蛱蝶科遗传多样性及分子系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛱蝶科Nymphalidae隶属鳞翅目Lepidoptera凤蝶总科Papilionoidea,为蝶类中较大的科,具有很高的观赏价值和经济价值,但其幼虫绝大多数专以植物体为食料,虫口密度大,是粮食作物、果树、蔬菜、纤维作物、林木、竹类、药用植物以及绿肥牧草等的主要害虫。对蛱蝶科物种的分类研究由来已久,早期主要以形态特征为依据进行分类,近来,有学者采用分子生物学的方法来重建蛱蝶科部分物种的系统发育关系。然而,由于蛱蝶科物种形态多变且生活史各不相同,该科物种的系统发育关系一直比较混乱,成为昆虫分类学家争论的焦点。此外,由于蛱蝶科内各亚科、族及属间的系统发育关系并未澄清,以致无法阐明诸多研究结果的进化意义。研究该科物种的遗传多样性和系统分类学关系不仅具有理论意义,也对其生物多样性保护和农业植保实践中的防治具有较为重要的应用价值。
     RAPD(随机扩增多态性DNA)技术是1990年由Willianms和Welsh同时提出的一项DNA分子水平的多态性检测技术,因其简捷、成本低且信息含量丰富,被广泛用于生物类群种属分类鉴定、遗传图谱构建、物种亲缘关系和种群遗传学等领域的研究。该方法很快被昆虫学家所认可,广泛用于种群遗传学和系统发育研究。线粒体DNA基因和核基因的序列分析是重建物种系统发育关系及进化研究的有效分子标记,早已被广泛用于研究种群结构、基因缺失、杂交后代、生物地理学和系统发生关系。
     本文采用RAPD技术探讨了蛱蝶科闪蛱蝶亚科大紫蛱蝶和粉蝶科菜粉蝶不同地理种群之间的遗传多样性;采用线粒体DNA细胞色素b(Cyt b)、细胞色素c氧化酶亚基Ⅰ(COI)和核延长因子(EF-1α)基因作为分子标记,对我国闪蛱蝶亚科、蛱蝶亚科、线蛱蝶亚科和蛱蝶科部分物种的系统发育关系进行初步的探讨;结合GenBank下载序列和自测序列(DataⅠ),采用NJ、ML和Bayesian方法分别构建蛱蝶科部分物种系统发育树,并将后翅臀角斑、眼状斑和后翅外缘突起这3个形态性状标记在ML系统发育树上,对这3个形态性状进行进化分析,为更好地开展蛱蝶科系统分类学研究、生物多样性保护和防治提供了分子生物学的实验依据。此外,基于自行测定的和GenBank收录的线粒体COI基因和核EF-1α基因序列(DataⅡ)蛱蝶科亚科间的系统发育关系,结合眼蝶亚科、蛱蝶亚科和Dynamine alexaen物种的化石资料,进一步计算出蛱蝶科所有12个亚科间的首次分歧时间。本文的研究内容主要包括以下几个方面:
     1.主要采用实验室保存的干标本,比较了酚-氯仿法和饱和NaCl法提取蝶类干标本胸部、腹部和中后足肌肉基因组DNA的效果及对RAPD-PCR和线粒体Cyt b、COI基因及核EF-1α基因部分序列扩增结果的影响。研究结果表明:两种DNA提取方法从干制标本中后足肌肉提取的基因组DNA带型整齐,无拖尾;两种方法得到的基因组DNA均适用于RAPD-PCR扩增,而酚-氯仿法得到的基因组DNA在随后的线粒体Cyt b、COI基因及核EF-1α基因部分序列扩增中效果更好。
     2.采用RAPD技术分析了大紫蛱蝶三个地理种群的遗传多样性,并以同属的黑紫蛱蝶指名亚种及近缘属种黑脉蛱蝶指名亚种为外群,探讨了它们之间的亲缘关系及RAPD技术在蛱蝶属种间的适用性。经筛选的10个随机引物对供试的58只蝶类标本共产生200条扩增谱带,这些谱带具有明显的属、种间多态性。根据Nei's遗传距离,分别用UPGMA和NJ法对其进行聚类,构建了分子系统树。聚类结果表明:大紫蛱蝶三个地理种群亲缘关系的远近与地理距离存在一定的相关趋势,湖北种群与山西种群间存在一定的基因交流。聚类结果与Nei's遗传距离均表明:大紫蛱蝶与黑紫蛱蝶的亲缘关系较近,而黑脉蛱蝶与上述两物种的亲缘关系较远。聚类图所显示物种间亲缘关系与传统的形态分类结果基本一致。
     3.采用12条10 bp的随机引物,对菜粉蝶不同种群共75个个体的基因组DNA进行扩增,共产生143条清晰、稳定的谱带。Nei's遗传距离表明菜粉蝶5个种群间的遗传距离差异较小。用UPGMA和NJ两种聚类方法对菜粉蝶5个种群所有个体构建聚类图,除长治种群和太原种群的位置有所不同外,聚类结果基本一致。UPGMA结果显示:代县种群和夏县种群最先相聚,随后这两个种群与大同种群聚为一支,太原种群再与上述三个种群相聚,长治种群与其余四个种群亲缘关系最远。菜粉蝶种群间遗传距离与其地理距离之间不存在相关性。
     4.测定了重要林业害虫闪蛱蝶亚科11属16种蝶类的线粒体细胞色素氧化酶Ⅰ基因的部分序列,并结合由GenBank下载的该亚科4种蝶类的相应序列进行分析,探讨了闪蛱蝶亚科各属间的系统发育关系。以玉杵带蛱蝶,白斑眼蝶,忘忧尾蛱蝶和白带螯蛱蝶作为外群,采用PAUP~* v 4.0b4a软件构建了闪蛱蝶亚科的MP和NJ分子系统树。在所构建的系统树中,由分子数据得到的蛱蝶亚科系统发育关系与传统分类学的基本一致,其中迷蛱蝶属为单系群;累积蛱蝶为明窗蛱蝶的姐妹群且支持两物种亲缘关系近的自展置信度很高;支持将白斑迷蛱蝶,迷蛱蝶,夜迷蛱蝶,栗铠蛱蝶,黄带铠蛱蝶,铂铠蛱蝶以及银白蛱蝶等物种由闪蛱蝶属中移出的修订。
     5.参照周尧《中国蝶类志》中蛱蝶亚科的分类系统,通过测定蛱蝶亚科15属24种蝶类的线粒体细胞色素氧化酶Ⅰ基因部分序列,并结合由GenBank下载的该亚科8种蝶类的相应序列,首次基于分子数据研究了国内蛱蝶亚科部分物种的系统发育关系。采用NJ,ML和Bayesian三种方法分别构建了蛱蝶亚科的分子系统树,所产生的拓扑结构完全一致且置信度高。在所构建的分子系统树中,由分子数据得到的蛱蝶亚科系统发育关系与传统分类学观点存在一些分歧,其中发现蛱蝶族和斑蛱蝶族非单系类群;支持将眼蛱蝶属由蛱蝶族移置斑蛱蝶族(=眼蛱蝶族)中;盛蛱蝶属和蜘蛱蝶属与蛱蝶族内其余属的关系较远;而蛱蝶族中各属间的关系为((((蛱蝶属+琉璃蛱蝶属)+钩蛱蝶属)+麻蛱蝶属)+红蛱蝶属)+(盛蛱蝶属+蜘蛱蝶属),为我国蝶类分子系统发育研究提供了新的资料。
     6.为了探讨线蛱蝶亚科(参照Harvey的分类系统,1991)的分类地位,根据自行测定的和GenBank收录的线粒体COI基因和核EF-1α基因序列构建了线蛱蝶亚科、闪蛱蝶亚科、蛱蝶亚科、眼蝶亚科、斑蝶亚科、绢蛱蝶亚科、秀蛱蝶亚科、螯蛱蝶亚科、摩尔福蝶亚科和喙蝶亚科(参照Harvey的分类系统,1991)部分物种的NJ、ML和Bayesian系统树。系统树显示曾被Harvey归为苾蛱蝶族、线蛱蝶族、丝蛱蝶族和秀蛱蝶族的物种各自聚为相应的聚类簇,且线蛱蝶族的物种与其余3个族的亲缘关系很远,支持将苾蛱蝶族、线蛱蝶族、丝蛱蝶族和秀蛱蝶族分别变更为相应亚科的分类学观点。此外,根据重新界定的线蛱蝶亚科分类群,测定了该亚科9属21种蝶类的线粒体细胞色素氧化酶Ⅰ基因的部分序列,并结合由GenBank下载的该亚科17种蝶类的相应序列进行分析,首次探讨了线蛱蝶亚科各属的系统发育关系。结果与传统分类学的观点基本一致,支持线蛱蝶亚科的单系性,并对线蛱蝶亚科中各族间的系统学关系给出了合理的假设。
     7.实验测定蛱蝶科(参照周尧的《中国蝶类志》)9亚科51种蝶类的线粒体细胞色素b基因的部分序列,以凤蝶科金凤蝶作为外群,采用PAUP~* v 4.0b4a软件构建了蛱蝶科的NJ系统树。系统树显示各亚科均为非单系类群,各属种间的系统发育关系较为混乱,多数分支的自展支持率很低。可能由于本实验所测定线粒体DNA Cyt b基因的片段较短,加上线粒体基因进化速率相对较快,密码子第三位点可能存在碱基替换饱和的现象,导致信息含量偏低而不能正确反应所研究类群的系统发育关系。因此,我们基于线粒体DNA COI基因和核EF-1α基因部分序列的联合数据构建蛱蝶科部分物种的系统发育树,以期揭示蛱蝶科各亚科间更为真实可靠的系统发育关系。采用DataⅠ和DataⅡ数据集构建的系统发育树均表明蛱蝶科部分亚科关系为:((((蛱蝶亚科+闪蛱蝶亚科)+(丝蛱蝶亚科+苾蛱蝶亚科))+秀蛱蝶亚科)+(袖蛱蝶亚科+线蛱蝶亚科))。比较采用DataⅠ和DataⅡ数据集构建的系统发育树,结果显示应将摩尔福蝶亚科归入眼蝶亚科中,而闪蛱蝶亚科中的各物种科分为两个族:闪蛱蝶族和铠蛱蝶族。
     8.基于自行测定的和GenBank收录的线粒体COI基因和核EF-1α基因部分序列(DataⅠ数据集)构建系统发育树,并将后翅臀角斑、眼状斑和外缘突起这3种形态性状标记在基于DataⅠ数据集构建的分子系统发育树上。结果表明这3个性状在蛱蝶科内可能是多次起源的。
     9.基于自行测定的和GenBank收录的线粒体COI基因和核EF-1α基因部分序列(DataⅡ数据集),应用最大似然法、贝叶斯推断法及马尔可夫链蒙特卡罗方法构建世界蝶类最大科——蛱蝶科亚科间的系统发育树,并对该科分子系统发育树各分支间的进化速率进行了差异显著性检验。结合眼蝶亚科、蛱蝶亚科和Dynamine alexaen物种的化石资料,计算获得了蛱蝶科所有12个亚科间的首次分歧时间的平均估计值为44.2-87.1百万年前(MYA)。结果有助于人们深入了解该科的起源与进化以及估计蝶类和其它复杂类群的分歧时间。
