chemically deposited on porousα-Al2O3 substrates. These films possessed well-defined lamellar or hexagonal nanostructure and strongly adhered to the substrates.
     Co-reduction of two-metal species in the presence of liquid crystalline phase by hydrazine hydrate produced lamellar nanostructured PdAg and hexagonal nanostructured PdPt bimetallic films chemically deposited onα-Al2O3 substrates. Composition and distribution of two metals in the as-resulted bimetallic films were analyzed.
     Dense Pd membrane was electrolessly plated onα-Al2O3 substrates and the effect of plating procedure on the quality of the Pd coating was studied. Electrochemical deposition of nanostructured Pt films on the surface of post-treated dense Pd membrane produced Pt-Pd two-layer films. The composition was analyzed and the nanostructure of Pt films was characterized with low-angle XRD and TEM. Effects of deposition potentials and precursor concentration in aqueous domains of liquid crystalline templates on the nanostructure and lattice parameter were investigated. Cyclic voltammetry experiments gave the active specific surface areas of Pt films of 13.8 m2 g-1.
     Relations between the template media and the templated inorganic structures were discussed with focus on the reasons leading to size mismatch between them. In fact, this founding might be a simple and convenient way controlling over nanostructure.
     Simulation of the propane dehydrogenation process in the mesoporous Pt membrane reactors and Pt-Pd two-layer membrane reactors was employed. The performance of the two types of membrane reactors had been compared with that of fixed-bed reactors and conventional Pd membrane reactors using this simulation. Comparative studies were carried out to analyze the performances of reactors containing different membranes in terms of sweep gas, pressure, temperature, space time and reactors inner tube radius. The results show that the Pt-Pd two-layer membrane reactors are superior to the conventional ones in that they retain higher propane conversion even in minuscule reactor chamber as well as prevent from packing granular catalysts.
引文
[1] 刘伟,张宝泉,刘秀凤,钯复合膜的研究进展,化学进展,2006,18: 1468~1481
    [2] Kresge C T, Leonowica M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710~712
    [3] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liqud crystal templates,J. Am. Chem. Soc., 1992, 114: 10834~10843
    [4] 张作山,张树永,李文荣,模板及其在纳米材料合成领域的应用,化学进展,2004, 16: 26~34
    [5] Shankar K S, Raychaudhuri A K, Fabrication of nanowires of multicomponent oxides: Review of recent advances, Mater. Sci. Technol. 2005, C25: 738~751
    [6] Rao C N R, Deepak F L, Gundiah G, et al. Inorganic nanowires, Prog. Solid State Chem., 2003, 31: 5~147
    [7] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003, 15: 353~389
    [8] Martin C R, Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res., 1995, 28: 61~68
    [9] Qu L T, Shi G Q, Wu X F, et al. Facile route to silver nanotubes, Adv. Mater., 2004, 16: 1200~1203
    [10] Bae C H, Park S M, Park S C, et al. Array of ultraviolet luminescent ZnO nanodots fabricated by pulsed laser deposition using an anodic aluminiun oxide template, Nanotechnology, 2006, 17: 381~384
    [11] Gapin A L, Ye X R, Aubuchon J F, et al. CoPt patterned media in anodized aluminum oxide templates, J. Appl. Phys., 2006, 99: 08G909-1~08G909-3
    [12] Yang Z, Huang Y, Dong B, et al. Fabrication and structural properties of LaFeO3 nanowires by an ethanol-ammonia-based sol-gel template route, Appl. Phys. A, 2005, 81: 453~457
    [13] Zhao Y C, Chen M, Xu T, et al. Electrochemical synthesis and electrochemical behavior of highly ordered polyaniline nanofibrils through AAO templates, Colloid Surf. A-Physicochem. Eng. Asp., 2005, 257-258: 363~368
