二酰肼衍生物和联1,3,4-噁二唑衍生物的液晶性与凝胶行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作者设计合成了两大类分别基于氢键和电子给受体作用的化合物:二酰肼衍生物(BPH-n、BFH-n)和联1,3,4-噁二唑衍生物(BBOXD-n、BBOXD-Bn、BBOXD-Tn)。通过改变分子的结构因素(尾接烷基链的数目与长度、分子几何形状),探讨分子间弱相互作用力与自组装行为、光电性质之间的关系。主要结论如下:
     1、BPH-n通过分子间四重氢键形成超分子聚集体。BPH-n(n=6,8,10)呈现双向的热致六方柱状相,液晶相时分子间存在中等强度的氢键,有利于液晶相的稳定。BPH-n是超凝胶因子,表现出聚集诱导荧光增强(AIE)的特性。AIE是C-N双键化、氢键诱导J聚体以及分子内旋转运动受限共同作用的结果。
     2、在BFH-n中,分子间氢键与分子内氢键共存。NH-2与分子内相邻的联二羰基通过分子内氢键组成两个六元环;NH-1与相邻分子的羰基缔合,通过分子间二重氢键实现超分子自组装。BFH-n表现出双向的热致六方与长方柱状相,氢键的存在有利于液晶相的稳定。BFH-n在DMF中获得的干凝胶呈现左旋和右旋共存的螺旋微米带,DMF与BFH-n之间的氢键是形成螺旋微米带的驱动力。
     3、BBOXD-n呈现高稳定的向列相与大角度倾斜(55.6-56.6o)的近晶C相,分子间存在电荷给受体作用;BBOXD-Bn呈现大角度倾斜的近晶C相和六方柱状相,柱状相的形成归因于微相分离作用、电荷给受体作用和空间密堆积。BBOXD-n系列化合物在非极性溶液和固体状态时具有强的荧光发射,J聚体是荧光增强的主要原因。
Self-assembled systems, such as supramolecular gels and liquid crystals (LCs), are fascinating organized soft materials that can respond to external stimuli such as temperature, electrical pulses, light and chemicals. There are potential applications in template synthesis, controlled release, separations, and biomimetics. Supermolecule structures are the result of not only additive but also cooperative interactions, including hydrogen bonding,π-πstacking, donor–acceptor interactions, hydrophobic forces, metal coordination and van der Waals interactions. Among the noncovalent interactions, hydrogen bonds are one of the most important interactions in the self-assembly of molecules because of their strength, directionality, reversibility, and selectivity. The donor–acceptor interactions take place mainly between heterocyclic electron donors (porphyrins, oxadiazole etc.) and aromatic electron acceptors (phenyl, C60 etc.). The variation of the donor or acceptor strength and the substitution scheme considerably influences the electronic behavior of the compound and therefore its optical properties like absorption and fluorescence.
     In this context, as part of our continuing research in supramolecular self-assembly, we report the preparation and self-assembly behaviour of five new series of compounds derived from dihydrazide (BPH-n and BFH-n) and symmetric bi-1,3,4-oxadiazole core (BBOXD-n, BBOXD-Bn and BBOXD-Tn). Furthermore, the photophysical properties have been investigated. These discoveries of the new materials are examples of the continuing effort to explore the limits of molecular structures compatibility with self-assembly behaviour.
     1. synthesis and self-assemble behaviors of dihydrazide derivatives.
     Two novel classes of dumbbell-shape dihydrazide derivatives have been synthesized, namely 1,4-bis[(3,4-bisalkoxyphenyl)hydrozide] phenylene (BPH-n ) and Oxalyl N’,N’-bis(3,4-dialkoxybenzoyl)-hydrazide (BFH-n). 1H NMR, FT-IR and Elemental Analysis were employed to confirm their molecular structures.
     (1) Length of terminal alkyl chains has a critical effect on liquid crystallinity. BPH-4 is nonmesomorphic. Higher homologues BPH-n (n=6, 8, 10) exhibited thermotropic hexagonal column (Colh) mesophase, which are stable at room temperature as revealed by DSC, POM, and XRD studies. BFH-4 only showed monotropic rectangular phase during cooling from its isotropic phase. BFH-n (n=6, 8, 10) exhibited enantiotropic columnar mesophases and the symmetry of the mesophase changes from rectangular to hexagonal on increasing the temperature. The rectangular columnar mesophases of BFH-n (n = 6, 8, 10) remained stable down to 10℃during cooling and the subsequent recrystallisation from the Colr phase of BFH-n (n = 6, 8, 10) was observed on the second heating runs. Furthermore, the average number of molecules packing in a column slice was estimated to be three, based on their X-ray diffraction results.
     (2) Temperature-dependent 1H NMR spectroscopic experiments were performed for BPH-6 in 20% DMSO-d6/CDCl3 to confirm the primary involvement of N-H protons in intermolecular hydrogen bonding. Interestingly, there are two different hydrogen-bonding modes in BFH-n. The NH-1 protons were favorable to form an intramolecular hydrogen bonding with C=O groups of adjacent molecules. However, the NH-2 protons were involved in intramolecular hydrogen bonding with C=O groups, forming two six-membered rings. Intermolecular or intramolecular hydrogen bonding between–C=O and -N-H groups in crystalline and liquid crystalline phases was further confirmed by temperature-dependent FT-IR spectroscopy.