Nymphalidae(Lepidoptera:Papilionoidea) is a big family in Papilionodea.Butterflies in this family are beautiful and distribute in all continents of the world except Antarctica.Larvae of most species in this family represents important pest to foodcrops,fruit tree,vegetable,fibre crop, forest,bamboo,and so on.The systematics of Nymphalidae butterflies based on morphological characteristics has been studied by many authors for more than one century.In recent years,some researchers restructure the phylogenetic relationships among part of species from Nymphalidae through using methods and techniques of molecular biology.However,as the diverse shapes and life history of Nymphalidae butterflies,the phylogenetic relationships of the species in this family are very unclear all the time,which have been argued by taxonomist.Furthermore,it can not be illustrated that the evolution significance of many research results because the unclear phylogenetic relationships of subfamilies,tribes and genera in Nymphalidae. Therefore,research on the genetic diversity and phylogenetic relationship of this family not only has theory significance,but also possesses important practical value for protection of biology diversity as well as pest management.
     RAPD(Random Amplification Polymorphic DNA) method using for the identification of polymorphism and analyzing phylogenetic relationships among and within closely related species was first described by Willianms and Welsh in 1990.RAPD markers are based on the amplification of unknown DNA sequences using single,short,random oligonucleotide primers.The RAPD method is advantageous over RFLPs in technical ease, quickness,low cost and fewer amounts of samples required.It has been widely applies to the organisms including bacteria,plants and vertebrates for taxonomy and species identification,as well as construction of genetic mapping,genetic relationships among species and population,and locating pathological important genes.The RAPD method has also been soon adopted by entomologists and widely used to study taxonomy and phylogenetic relationships of insects.The sequence analyses of mtDNA and nuclear genes are effective molecule markers for reconstructing the phylogenetic relationships and evolution research,which has been widely used to investigate population structure,deletion of gene,hybridization, biogeography and phylogenetic relationships.
     In this study,we investigated the population-level genetic diversity of Sasakia charonda or Pieris rapae in China based on RAPD markers; preliminarily examined phylogenetic relationships of Apaturinae, Nymphalinae,Limenitidinae and Nymphalidae by analyzing sequences of the mtDNA Cyt b,COI and nuclear EF-1αgenes;reconstructed the phylogenetic trees of Nymphalidae based on the mtDNA COI and nuclear EF-1αgenes (Data I) by using NJ,ML as well as Bayesian methods,and then mapped 3 morphological characters on the ML tree for investigating the evolutionary patterns of these morphological characters.On the basis of the results of the phylogenetic relationships of Nymphalidae reconstructed based on the sequences determined from the 13 species in our laboratory and additional sequences of other 43 species found in GenBank(DataⅡ) and fossil information of Satyrinae,Nymphalinae and Dynamine alexaen,the average divergence times among the subfamilies are then estimated for the first time. The main contents and conclusions are as follows:
     1.Genome DNA of butterflies from the breast muscle,the abdomen muscle, and the midleg and hindleg muscle of dry samples was extracted using phenol-chloroform protocol and saturated NaCl methods.Genome DNA extracted by two methods from the midleg and hindleg muscle was quite good for RAPD analyses.However,the genome DNA extracted by phenol-chloroform protocol methods from the midleg and hindleg muscle suits to analyses of sequences of mtDNA and nuclear genes.