    [14] Jung S H, Jeong S H, Kim S U, et al. Vertically aligned carbon-nanotube arrays showing schottky behavior at room temperature, Small, 2005, 1: 553~559
    [15] Xu H B, Chen H Z, Xu W J, et al. Fabrication of organic copper phthalocyanine nanowire arrays via a simple AAO template-based electrophoretic deposition, Chem. Phys. Lett., 2005, 412: 294~298
    [16] Zhang Z B, Gekhtman D, Ying J Y et al. Processing and characterization of single-crystalline ultrafine bismuth nanowires, Chem. Mater., 1999, 11:1659~1665
    [17] Kim K T, Cho S M, A simple method for formation of metal nanowires on flexible polymer film, Mater. Lett., 2006, 60: 352~355
    [18] Molares M E T, Buschmann V, Dobrev D, et al. Single-crystalline copper nanowires produced by electrochemical deposition in polymer ion track membranes, Adv. Mater., 2001, 13:62~65
    [19] Mbindyo J K N, Mallouk T E, Mattzela J B, et al. Template synthesis of metal nanowores containing monolayer molecular junctions, J Am. Chem. Soc., 2002, 124: 4020~4026
    [20] Lee K B, Lee S M, Cheon J, Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration, Adv. Mater.,2001, 13:517~520
    [21] Gao F, Lu Q Y, Liu X Y, et al. Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-25 phase, Nano Lett., 2001, 12: 743~748
    [22] Wu C G, Bein T, Conducting polyaniline filaments in a mesoporous channel host, Science, 1994, 264: 1757~1759
    [23] Govindaraj A, Satishkumar B C, Rao C N R, et al. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles, Chem. Mater., 2000, 12: 202~205
    [24] Sloan J, Wright D M, Woo H G, et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem.Commun. 1999: 699~700
    [25] Jorritsma J, Gijs M A M, Kerkhof J M, et al. General technique for fabricating large arrays of nanowires, Nanotechnology, 1996, 7:263~265
    [26] Walter E C, Muray B J, Penner R M, et al. Noble and coinage metal nanowires by electrochemical step edge decoration, J. Phys. Chem. B, 2002, 106: 11407~11411
    [27] Wang J G, Tian M L, Kumar N, et al. Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition, Nano Lett., 2005, 5: 1247~1253
    [28] Lu Q Y, Gao F, Komarneni S, Ordered SBA-15 nanorod arrays inside a porous alumina membrane, J. Am. Chem. Soc.,2004, 126(28): 8650~8651
    [29] Parthasarathy R, Martin C R, Template-synthesized polyaniline microtulules, Chem. Mater., 1994, 6: 1627~1632
    [30] Lakshmi B B, Dorhout P K, Martin C R, Sol-gel template synthesis of semiconductor nanostructures, Chem. Mater.,1997, 9: 857~862
    [31] Terrones M, Grobert N, Olivares J, et al. Controllable production of aligned-nanotube bundles, Nature, 1997, 388: 52~55
    [32] 赵继宽,溶致液晶模板法电沉积金属纳米材料[博士论文],济南:山东大学,2004
    [33] He H X, Zhang H, Li Q G, et al. Febrication of designed architectures of Au nanoparticles on solid substrates with printed self-assembled monolayer as templates, Langmuir, 2000, 16: 3846~3851
    [34] Zhang Y, Fang Y, Xia H Y, et al. Preparation of AgCl-polyacrylamide composite microspheres via combination of a polymer microgel template method and a reverse micelle technique, J. Colloid Interface Sci., 2006, 300: 210~218
    [35] Martin A, Jan S P, Anders E.C.P., Silver nanoperticle formation in microemulsions acting both as template and reducing agent, Langmuir, 2005, 21: 11387~11396
    [36] Takashi Y, Yasushi U, Osamu S, et al. Observation of the amosotropic photoinduced magnetization effect in Co-Fe Prussian blue thin films fabricated by using clay Langmuir-blodgett films as a template, J. Am. Chem. Soc., 2005, 127: 16065~16073
    [37] Zhang L J, Liu H G, Zhang R J, et al. The mieralization process of calcium phosphate induced by the LB films of porphyrin, Colloid Surf. A-Physicochem. Eng. Asp.,2005, 257~258: 307~312
    [38] López-Noriega A, Arcos D, Izquierdo-Barba I, et al. Ordered mesoporous bioactive glasses for bone tissur regeneration, Chem. Mater., 2006, 18: 3137~3144
    [39] Zhao D Y, Chmelka B F, Stucky G D, et al. Triblock copolymer synthesis of nesoporous silica with periodic 50 to 300 Angstrom pores, Science, 1998, 179: 548~552
    [40] Zhao D Y, Huo Q S, Stucky G D, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120: 6024~6036
    [41] Yu C Z, Yu Y H, Miao L, et al. Highly ordered mesoporous silica structures templated by poly(butylene oxide) segment di- and tri-block copolymers, Microporous Mesoporous Mater., 2001, 44~45: 65~72
    [42] Aizawa M, Buriak J M, Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template, J. Am. Chem. Soc., 2006, 128: 5877~5886
    [43] Jennifer Q L, Sung S Y, Uniformly sized gold nanoparticles derived from ps-b-p2vp block copolymer templates for the controllable synthesis of Si nanowires, Langmuir, 2006, 22: 3951~3954
    [44] 王良御,廖松生,液晶化学,北京:科学出版社,1988,132~149
    [45] 李彦,张庆敏,黄福志,表面活性剂溶致液晶体系研究进展,大学化学,2002, 15: 5~9
    [46] 赵继宽,陈晓,隋震铭等,用溶致液晶模板合成与组装纳米材料,化学进展,2003, 15:451~455
    [47] Luo H M, Zhang J F, Yan Y S, Electrochemical deposition of mesoporous crystalline oxide semiconductor films from lyotropic liquid crystalline phases, Chem. Mater., 2003, 15: 3769~3773
    [48] Gray D H, Polymerizable liquid crystals as a template for synthesizing ordered composite material[Doctoral dissertation], University of California, Berkeley, 1999
    [49] Attard G S, Glyde J C, G?ltner C G, Liquid-crystalline phases as templates for the synthesis of mesoporous silica, Nature, 1995, 378: 366~368
    [50] Taguchi A, Schüth F, Ordered mesoporous materials in catalysis, Microporous Mesoporous Mater., 2005, 77: 1~45
    [51] El-Safty S A, Monolithic nanostructured silicate family templated by lyotropic liquid-crystalline nonionic surfactant mesophases, Chem. Mater., 2003, 15: 2892~2902
    [52] Karanikolos G N, Law N L, Mallory R, et al. Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates, Nanotechnology, 2006, 17: 3121~3128
    [53] Braun P V, Osenar P, Stupp S, Semiconducting superlattice templated by molecular assemblies, Nature, 1996, 380: 325~328
    [54] Braun P V, Osenar P, Stupp S, CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals, Mater. Res. Bull., 1999, 34(3): 463~469
    [55] Braun P V, Osenar P, Stupp S I, et al. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals, J. Am. Chem. Soc., 1999, 121: 7302~7309
    [56] Li Y, Wan J H, Gu Z N, The formation of cadmium sulfide nanowires in different liquid crystal syntems, Mater. Sci. Eng.A, 2000, 286: 106~109
    [57] Fu X, Chen L, Wang J, et al. Synthesis of CdS nanocrystals templating against liquid crystal formed by acidic extractants, Colloid Surf. A-Physicochem. Eng. Asp., 2004, 233: 189~192
    [58] Dillinger T M, Braun P V, Lyotropic liquid crystals as nanoreactors for nanoparticle synthesis, Chem. Mater., 2004, 16: 2201~2207
    [59] Guo R, Liu T Q, The synthesis of PdS fine particles in the Triton X-100/C10H21OH/H2O lamellar liquid crystal, Colloid Surf. A-Physicochem. Eng. Asp., 1997, 123-124: 587~591
    [60] Jiang X C, Xie Y, Qian Y T, et al. Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by γ-irradiation, Chem. Mater., 2001, 13: 1213~1218
    [61] Khiew P S, Radiman S, Huang N M, Ahamd M S, Synthesis and characterization of copper sulfide nanoparticles in hexagonal phase lyotropic liquid crystal, J. Cryst. Growth, 2004, 268: 227~237
    [62] Huang L M, Wang H T, Yan Y S, et al. Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase, Chem. Mater., 2002, 14: 876~880
    [63] Attard G S, G?ltner C G, Corker J M, et al. Liquid-crystal templates for nanostructured metals, Angew. Chem. Int. Ed. Engl., 1997, 36: 1315~1317