     2.RAPD markers were applied to analyze genetic divergence among three populations of Sasakia charonda,Sasakia funebris and Hestina assimilis. Genomic DNA of fifty-eight individuals was extracted from dissected leg muscle using saturated NaCl method and then amplified by 10 random primers(10 bp) which were previously selected,a total of 200 clear and reproducible bands were generated,the RAPD patterns showed polymorphic variations among and within different genera and species. The amplified fragments were analyzed by the Phyltools 6.0,the molecular phylogenetic tree based on Nei's genetic distance of RAPD markers was constructed using UPGMA and Neighbor-Joining.The dendrogram indicated strong similarities within populations.Among three populations of Sasakia charonda,the individuals of Hubei population and Shanxi population closely clustered together;and then they were clustered with Liaoning population.These data suggested that several implications. Firstly,RAPD is very useful as an effective molecular marker to distinguish the divergence in Sasakia and its closed related genera. Secondly,it seems to be a tendency of correlations between the genetic and geographic distance among the 3 different populations of Sasakia charonda from the south to the north.Thirdly,the RAPD similarity levels follows the order of individuals > populations > species > genera.The results of dendrogram based on RAPD markers are consistent with the previous conclusions of morphologic classification.
     3.The genetic diversity and genetic relationship of five populations of the Pieris rapae in Shanxi province determined using random amplified polymorphic DNA(RAPD).Nei's genetic distances between populations were very low and minor different,showed that a high similarity among the five populations.The dandrogram based on Nei's genetic distance of RAPD markers was constructed using UPGMA and Neighbor-Joining. This result indicated that Daixian population was closer with Xiaxian population,then the two populations clustered with Datong population, and finally,aider the Taiyuan population grouped together with them,the four populations clustered with the CZ population.The genetic relationship was not consistent with the geographic distribution.
     4.The phylogenetic relationships of genera in the subfamily Apaturinae were examined using mtDNA sequence data from 1471 bp of cytochrome oxidase subunit I(COI).The mitochondrial COI gene from a total of 16 species in 11 genera were sequenced to obtain mtDNA data,along with those of 4 species obtained from GenBank,to construct the MP and the NJ trees using Athyma jina,Penthema adelma,Polyura nepenthes and Charaxes bernardus as outgroups.Within the Apaturinae,the clustering results are approximately identical to the classical morphological classification.The mtDNA data suggests the genus Mimathyma as a monophyletic group.Lelecella limenitoides and Dilipa fenestra have close relationship with very strong support in all phylogenetic trees.It also supports the taxonomic revision of removing several species from Apatura to other genera,namely Mimathyma schrenckii,M.chevana,M. nycteis,Chitoria subcaerulea,C.fasciola,C.pallas,and Helcyra subalba.
     5.The phylogenetic relationships of the subfamily Nymphalinae(sensu Chou,1994) was analyzed based on 1488 bp of mtDNA cytochrome oxidase subunit I(COI) gene sequence data obtained from 24 individuals, along with those of 8 species obtained from GenBank.The phylogenetic trees were reconstructed by NJ,ML and Bayesian methods through using Byblia anvatara as outgroup.Our data indicated that the tribes Nymphalini and Hypolimni(sensu Chou,1994) are not monophyletic groups,and the genus Junonia should be removed from Nymphalini to Hypolimni(= Junoniini).Based on our data,the Symbrenthia and Araschnia had a relative distant relationship with the rest of Nymphalini. The relationships of species in the Nymphalini were confirmed via the NJ, ML and Bayesian methods,namely((((Nymphalis + Kaniska) + Polygonia) + Aglais) + Vanessa) +(Symbrenthia + Araschnia).This investigation provides a little novel information for Chinese researches of butterflies.
     6.To investigate the phylogenetic position of the subfamily Limenitidinae (sensu Harvey's,1991),we reconstructed the phylogenetic trees of Limenitidinae,Apaturinae,Nymphalinae,Satyrinae,Danainae, Heliconiinae,Charaxinae,Morphinae and Libytheinae(sensu Harvey's, 1991) based on COI and EF-1αsequences by using ML,NJ and Bayesian method.The results show that species classified into Biblidini,Cyrestini, Pseudergolini and Limenitidini by Harvey cluster together,respectively, and Limenitidini is farther with Biblidini,Cyrestini and Pseudergolini, supporting that Biblidini,Cyrestini,Pseudergolini and Limenitidini should be classified into subfamilies Biblidinae,Cyrestinae,Pseudergolinae and Limenitidinae,respectively.The phylogenetic analyses of the re-delimited Limenitidinae is presented based on 1471 bp of mtDNA cytochrome oxidase subunit I(COI) gene sequence data obtained from 21 individuals spanning 9 genera for the first time,along with those of 17 species obtained from GenBank.Our data support the monophyly of the subfamily Limenitidinae.The genus Limenitis can be split into two subclusters.Moreover,the results give one of the strongest hypotheses for the tribe relationships within Limenitidinae.
     7.The phylogenetic relationships of the Nymphalidae(sensu Chou,1994) was analyzed based on 432 bp of mtDNA Cyt b gene sequence data obtained from 51 individuals in 9 subfamilies.The phylogenetic trees were reconstructed by NJ method through using Papilio machaon as outgroup.The phylogenetic tree shows that each subfamily is not monophyletic and the phylogenetic relationships are disordered,resulting from short sequences of Cyt b and saturation on the 3~(rd) codon,which have led to reconstruct an untrue phylogenetic tree.Then,we reconstruct phylogenetic relationships of Nymphalidae based on the COI and EF-1αsequences(DataⅠand/or DataⅡ) to find the "true tree".The phylogenetic trees constructed based on DataⅠand DataⅡshow that phylogenetic relationships of partial subfamilies in Nymphalidae are as ((((Nymphalinae + Apaturinae) +(Cyrestinae + Biblidinae)) + Pseudergolinae) +(Heliconiinae + Limenitidinae)).The results indicate that it seems reasonable to divide the subfamily into two Vibes:Apaturini and Chitorini and replaced the Morphinae into Satyrinae.
     8.We mapped the states of the three characteristics(i.e.,spot of anal angle, eyespots,and process from outer margin of hind wing) on the internal nodes of the combined phylogenetic tree,which was based on the COI and EF-1αsequences(DataⅠ) by using maximum likelihood method.The results suggested the 3 characteristics might have repeatedly evolved in the family Nymphalidae.
     9.We constructed the phylogenetic trees of Nymphalidae based on a combined dataset of the COI and EF-1αsequences(DataⅡ) using ML and Bayesian methods.On the basis of the results of the phylogenetic relationships among subfamilies in Nymphalidae and the relative-rate tests as well as fossil information,the average divergence times among the subfamilies are estimated as 44.2 - 87.1 million years ago.The results will help us for understanding the origin and evolution of this family.