    [64] Goltner C G, Antonietti M, Mesoporous materials by templating of liquid crystalline phases, Adv. Mater., 1997,9: 431~436
    [65] Attard G S, Leclerc S A A, Maniguet S, et al. Mesoporous Pt/Ru alloy from the hexagonal lyotropic liquid crystalline phase of a nonionic surfactant, Chem. Mater., 2001, 13: 1444~1446
    [66] Attard G S, Leclerc S A A, Maniguet S, et al. Liquid crustal phase templated mesoporous platinum alloy, Microporous Mesoporous Mater., 2001, 44~45: 159~163
    [67] Nelson P A, Elliott J M, Owen J R, et al. Mesoporous Nickel/Nickel oxide- a nanoarchitectured electrode, Chem. Mater., 2002, 14: 524~529
    [68] Yanauchi Y, Momma T, Kuroda K, et al. Unique microstructure of mesoporous Pt(HⅠ-Pt) prepared via direct physical casting in lyotropic liquid crystalline media, Chem. Mater., 2005, 17: 6342~6348
    [69] Yumauchi Y, Osaka T, Kuroda K, et al. Highly ordered mesoporous Ni particles prepared by electroless deposition from lyotropic liquid crystals, Chem. Lett., 2004, 33(5): 542~543
    [70] Yamauchi Y, Yokoshima T, Kuroda K, Fabrication of magnetic mesostructured nickel-cobalt alloys from lyotropic liquid crystalline media by electroless deposition, J. Mater. Chem., 2004, 14: 2935~2940
    [71] Jiang J H, Kucernak A, Mesoporous micropheres composed of PtRu alloy, Chem. Mater., 2004, 16: 1362~1367
    [72] Jiang J H, Kucernak A, Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid, J. Electroanal. Chem., 2002, 520: 64~70
    [73] Lee M H, Oh S G, Suh K D, et al. Preparation of silver nanoparticles in hexagonal phase formed by nonionic Triton X-100 surfactant, Colloid Surf. A-Physicochem. Eng. Asp., 2002, 210: 49~60
    [74] Kijima T, Yoshimura T, Uota M, et al. Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-cryatal template, Angew. Chem. Int. Ed., 2004, 43: 228~232
    [75] Wang L Y, Chen X, Zhao J K, et al. Preparation of silver nanoparticles templated from amphiphilic block copolymer-based hexagonal liquid crystals, Colloid Surf. A-Physicochem. Eng. Asp., 2005, 257~258: 231~235
    [76] Wang L Y, Chen X, Zhan J, et al. Controllable morphology formation of gold nano- and micro-plates in amphiphilic block copolymer-based liquid cryatalline phase, Chem. Lett., 2004, 33: 720~721
    [77] Wang L Y, Chen X, Zhan J, et al. Synthesis of gole nano- and microplates in hexagonal liquid crystals, J. Phys. Chem. B, 2005, 109: 3189~3194
    [78] 柴永存,陈晓,隋震鸣等,溶致液晶模板电化学沉积束状铂纳米材料,物理化学学报,2006, 22: 1506~1510
    [79] Zhang G D, Chen X, Zhao J K, et al. Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal, Mater. Lett., 2006, 60: 2889~2892
    [80] Zhao J K, Chen X, Jiao L Y, et al. Template-directed electrodiposition of lamellar platinum nanostructures, Chem. Lett., 2004, 33: 842~843
    [81] Ding Y H, Xu B, Guo R, et al. The preparation of silver sulfide nanoparticles in laemllar liquid crystal and application to lubrication, Mater. Res. Bull., 2005, 40: 575~582
    [82] Samarskaya O, Dag ?, Silver nitrate/olego(ethylene oxide) surfactant/ mesoporous silica nanocomposite films and monoliths, J. Colloid Interface Sci., 2001, 238: 203~207
    [83] Dag O, Verma A, Ozin G A, et al. Salted misostructures:salt-liquid crystal templating of lithium triflate-oligo(ethylene oxide) surfactant-mesoporous silica nanocomposite films and monoliths, J. Mater. Chem., 1999, 9:1475~1482
    [84] Celik O, Dag O, A new lyotropic liquid crystalline system: oligo(ethylene oxide) surfactant with [M(H20)n]Xm transition metal complexes, Angew. Chem. Int. Ed., 2001, 40: 3799~3803
    [85] Dag O,AlayoOlu S, Oelik O, et al. Lyotropic liquid-crystalline phase of oligo(ethylene oxide) surfactant/transition metal salt and the synthesis of mesoporous cadmium sulfide, Chem. Mater., 2003, 15: 2711~2717