引文
[1].Rimen,Roland.South-African butterflies.A monograph of the extra- tropical species.Vol.Ⅰ:Nymphalidae.London,Tr(u|¨)bner,1887.
    [2].Michael FB.Butterflies of Australia:Their Identification,Biology and Distribution (Hardcover).CSIRO Publishing,2000.
    [3].James AS.Butterflies of North America(Hardcover).Stanford University Press,1985.
    [4].Tom T,Richard L.Butterflies of Europe.Princeton University Press,2001.
    [5].李传隆,朱宝云.中国蝶类图谱.上海,上海远东出版社,1992,1-186.
    [6].周尧.中国蝶类志.郑州,河南科学技术出版社,1994,387-564.
    [7].白九维,王效岳,陈小钰.中国珍稀与观赏蝴蝶.台北,淑馨出版社,1996.
    [8].周尧.中国蝴蝶分类与鉴定.郑州,河南科学技术出版社,1998,1-347.
    [9].Harvey DJ.Higher classification of the Nymphalidae,Appendix B.In:Nijhout,H.F.(Ed.),Higher classification of the Nymphalidae,Appendix B.Washington,DC,Smithsonian Institution Press,1991,pp,200-273.
    [10].Wahlberg N.That awkward age for butterflies:insights from the age of the Butterfly subfamily Nymphalinae(Lepidoptera:Nymphalidae).Syst.Biol.,2006,55,703-714.
    [11].Paul S.The Illustrated Encyclopedia of the Butterfly World.The Salamander Books Limited,1975,1-369.
    [12].Ackery PR.Hostplants and classification:a review of nymphalid butterflies.Biol.J.Linn.Sot.,1988,33,95-203.
    [13].Nylin S,Nygren GH,Windig JJ,Janz N,Bergstrom A.Genetics of host-plant preference in the comma butterfly Polygonia c-album(Nymphalidae),and evolutionary implications.Biological Journal of the Linnean Society,2005,84,755-765.
    [14].Mullen SP.Wing pattern evolution and the origins of mimicry among North American admiral butterflies(Nymphalidae:Limenitis).Molecular Phylogenetics and Evolution,2006,39,3,747-58.
    [15].Wahlberg N.The phylogeneties and biochemistry of host plant specialization in melitaeine butterflies(Lepidoptera:Nymphalidae).Evolution,2001,55,522-537.
    [16].Steigenga MJ,Fischer K.Ovarian dynamics,egg size,and egg number in relation to temperature and mating status in a butterfly.Entomologia Experimentalis et Applicata,2007,125,2,195-203.
    [17].Otaki JM.Reversed type of color-pattern modifications of butterfly wings:A physiological mechanism of wing-wide color-pattern determination.Journal of Insect Physiology,2007,53,526-537.
    [18].Simonsen TJ.Fritillary phylogeny,classification,and larval host plants:reconstructed mainly on the basis of male and female genitalic morphology (Lepidoptera:Nymphalidae:Argynnini).Biological Journal of the Linnean Society,2006,89,4,627-673.
    [19].Berger D,Waiters RJ,Gotthard K.What keeps insects small?-Size dependent predation on two species of butterfly larvae.Evolutionary Ecology,2006,20,6,575-589.
    [20].Nylin S.Effects of changing photoperiods in the life cycle regulation of the comma butterfly,Polygonia c-album(Nymphalidae).Eclological Entomology,1989,14,2,209-218.
    [21].Wahlberg N,Zimmermann M.Pattern of phylogenetic relationships among members of the tribe Melitaeini(Lepidoptera:Nymphalidae) inferred from mitochondrial DNA sequences.Cladistics,2000,16,347-363.
    [22].Wahlberg N,Weingartner E,Nylin S.Towards a better understanding of the higher systematics of Nymphalidae(Lepidoptera:Papilionoidea).Molecular Phylogenetics and Evolution,2003a,28,473-484.
    [23].Wahlberg N,Olieira R,Scott JA.Phylogenetic relationships of phyciodes butterfly species(Lepidoptera:Nymphalidae):complexes mtDNA variation and species delimitations.Systematic Entomology,2003b,28,257-273.
    [24].Wahlberg N,Nylin S.Morphology versus molecules:resolution of the positions of Nymphalis,Polygonia,and related genera(Lepidoptera:Nymphalidae).Cladistics,2003c,19,213-223.
    [25].Wahlberg N,Brower AVZ,Nylin S.Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae(Lepidoptera:Nymphalidae).Biological Journal of the Linnean Society,2005a,86,227-251.
    [26].Wahlberg N,Braby MF,Brower AVZ,de Jong R,Ming-Min Lee,Nylin S,Pierce NE,Sperling FAH,Vila R Warren AD,Zakharov E.Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers.Proc.R.Sot.,2005b,272,1577-1586.
    [27].Kankare M,Shaw MR.Molecular phylogeny of Cotesia Cameron,1891(Insecta:Hymenoptera:Braconidae:Microgastrinae) parasitoids associated with Melitaeini butterflies(Insecta:Lepidoptera:Nymphalidae:Melitaeini).Molecular Phylogenetics and Evolution,2004,32,207-220.
    [28].Joyce DA,Pullin AS.Phylogeography of the Marsh fritillary Euphydryas aurinia (Lepidoptera:Nymphalidae) in the UK.Biological Journal of the Linnean Society,2000,72,129-141.
    [29].Nice CC,Shapiro AM.Molecular and morphological divergence in the butterfly genus Lycaeides(Lepidoptera:Lycaenidae) in North America:evidence of recent speciation.Journal of Evolutionary Biology,1999,12,5,936-950.
    [30].Zimmermann M,Wahlberg N,Descimon H.Phylogeny of Euphydryas checherspot butterflies(Lepidoptera:Nymphalidae) based on mitochondrial DNA sequence data.Ann.Entomol.Soc.Am.,2000,93,3,347-355.
    [31].Brower VZA.Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences(Lepidoptera:Nymphalidae).Molecular Phylogenetic and Evolution,1994,3,2,159-174.
    [32].Silva-Brandao KL,Wahlberg N,Francini RB,Azeredo-Espin AML,Brown JKS,Paluch M,Lees DC,Freitas AVL.Phylogenetic relationships of butterflies of the tribe Acraeini(Lepidoptera,Nymphalidae,Heliconiinae) and the evolution of host plant use.Molecular Phylogenetics and Evolution,2008,46,2,515-531.
    [33].Blum MJ,Bermingham E,Dasmahapatra K.A molecular phylogeny of the neotropical butterfly genus Anartia(Lepidoptera:Nymphalidae).Molecular Phylogenetics and Evolution,2003,26,1,46-55.
    [34].Nylin S,Nyblom K,Ronquist F,Janz N,Belicek J,K(a|¨)llersj(o|¨) M.Phylogeny of Polygonia,Nymphalis and related butterflies(Lepidoptera:Nymphalidae):a total evidence analysis.Zoological Journal of the Linnean Society,2001,132,441-468.