    [86] Dag O, AlayoOlu S, Uysal O, Effects of ions on the liquid crystalline mesophase of transition-metal salt: surfactant (CnEOm), J. Phys. Chem. B, 2004, 108: 8439~8446
    [87] DemirOrs A F, Eser B E, Dag O, Liquid crystalline mesophase of pluronica (L64, P65, and P123) and transition metal mitrate salts ([M(H20)6](NO3)2), Langmuir, 2005, 21: 4156~4162
    [88] Tura C, Coombs N, Dag O, One-pot synthesis of CdS nanoparticles in the channels of mesostructured silica films and monoliths, Chem. Mater., 2005, 17: 573~579
    [89] Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline phases, Science, 1997, 278: 838~840
    [90] Elliott J M, Attard G S, Bartlett P N, et al. Nanostructured platinum (HⅠ-ePt) films :effect of electrodeposition conditions on film properties, Chem. Mater., 1999, 11: 3602~3609
    [91] Elliott J M, Birkin P R, Bartlett P N, et al. Platinum microelectrodes with unique high surface areas, Langmuir, 1999, 15: 7411~7415
    [92] Gollas B, Elliott J M, Bartlett P N, Electrodiposition and properties of nanostructured platinum films studied by quartz crystal impedance measurements at 10 MHz, Electrochimica Acta, 2000, 45: 3711~3724
    [93] Bartlett P N, Gollas B, Guerin S, The preparation and characterization of H-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases, Phys. Chem. Chem. Phys., 2002, 4: 3835~3842
    [94] Bartlett P N, Guerin S, A micromachined calorimetric gas sensor: an application of electrodeposition nanostructured palladium for the detection of combustible gases, Anal. Chem., 2003, 75: 126~132
    [95] Imokawa T, Williams K J, Denuault G, Fabrication and characterization of nanostructured Pd hydride pH microelectrodes, Anal. Chem., 2006, 78:265~271
    [96] Bartlett P N, Birkin P N, Ghanem M A, The electrochemical deposition of nanostructured cobalt films from lyotropic liquid crystalline media, J. Electrochem. Soc., 2001, 148: C119~C123
    [97] Whitehead A H, Elliott J M, Attard G S, et al. Electrodeposition of mesoporous tin films, Chem. Commun., 1999, 331~332
    [98] Nandhakumar I, Elliott J M, Attard G S, Electrodeposition of nanostructured mesoporous selenium films (HⅠ-eSe), Chem. Mater., 2001, 13: 3840~3842
    [99] Gabriel T, Nandhakumar I S, Attard G S, Electrochemical synthesis of nanostructured tellurium films, Electrochem. Commun., 2002, 4: 610~612
    [100] Bartlett P N, Marwan J, Preparation and characterization of HⅠ-e rhodium films, Microporous Mesoporous Mater., 2003, 62: 73~79
    [101] Guerin S, Attard G S, Electrochemical behaviour of electrodeposited nanostructured palladium + platinum films in 2M H2SO4, Electrochem. Commun., 2001, 3: 544~548
    [102] Li X H, Nandhakumar I S, Gabriel T, et al. Electrodeposition of mesoporous CdTe films with the aid of citric acid from lyotropic liquid crystalline phases, J. Mater. Chem., 2006, 16: 3207~3214
    [103] Bartlett P N, Marwan J, Electrochemical deposition of nanostructured (HⅠ-e) layers of two metals in which pores within the two layers interconnect, Chem. Mater., 2003, 15: 2962~2968
    [104] Luo H M, Sun L, Yan Y S, et al. Electrodeposition of mesoporous semimetal and magnetic metal films with lyotropic liquid crystalline phases, Langmuir, 2004, 20: 10218~10222
    [105] Huang L M, Wang H T, Yan Y S, et al. Nanowire arrays electrodeposition from liquid crystalline phases, Adv. Mater., 2002, 14: 61~64
    [106] Huang L M, Wang H T, Yan Y S, et al. Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase, Chem. Mater., 2002,14: 876~880
    [107] Huang L M, Wang Z B, Yan Y S, et al. Polyaniline nanowires by electropolymerization from liquid crystalline phases, J. Mater. Chem., 2002, 12: 388~391
    [108] Bender F, MankelowR K, Gooding J J, et al. Lyotropic liquid crystal templating of group 11 and 12 metal films, Electroanalysis, 2006, 18: 1558~1563
    [109] Braun P V, Osenar P, Stupp S I, Macroscopic nanotemplateing of semiconductor films with hydrogen-bonded lyotropic liquid crystals, Adv. Funct. Mater., 2005, 15: 1745~1750
    [110] Weiss V, Thiruvengadathan R, Regev O, Preparation and characterization of a carbon nanotube-lyotropic liquid crystal composite, Langmuir, 2006, 33: 854~856
    [111] Sen T, Tiddy G J T, Anderson M W, et al. Synthesis and characterization of hierarchically ordered porous silica materials, Chem. Mater., 2004, 16: 2044~2054
    [112] Kuang D B, Brezesinski T, Smarsly B, Hierarchical porous silica materials with a trimodal system using surfactant template, J. Am, Chem. Soc., 2004, 126: 10534~10535
    [113] Yamauchi Y, Kuroda K, Fabrication of a Pt film with a well-defined hierarchical pore system via “solvent-evaporation-mediated direct physical casting”, Electrochem. Commun., 2006, 8: 1677~1682
    [114] Deng H, Gin D L, Polymerizable lyotropic liquid crystals containing transition-metal and lanthanide ions: architectural control and introduction of new properties into nanostructured polymers, J. Am. Chem. Soc., 1998, 120: 3522~3523
    [115] Ding J H, Gin D L, Catalytic Pd nanoparticles synthesized using a lyotropic liquid crystal polymer template, Chem. Mater., 2000, 12(1): 22~24
    [116] Huo Q S, Schüth F, Stucky G D, et al. Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368: 317~321
    [117] Huo Q S, Margolese D I, Stucky G D, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays, Chem. Mater., 1994, 6: 1176~1191
    [118] Monnier A, Schüth F, Stucky G.D, Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science, 1993, 261: 1299~1303
    [119] Chen C Y, Li HY, Davis M E, Studies on mesoporous materials, ?. Synthesis and characterization of MCM-41, Microporous Mater., 1993, 2: 17~26
    [120] C.Y.Chen, S.L.Burkeet, H.X.Li, M.E.Davis, Studies on mesoporous materials, ?. Synthesis mechanism of MCM-41, Microporous Mater., 1993, 2: 27~34
    [121] Tanev P T, Pinnavaia T J, A neutral templating route to mesoporous molecular sieves, Science, 1995, 267: 865~867
    [122] Inagaki.S, Fukushima Y, Kuroda K, Synthesis of highly ordered mesoporous materials from a layered polysilicate, J. Chem. Soc. Chem. Commun., 1993: 680~682
    [123] 周春晖,李小年,葛忠华,贵金属 Pd 催化剂的研究现状和发展前景,化工生产与技术,2000, 7: 12~16
    [124] 蒋海洋,分子筛膜的制备和新型分子筛反应器[博士论文],天津:天津大学,2004
    [125] Walsh D, Mann S, Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions, Chem. Mater., 1996, 8: 1944~1953
    [126] Tanori J, Pileni M P, Control of the shape of copper metallic particles by using a colloidal system as template, Langmuir, 1997, 13: 639~646
    [127] 戴红,贵金属合金催化剂的应用,贵金属,1999, 20: 58~62
    [128] 陈红香,尹燕华,低温 CO 氧化负载型贵金属催化剂的研究概述,舰船防化,2006, 1: 25~31
    [129] 周仁贤,郑小明,γ-Al2O3为基体的Pt、Pd双金属催化剂氧化性能研究,科技通报,1995, 11: 193~197
    [130] Li X G, Hsing I M, Electrooxidatioin of formic acid on carbon supported PtxPd1-x (x =0-1) nanocatalysts, Electrocim. Acta, 2006, 51: 3477~3483
    [131] Barrio V L, Arias P L, Cambra J F, et al. Hydrodesulfurization and hydrogenation of model compounds on silica-alumina supported bimetallic systems, Fuel, 2003, 82: 501~509
    [132] Pawelec B, Parola V L, Fidrro J L G, et al. On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of aromatics, Carbon, 2006, 44: 84~98
    [133] Magyar S, Hancs?k J, Kall? D, Hydrodesulfurization and hydroconversion of heavy FCC gasoline on PtPd/H-USY zeolites, Fuel Process. Technol., 2005, 86: 1151~1164
    [134] 杨礼义,钱东,张茂昆等,双金属催化剂催化合成三甲基氢醌工艺研究,石化技术与应用,2000, 18: 68~69
    [135] Persson K, Ersson A, Jansson K, et al. Influence of co-metals on bimetallic palladium catalysts for methane combustion, J. Catal., 2005, 231: 139~150