    [35].Freitas AVL,Brown KSJr.Phylogeny of the Nymphalidae(Lepidoptera).Syst.Biol., 2004,53,363-383.
    [36].房丽君,张雅林.中国尾蛱蝶属分类研究并记一新种(鳞翅目,蛱蝶科).动物分类学报,32,2,468-472.
    [37].房岩,王同庆,孙刚,丛茜.蛱蝶翅鳞片的超微结构观察.昆虫学报,2007,50,3,313-316.
    [38].张雅林,陈艳霞.蜘蛱蝶属Araschnia Htlbner分类研究(鳞翅目:凤蝶总科:蛱蝶科).昆虫分类学报,2006,28,1,49-53.
    [39].房丽君,张雅林.中国蛱蝶科昆虫地理分布与区系分析.华东昆虫学报,2005,14,3,204-208.
    [40].王治国,汪锦华.银豹蛱蝶Childrena childreni(Gray)的异常型.河南科学,2002,20,3,249-250.
    [41].吴冬霞,朱国萍,陈娜,苏成勇,郝家胜.线蛱蝶亚科蝶类部分类群线粒体COI 基因的分子系统发生分析.生命科学研究,2007,11,1,64-71.
    [42].陈娜,朱国萍,郝家胜,张小平,苏成勇,潘鸿春,吴冬霞.基于线粒体16S rDNA序列探讨蛱蝶科(鳞翅目,蝶亚目)主要分类群的系统发生关系.动物学报,2007,53,1,106-115.
    [43].王戎疆,万宏,龙玉,雷光春,李绍文.利用线粒体Co Ⅱ基因序列对中国尾蛱蝶属系统分化的研究(鳞翅目:蛱蝶科).昆虫学报,2004,47,2,243-247.
    [44].黄原.分子系统学-原理,方法和应用.北京,中国农业出版社,1998.
    [45].梁景平,朱敏,尾上孝利,辰已浩隆.DNA-DNA杂交技术在口腔链球菌鉴定中的应用.上海口腔医学,1994,3,3,158-159.
    [46].Williams JGK,Kubelik AR,Livak KJ,Rasalski JA,Tingey SV.DNA polymorphisms amplified by arbitrary primers are useful genetic markers.Nuel.Acids.Res.,1990,18,7214-7218.
    [47].Tautz D,Arctander P,Minelli A,Thomas RH,Vogler AP.A plea for DNA taxonomy.Trends Ecol Evol.2003,18,70-74.
    [48].Weising K,Nybom H,Wolff K,Meyer W.DNA fingerprinting in plants and fungi.CRC Press Inc.,Boca Raton,1995.
    [49].Frie Z,Konvieka M,Zrzavy J.Red & black or black & white? Phylogeny of the Araschnia butterflies(Lepidoptera:Nymphalidae) and evolution of seasonal polyphenism.Journal of Evolutionary Biology,2004,17,2,265-278.
    [50].Freitas A,Brown K.Phylogeny of the Nymphalidae(Lepidoptera).Systematic Biology,2004,53,3,363-383.
    [51].Caterino MS,Reed RD,Kuo MM,Sperling FAH.A Partitioned Likelihood Analysis of Swallowtail Butterfly Phylogeny(Lepidoptera:Papilionidae).Systematic Biology,50,1,2001,pp,106-127.
    [52].Campbell DL,Brower AVZ,Pierce NE.Molecular Evolution of the Wingless Gene and Its Implications for the Phylogenetic Placement of the Butterfly Family Riodinidae(Lepidoptera:Papilionoidea).Molecular Biology and Evolution,17,2000,684-696.
    [53].Braby MF,Vila R,Pierce NE.Molecular phylogeny and systematics of the Pieridae (Lepidoptera:Papilionoidea):higher classification and biogeography.Zoological Journal of the Linnean Society,2006,147,2,239-275.
    [54].Aubert J,Legal L,Descimon H,Michel F.Molecular Phylogeny of Swallowtail Butterflies of the Tribe Papilionini(Papilionidae,Lepidoptera).Molecular Phylogenetics and Evolution,1999,12,2,156-167.
    [55].Megens HJ,Van Nes WJ,Van Moorsel CHM,Pierce NE,De Jong R.Molecular phylogeny of the Oriental butterfly genus Arhopala(Lycaenidae,Theclinae) inferred from mitochondrial and nuclear genes.Systematic Entomology,2004,29,1,pp.115-131.
    [56].Zakharov E,Caterino M,Sperling F.Molecular Phylogeny,Historical Biogeography,and Divergence Time Estimates for Swallowtail Butterflies of the Genus Papilio (Lepidoptera:Papilionidae).Systematic Biology,2004,53,2,pp.193-215.
    [57].Martin JA,Pashley DP.Molecular systematic analysis of butterfly family and some subfamily relationships(Lepidoptera:Papilionoidea).Annals of the Entomological Society of America,1992,85,2,pp.127-139.
    [58].Mallarino R,Bermingham E,Willmott KR,Whinnett A,Jiggins CD.Molecular systematics of the butterfly genus Ithomia(Lepidoptera:Ithomiinae):a composite phylogenetic hypothesis based on seven genes.Molecular Phylogenetics and Evolution,2005,34,3,625-644.
    [59].Toru K,Anton C,Takashi Y,Keiichi O.Phylogeny and Evolution of Butterflies of the Genus Parnassius:Inferences from Mitochondrial 16S and ND1 Sequences. Zoological Science,2005,22,3,343-351.
    [60].Braby MF,Pierce NE,Vila R.Phylogeny and historical biogeography of the subtribe Aporiina(Lepidoptera:Pieridae):implications for the origin of Australian butterflies.Biological Journal of the Linnean Society,2007,90,3,413-440.
    [61].Takashi Y,Go S,Hiraku T.Phylogeny of Japanese Papilionid Butterflies Inferred from Nueleotide Sequences of the Mitochondrial ND5 Gene.Journal of Molecular Evolution,1999,48,1,1432-1432.
    [62].Nazari V,Zakharov EV,Speding FAH.Phylogeny,historical biogeography,and taxonomic ranking of Pamassiinae(Lepidoptera,Papilionidae) based on morphology and seven genes.Molecular Phylogenetics and Evolution,2007,42,1,131-156.
    [63].Weller SJ,Pashley DP,Martin JA.Reassessment of butterfly family relationships using independent genes and morphology.Annals of the Entomological Society of America,1996,89,2,pp.184-192.
    [64].时号,张婧,蒋国芳.线粒体基因和核基因在蝶类分子系统学中的研究进展.广西科学,2006,13,2,156-160.
    [65].诸立新,吴孝兵,晏鹏,武春生.Phylogeny of Princeps butterflies from China:evidences from mitochondrial partial CO Ⅰ and CO Ⅱ gene sequences(Lepidoptera:Papilionidae).动物学报,2007,53,2,257-263.
    [66].刘晓燕,吴孝兵,诸立新.中国黄粉蝶亚科六属间基于CO Ⅱ和EF-1α基因部分序列的系统发育关系(鳞翅目:粉蝶科).昆虫学报,2007,50,6,604-609.