    [136] 周丽萍,Ag对Pd/Al2O3。催化分解NO反应的促进作用,工业催化,2004, 12(8): 42~45
    [137] 顾虹,许波连,范以宁,负载型 Pd/TiO2 和 Pd-Ag/TiO2 催化剂的乙炔选择性加氢催化性能,物理化学学报,2006, 22: 712~715
    [138] Sales E A, Benhamida B, Bozon-Verduraz F, et al. Alumina-supported Pd, Ag and Pd-Ag catalysts: preparation through the polyol process, characterization and reactivity in hexa-1,5-dilene hydrogenation, Appl. Catal. A-Gen., 1998, 172: 273~283
    [139] Heinrichs B, Schoebrechts J P, Pirard J P, Palladium-silver sol-gel catalysts for selective hydrodechlorination of 1,2-dichloroethane into ethylene Ш. Kinetics and reaction mechanism, J. Catal., 2001, 200: 309~320
    [140] Paglieri S N, Way J D, Innovations in palladium membrane research, Sep. Purif. Method., 2002, 31: 1~69
    [141] Niwa S, Eswaramoorthy M, Mizukami F, et al. A one-step conversion of benzene to phenol with a palladium membrane, Science, 2002, 295: 105~107
    [142] 李永发,李阳初,孔瑛,张海鹏,无机膜及无机膜反应器研究进展,2002, 22: 48~53
    [143] 王焕章,吴立群,徐南平,致密超薄钯膜的制备及其性能研究,南京工业大学学报,2000, 22: 5~10
    [144] H?llein V, Thornton M, Dittmeyer R, et al. Preparation and characterization of palladium composite membrane for hydrogen removal in hydrocarbon dehydrogenation membrane reactors, Catal. Today, 2001, 67: 33~42
    [145] Coleman N R B, Attard G S, Ordered mesoporous silicas prepared from both micellar solution and liquid crystal phases, Microporous Mesoporous Mat., 2001, 44~45: 73~80
    [146] Keuler J N, Lorenzen L, Miachon S, Preparation and testing Pd films of thickness 1-2 micrometer with high selectivity and high hydrogen permeance, Sep. Sci. Tech., 2002, 37(2): 379~401
    [147] Miachon S, Dalmon J A, Catalysis in membrane reactors: what about the catalyst? Top. Catal., 2004, 29: 59~65
    [148] Ziaka Z D, Minet R G, Tsotsis T T, Propane dehydrogenation in a packed-bed membrane reactor, AIChE J., 1993, 39: 526~529
    [149] Bitter J G A, Process and apparatus for the dehydrogenation of organic compounds, UK Patent Application Number 8629135,1986
    [150] Guy C, Les reacteurs membrane: possibilities, d’application, Rev. Inst. Petrole, 1992, 47: 133~149
    [151] Weyten H, Keizer K, Kinoo A, et al. Dehydrogenation of propane using a packed-bed catalytic membrane reactor, AIChE J., 1997, 43(7): 1819~1827
    [152] Yildirim Y, Gobina E, Hughes R, An experimental evaluation of high-temperature composite membrane systems for propane dehydrogenation, J. Membr. Sci., 1997, 135: 107~115 113
    [153] Quicker P, H?llein V, Dittmeyer R, Catalytic dehydrogenation of hydrocarbons in palladium composite membrane reactors, Catal. Today, 2000, 56: 21~34
    [154] Bobrov V S, Digurov N G, Skudin V V, Propane dehydrogenation using catalytic membrane, J. Membr. Sci., 2005, 253: 233~242
    [155] McLeary E E, Jansen J C, Kapteijin F, Zeolite based films, membranes and membrane reactors: progress and prospects, Microporous Mesoporous Mater., 2006, 90: 198~220
    [156] Hou K H, Hughes R, A comparative simulation analysis of propane dehydrogenation in composite and microporous membrane reactors, J. Chem. Technol. Biotechnol. 2002, 78: 35~41
    [157] Carlsson P A, Mollner S, Arnby K, et al. Effect of periodic operation on the low-temperature activity for propane oxidation over Pt/Al2O3 catalysts, Chem. Eng. Sci., 2004, 59: 4313~4323
    [158] Liang W Q, Hughes R, The effect of diffusion direction on the permeation rate of hydrogen in palladium composite membranes, Chem. Eng. J., 2005, 112: 81~86
    [159] Jarosch K, de Lasa H I, Permeability, selectivity and testing of hydrogen diffusion membranes suitable for use in steam reforming, Ind. Eng. Chem. Res., 2001, 40: 5391~5397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700