    [67].施立明,贾旭胡,志昂.遗传多样性.见:陈灵芝主编中国的生物多样性现状及其保护对策.北京,科学出版社,1993,31-113.
    [68].Darwin C.On the origin of speices.Murray,London,1859.
    [69].Dobzansky T.(1953),谈家桢等译.遗传学与物种起源.北京,科学出版社.
    [70].季维智,宿兵.遗传多样性研究的原理与方法.杭州,浙江科学出版社,1999.
    [71].葛庆兰,雷初朝,蒋永青,陈宏,张伟,党瑞华,郑惠玲,张爱玲,李天鹏.中国家驴mtDNA D-loop遗传多样性与起源研究.畜牧兽医学报,2007,38,7,641-645.
    [72].沙涛,张汉波,丁骅孙,李宗菊,程立忠,赵之伟,张亚平.云南松口蘑的遗传多样性研究.科学通报,2007,52,6,668-672.
    [73].宿兵,施立明,何光昕等.大熊猫遗传多样性的蛋白电泳研究.科学通报,1994, 39,8,742-745.
    [74].Hamrick JL,Godt MJW.Allozyme diversity in plant species.In:Brown AHD,Clegg MT,Kahler AL,Wier BS,editors.Plant population genetics,breeding,and genetic resources.Sinauer Associates,Sunderland,MA.,1990,43-63.
    [75].El-Kassaby YA.Genetic variation within and among conifer populations:review and evaluation of methods.In:Fineschi,S.et al.eds.Biochemical Markers in the Population Genetics of Forest.Trends in Evolution and Ecologys,1991,61-76.
    [76].蔡振媛,张同作,慈海鑫,唐利洲,连新明,刘建全,苏建平.高原鼢鼠线粒体谱系地理学和遗传多样性.兽类学报,2007,27,2,130-137.
    [77].Fowler DP,Morris RW.Genetic diversity in red pine:evidence for low genic heterozygosity.Can.J.For.Res.,1997,7,343-347.
    [78].周慧,李迪强,张于光,杨涛,刘毅.可可西里自然保护区藏羚羊的微卫星多态性研究.遗传学报,2007,34,7,600-607.
    [79].陈珉,张恩迪,李冰.虎的保护遗传学研究进展.四川动物,2007,26,1,216-220.
    [80].闫志峰,张本刚,张昭,于俊林.珍稀濒危药用植物黄檗野生种群遗传多样性的AFLP分析.生物多样性,2006,14,6,488-497.
    [81].刘仁虎,孟金陵.RFLP和AFLP分析白菜型油菜和甘蓝型油菜遗传多样性及其在油菜改良中的应用价值.遗传学报,2006,33,9,814-823.
    [82].Muneer PM Abdul,Gopalakrishnan A,Lal KK,Mohindra V.Population genetic structure of endemic and endangered yellow catfish,Horabagrus brachysoma,using allozyme markers.Biochemical Genetics,2007,45,9-10,637-645.
    [83].Albaladejo RG.,Aparicio A.Population Genetic Structure and Hybridization Patterns in the Mediterranean Endemics Phlomis lychnitis and P.crinita(Lamiaceae).Annals of Botany,2007,100,4,735-746.
    [84].Baeza LC,Matsumoto MT,Almeida AM,Mendes-Giannini MJ.Strain differentiation of Trichophyton rubrum by randomly amplified polymorphic DNA and analysis of rDNA nontranscribed spacer.Journal of Medical Microbiology,2006,55,4,429-436.
    [85].Aranishi F,Okimoto T.Genetic relationship between cultured populations of Pacific oyster revealed by RAPD analysis.J.Appl.Genet.,2004,45,4,435-443.
    [86].Blair MW,Munoz C,Garza R,Cardona C.Molecular mapping of genes for resistance to the bean pod weevil(Apion godmani Wagner) in common bean.Theor.Appl.Genet.,2006,2,5,913-923.
    [87].Gouveia MM,Ribeiro A,Varzea VM,Rodrigues CJ Jr.Genetic diversity in Hemileia vastatrix based on RAPD markers.Myeologia,2005,97,2,396-404.
    [88].Sakamoto K,Abe T,Matsuyama T,Yoshida S,Ohmido N,Fukui K,Satoh S.RAPD markers encoding retrotransposable elements are linked to the male sex in Cannabis sativa.Genome,2005,48,5,931-936.
    [89].Heckel DG Classical and molecular approaches to genome mapping in Lepidoptera.Thirty-seventh Annual Meeting of the Entomological Society of America,New Orleans,La.,1990.
    [90].Kambhampati S,Black IVWC,Kai DS.Random amplified polymorphism DNA of mosquito species and populations(Ditera:Culicidae):Techniques,statistical,analysis and applications.J.Med.Entomol.,1992,29,6,939-945.
    [91].Hoy MA,Jeyaprakash A,Morakote R,Lo Paul KC,Nguyen Ru.Genomic analyses of two populations of Ageniaspis citricola(Hymenoptera:Encyrtidae) suggest that a cryptic species may exist.Biological Control,2000,17,1-10.
    [92].Biron DG,Landry BS,Nenon JP,Coderre D,Boivin G Geographical origin of an introduced pest species,Delia radicum(Diptera:Anthomyiidae),determined by PAPD analysis and egg micromorphology.Bulletin of Entomological Research,2000,90:23-32.
    [93].Lowe AJ,Hicks BJ,Wodey K,Ennos RA,Morman JD,Stone G,Watt AD.Genetic differentiation in Scottish populations of the pine beauty moth,Panolis flammea (Lepidoptera:Noctuidae).Bulletin of Entomological Research,2005,95,6,517-526.
    [94].赵光郁,余传信.随机扩增多态性DNA聚合酶链式反应技术用于蚊细胞的鉴定.中国媒介生物学杂志,1993,4,6,401-406.
    [95].杨效文,张孝义,陈晓峰.我国烟蚜种群分化的RAPD分析.昆虫学报,1999,40,4,372-380.
    [96].马雅军,翟逢伊,徐建农,郑哲民.我国中华按蚊群体分子遗传多态性研究.昆虫学报,2001,44,1,33-39.
    [97].田英芳,郑哲民.七种蟋蟀基因组DNA的RAPD多态性研究.昆虫分类学报, 2001,23,4,248-252.
    [98].李恺.中国蟋蟀总科昆虫RAPD分析研究.陕西师范大学博士研究生学位论文,2002.
    [99].Zhang M,Kang L.Genetic divergence among geographical populations of the Migratory locust in China.Sci.China C Life Sci.,2005,48,6,551-564.
    [100].Joyce DA,Pullin AS.Conservation implications of the distribution of genetic diversity at different scales:a case study using the marsh fritillary butterfly (Euphydryas aurinia).Biological conservation,2003,114,3,453-461.
    [101].Deseimon H,Napolitano M.Enzyme polymorphism,wing pattern variability,and geographical isolation in an endangered butterfly species.Biological Conservation,1993,66,2,117-123.
    [102].Hill JK,Hughes CL,Dytham C,Searle JB.Genetic diversity in butterflies:interactive effects of habitat fragmentation and climate-driven range expansion.Biol.Lett.,2006,2,1,152-154.
    [103].Gadeberg RME,Boomsma JJ.Genetic population structure of the large blue butterfly Maculinea alcon in Denmark.Journal of Insect Conservation,1997,1,2,99-111.
    [104].NEve G,Baraseud B,Descimon H,Baguette M.Genetic structure of Proclossiana eunomia populations at the regional scale(Lepidoptera,Nymphalidae).Heredity,2000,84,6,657-666.
    [105].Vandewoestijne S,Neve G,Baguette M.Spatial and temporal population genetic structure of the butterfly Aglais urticae L.(Lepidoptera,Nymphalidae).Molecular Ecology,1999,8,9,1539-1543.
    [106].Thomas S,Karola H.The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe.2008,doi:10.1111/j.1365-294X.2007.03687.x.
    [107].Gallusser S,Guadagnuolo R,Rahier M.Genetic(RAPD) Diversity between Oleria onega agarista and Oleria onega ssp.(Ithomiinae,Nymphalidae,Lepidoptera) in North-Eastern Peru.Genetica,2004,121,1,65-74.
    [108].Martin IB,Yvonne AG,Peter K,Owen CR,Chris DT,James LBM.Genetic Analysis of Founder Bottlenecks in the Rare British Butterfly Plebejus argus.Conservation Biology,1997,11,3,648-661.
    [109].Takami Y,Koshio C,Ishii M,Fujii H,Hidaka T,Shimizu I.Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism.Mol.Ecol.,2004,13,2,245-258.
    [110].Vandewoestijne S,Baguette M.Genetic population structure of the vulnerable bog fritillary butterfly.Hereditas,2004,141,199-206.
    [111].Milovanov AE,Kompaniytzev OO,Oberemok VV,Simchuk AP.Genetical distances between nominative and paratypical forms of Colias crocea Fourc.and C.Erate Esp.(Lepidoptera,Pieridae) according to RAPD-PCR analysis.Cytology and Genetics,2006,40,2,50-56.
    [112].Brower AVZ,Jeansorme MM.Geographical populations and subspecies of New World monarch butterflies(Nymphalidae) share a recent origin and are not phylogenetically distinct.Annals of the Entomological Society of America,2004,97,3,519-523.
    [113].Vandewoestijne S,Baguette M.The genetic structure of endangered populations in the Cranberry Fritillary,Boloria aquilonaris(Lepidoptera,Nymphalidae):RAPDs vs allozymes.Heredity,2002,89,439-445.
    [114].Benedick S,White TA,Searle JB,Hamer KC,Mustaffa N,Khen CV,Mohamed M,Schilthuizen M,Hill JK.Impacts of habitat fragmentation on genetic diversity in a tropical forest butterfly on Borneo.Journal of Tropical Ecology,2007,23,623-634.
    [115].Harper GL,Maclean N,Goulson D.Microsatellite markers to assess the influence of population size,isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus.Molecular Ecology,2003,12,12,3349-3357.
    [116].Kimura M.The Neutral Theory of Molecular Evolution.Cambridge University Press,1983.
    [117].Zuckerandl E,Pauling L.Molecular Disease,Evolution and Genetic Heterogeneity,in Horizens in Biochemistry.New York:Academic Press,1962.
    [118].Margoliash E.Primary structure and evolution of Cytochrome C.Proc Natl A cad Sci USA,1963,50,672-679.
    [119].Doolittle,RE,Blomb(a|¨)ck.Amino-acid sequence investigations of fibrinopeptides from various mammals:Evolutionary implications.Nature,202,147-152.
    [120].Zuckerandl E.,Pauling L.Evolutionary divergence and convergence in proteins,in Evolving Genes and Proteins.New York:Academic Press,1965.
    [121].Dickerson RE.The structure of cytochrome c and the rates of molecular evolution.J.Mol.Evol.,1971,1,26-45.
    [122].Sarich VM,Wilson AC.Quantitative immunochemistry and the evolution of primate albumins:micro-complement fixation.Science,1966,154,1563-1566.
    [123].Pierre J,Yoshinori K.Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos(Squamata:Eublepharidae).Gene,2008,407,1-2,105-115.
    [124].钟扬,施苏华,唐先华,黄椰林,谈凤笑,张晓艳.红树科6属cpDNA和nrDNA 序列相对速率检验及分歧时间估计.科学通报,2000,45,1,40-43.
    [125].吴平,程安进,杨群,周开亚.线粒体DNA在龟鳖目中的进化速率与古生物分化事件.自然科学进展,1999,12,9,1119-1125.
    [126].Rzhetsky A,Nei M.Theoretical foundation of the minimum-evolution trees.Mol.Biol.Evol.,1993,10,1073-1095.
    [127].Saitou N,Nei M.The neighbor-joining method:A new method for reconstructing phylogenetic trees.Mol.Biol.Evol.,1987,4,406-425.
    [128].Miyamoto MM,Cracraft J.Phylogenetic inference,DNA sequence analysis,and the future of molecular systematics.In Phylogeneic analysis of DNA sequences(M.M.Miyamoto and J.Cracraft,eds.).New York,Oxford University Press,1991,pp.3-17.
    [129].Cavalli-Sforza LL,Edwards AWF.Phylogenetie analysis:Models and estimation procedures.Am.J.Hum.Genet.,1967,19,233-257.
    [130].Felsenstein J.Evolutionary trees from DNA sequences:A maximum likelihood approach.J.Mol.Evol.,1981,17,368-376.
    [131].Kishino H,Miyata T,Hasegawa M.Maximum likelihood inference of protein phylogeny and the origin of chloroplasts.J.Mol.Evol.,1990,31,151-160.
    [132].Dayhoof MO,Schwartz RM,Orcutt BC.A model of evolutionary change in proteins.In Atlas of protein sequence and structure(Dayhoff MO,ed.),National Biomedical Research Foundation,Silver Spring,MD,1978.
    [133].Huelsenbeck JP.The performance of phylogenetic methods in simulation.Syst.Biol.,1995,44,17-48.
    [134].Rannala B,Yang Z.Probability distribution of molecular evolutionary trees:fl new method of phylogenetic inference.J.Mol.Evol.,1996,43,304-311.
    [135].Yang Z,Rannala B.Bayesian phylogenetic inference using DNA sequences:A Markov chain Monte Carlo method.J.Mol.Evol.,1997,14,717-724.
    [136].Huelsenbeck JP,Ronquist F,Nielsen R,Bollback JP.Bayesian inference of phylogeny and its impact on evolutionary biology.Science,2001,294,2310-2214.
    [137].Akito K,Morio W.Coloured Illustrations of the Butterflies of Japan.Osaka,Hoikusha Publishing Co.,Ltd.,1978,263-269.
    [138].童学松.浙江蝶类志.杭州,浙江科学技术出版社,1993,35-36.
    [139].曹天文,娄巨贤.山西蝶类区系的研究.昆虫学研究进展,北京,中国林业出版社,1997,313-322.
    [140].王绪捷主编.河北森林昆虫图册.石家庄,河北科学技术出版社,1985,205-206.
    [141].潜祖琪,童雪松.黑紫蛱蝶与大紫蛱蝶幼期形态区别.昆虫知识,1999,36,1,34-35.
    [142].王治国,陈棣华,王正用.河南蝶类志.郑州,河南科学技术出版社,1990,26-28.
    [143].肖世贤,李保同,汤丽梅.2.1%氯·阿乳油对菜粉蝶的生物活性研究.江西植保,1999,22,2,12-13.
    [144].陈建新,吴文伟,宋敦伦,管致和.菜粉蝶产卵行为及其影响的生物因素.中国农业大学学报,1999,4,3,93-96.
    [145].张忠,叶恭银,胡萃.两种金小蜂毒液对菜粉蝶蛹血细胞延展、存活及包囊作用地影响.昆虫学报,2004,47,5,551-561.
    [146].王亚维,张国洲,徐汉虹,赵善欢.瑞香狼毒防治菜粉蝶的研究.安徽农业科学,2004,32,3,452-453.
    [147].汪永庆,王新国,徐来祥.一种动物基因组DNA提取方法的改进.动物学杂志,2001.36.1.27-29.
    [148].Salah MA,Iciar M.Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.Nuel.Acids.Res.,1997,25,22,4692-4693.
    [149].Lewontin RC.The apportionment of human diversity.Evol.Biol.,1972,6,381-398.
    [150].Chalmers KJ,Waugh R,Sprent JI,Simons AJ,Powell W.Detection of genetic variation betewwn and within populations of Gliricidia sepium and G maculate using RAPD markers.Heredity,1992,69,4665-472.
    [151].Gauer LG,Cavalli-Molina S.Genetic variation in natural populations of mate(llex paraguariensis A.St.-Hil.Aquifoliaceae) using RAPD markers.Heredity,2000,84,647-656.
    [152].Paabo S.Ancient DNA:extraction,characterization,molecular cloning and enzyme amplification.Proceedings of National Academy of Sciences of USA,1989,86,1939-1943.
    [153].兰宏,王文,施立明.麂属动物陈旧皮张的DNA提取及PCR扩增.动物学研究,1995,16,2,146-152.
    [154].张建珍,马恩波,郭亚平,陈东华,王燕.网翅蝗科4种蝗虫的RAPD多态性研究.动物分类学报,2004,29,2,212-217.
    [155].马世骏.中国昆虫生态地理概述.北京,科学出版社,1959,1-109.
    [156].向涛主编.中国农业自然资源和农业区划.北京,农业出版社,1991,10-245.
    [157].DeVries PJ,Kitching IJ,Vane-Wright RI.The systematic position of Antirrhea and Caerois,with comments on the classification of the Nymphalidae(Lepidoptera).Systematic Entomology,1985,10,11-32.
    [158].Nylin S,Gamberale-S G,Tullberg BS.Ontogeny of defense and adaptive coloration in larvae of the comma butterfly,Polygonia c-album(Nymphalidae).Journal of the Lepidopterists's Society,2001,55,2,69-73.
    [159].Freitas AVL,Brown KS Jr.Phylogeny of the Nymphalidae(Lepidoptera).Systematic Biology,2004,53,3,363-383.
    [160].Bates H W.Contributions to the insect fauna of the Amazon Valley.Lepidoptera:Heliconidae.Tram.Linn.Scc.,1861,23,495-566.
    [161].Ackery PR,de Jong R,Vane-Wright RI.The butterflies:Hedyloidea,Hesperoidea,and Papilionoidea.In:Kristensen,N.P.(Ed.),The butterflies:Hedyloidea,Hesperoidea,and Papilionoidea.de Gruyter,Berlin,1999,263-300.
    [162].Thompson JD,Gibson TJ,Plewniak F,Jeanmougin F,Higgins DG.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Research,1997,25,24,4876-4882.
    [163].Kumar S,Tamura K,Jakobsen IB,Nei M.MEGA:Molecular evolutionary genetics analysis software.Bioinformatics,2001,17,12,1244-1245.
    [164].Xia X,Xie Z.DAMBE:Data analysis in molecular biology and evolution.Journal of Heredity,2001,92,371-373.
    [165].Ronquist F,Huelsenbeck JP.MRBAYES 3:Bayesian phylogenetic inference under mixed models.Bioinformatics,2003,19,1572-1574.
    [166].Swofford DL.PAUP~*:Phylogenetie analysis using parsimony(~* and other methods)sunderland,Massachusetts:Sinauer Associates,1998.
    [167].Felsenstein J.Confidence limits on phylogenies:an approach using the bootstrap.Evolution,1985,39,783-791.
    [168].Stamatakis A.RAxML-VI-HPC:maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics,2006,22,21,2688-2690.
    [169].Posada D,Crandall KA.MODELTEST:testing the model of DNA substitution.Bioinformatics,1998,14,817-818.
    [170].Huelsenbeck JP,Ronquist F.MrBayes:Bayesian inference of phylogeny.Bioinformatics,2001,17,754-755.
    [171].Nylander JAA.Mr Modeltest 2.2.Program distributed by the author.Uppsala:Evolutionary Biology Centre,Uppsala University,2004.
    [172].Simon,C.Molecular systematics at the species boundary:exploition conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA.NATO ASI Ser,1991,57,33-71.
    [173].Victor A,Freitas L,Brown JR KS.Phylogeny of the Nymphalidae(Lepidoptera).Systematic Biology,2004,53,363-383.
    [174].Lewis HL.Butterflies of the World.London,Harrap,1974.
    [175].Braby MF.Phenotypic variation in adult Mycalesis H(u|¨)bner(Lepidoptera:Nymphalidae:Satyrinae) from the Australian wet-dry tropics.J.Aust.Entomol.Soc.,1994,33,327-336.
    [176].Freitas AVL,Oliveira PS.Biology and behavior of the neotropical butterfly Eunica bechina(Nymphalidae) with special reference to larval defence against ant predation.J.Res.Lepidoptera,1992,31,1-11.
    [177].Brakefield PM,Gates J,Keys D,Kesbeke F,Wijngaarden PJ,Monteiro A,French V,Carroll SB.Devolopment,plasticity and evolution of butterfly eyespot patterns.Nature,1996,21,236-242.
    [178].Marc RR,Dorothee H.RRTree:Relative-rate tests between groups of sequences on a phylogenetic tree.Bioinformatics,2000,16,296-297.
    [179].Penalver E,Grimaldi DA.New data on Miocene butterflies in Dominican Amber (Lepidoptera:Riodinidae and Nymphalidae) with the description of a new nymphalid.Amer.Mus.Novi.,2006,3519,1-5.
    [180].Murray D,Prowell DP.Molecular phylogenetics and evolutionary history of the neotropical Satyrine Subtribe Euptychiina(Nymphalidae:Satyrinae).Mol.Phylogen.Evol.,2005,34,67-80.
    [181].Drummond AJ,Rambaut A.BEAST:Bayesian evolutionary analysis by sampling trees.BMC Evol.Biol.,2007,7,214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700