     (3) BPH-n have shown great ability to gel a variety of organic solvents to form stable organogels with the critical gelation concentration as low as 8.7×10-4 mol L-1 (0.06 wt %). The formed gel has a high gel-sol transition temperature (Tgel) at low gelation concentration. Aggregation-induced emission (AIE) has been observed after gelation though conventional chromophore units not incorporated in BPH-n. The fluorescence quantumyields of xerogel are 2 orders higher than that of dilute solution. It was attributed to the combination of the partial double-bond properties of C-N bonds in the hydrazide group, the restricted intramolecular rotational motions in aggregate state, and J-aggregation by hydrogenbonding interactions between the hydrazide groups. In addition, the BPH-n (n=6, 8, 10) exhibited thermotropic hexagonal column (Colh) mesophase, which are stable at room temperature as revealed by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X-ray diffraction (XRD) studies.
     (4) BPH-n formed the organogels in toluene and DMF. Xerogel of BPH-n (n=6, 8, 10) from toluene consists of flat ribbons with the width of 0.2-1.5μm, while BPH-10 xerogel from DMF showed left- and right-handed helical micrometer-ribbons with non-uniform helical pitch. Polarity of the solvent has a key effect on the aggregation morphology of the organogels.
     2. synthesis and self-assemble behaviors of oxadiazole derivatives. Three novel classes of bi-1,3,4-oxadiazole derivatives have been synthesized, namely 5, 5’-bis(phenyl 4-alkoxybenzoate)- 2, 2’-bi-1,3,4-oxadiazole (BBOXD-n), 5,5’-bis[phenyl bis(3,4-alkoxybenzoate)]- 2,2’-bi-1,3,4-oxadiazole (BBOXD-Bn) and 5,5’-bis[phenyl tris(3,4-alkoxybenzoate)]-2,2’-bi-1,3,4-oxadiazole (BBOXD-Tn) respectively. 1H NMR, FT-IR and Elemental Analysis were employed to confirm their molecular structures.
     (1) The phase behaviors were strongly affected by the length of the flexible terminal chains. All BBOXD-n exhibited remarkably stable SmC phases by virtue of the high transition enthalpies of SmC–I. In addition, BBOXD-6 and BBOXD-10 showed an enantiotropic nemetic phase with enthalpies of the N–I transition up to 5.16 kJ mol-1. As confirmed by wide-angle X-ray diffraction analysis and MM2, molecules of BBOXD-n showed high-angle tilting (55–57o) within their smectic C phases. The hexacatenar derivatives (BBOXD-Tn) are non-mesomorphic, while the tetracatenar ones (BBOXD-Bn) showed a classic progression from smectic C phases (for BBOXD-B6 and BBOXD-B10) to a hexagonal columnar (Colh) phase (for BBOXD-Bn (n=12,14,16) with the increase in length of the terminal chains. Molecules of BBOXD-Bn (n=6, 10) also tilt about 55-56o from the layer normal within their SmC phase.
     (2) BBOXD-n exhibited fluorescence emission in the apolar solvent. It was found that the polarity of the organic solvent greatly affected the fluorescence quantum yieldΦF. Interestingly, the fluorescence quantum yield of film is up to 94.3%. We evaluated BBOXD-6 as electron-transport materials in single layer organic light-emitting diode (OLED) by using blends of MEH-PPV and BBOXD-6 as the emissive material. OLED exhibited strongly light emission changes from red to blue on increasing the concentration of BBOXD-6. The maximum brightness and current efficiency of OLED with concentration 75% are 60260 cd/m2 and 4.14 cd/A, which is 204 times and 30 times than those with MEH-PPV as emissive layer.
引文
[1] Lehn J M. Supramoleculecular chemistry [J]. Science, 1993, 260: 1762-1763.
    [2] Lehn J M. Supramolecular chemistry: concepts and perspectives [M]. Weinheim: Wiley-VCH, 1995.
    [3] Beer P D, Gale P A. Anion recognition and sensing: The state of the art and future perspectives [J]. Angew. Chem. Int. Edit., 2001, 40: 486-516.
    [4] Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev., 2004, 104: 293-346.
    [5] Kay E R, Leigh D A, Zerbetto F. Synthetic molecular motors and mechanical machines [J]. Angew. Chem. Int. Edit., 2007, 46: 72-191.
    [6] Niemeyer C M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science [J]. Angew. Chem. Int. Edit., 2001, 40: 4128-4158.
    [7] Otsuki J, Harada K, Araki K. Supramolecular electro- and proto-photoswitch [J]. Chem. Lett., 1999, 269-270.
    [8] Steiner T. The hydrogen bond in the solid state [J]. Angew. Chem. Int. Edit., 2002, 41: 48-76.
    [9] Hof F, Craig S L, Nuckolls C, Rebek J. Molecular encapsulation [J]. Angew. Chem. Int. Edit., 2002, 41: 1488-1508.
    [10] Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube [J]. Nature, 2001, 414: 188-190.
    [11] Kerckhoffs J M C A, Timmerman P, Reinhoudt D N. Self-assembly of hydrogen bonding functionalities using noncovalent synthesis. [J]. Abstr. Pap. Am. Chem. S., 2000, 220: U109-U109.
    [12] Nissen P, Hansen J, Ban N, Moore P B, Steitz T A. The structural basis of ribosome activity in peptide bond synthesis [J]. Science, 2000, 289: 920-930.
    [13] Prins L J, Reinhoudt D N, Timmerman P. Noncovalent synthesis using hydrogen bonding [J]. Angew. Chem. Int. Edit., 2001, 40: 2382-2426.
    [14] Kuo S W, Cheng R S. DNA-like interactions enhance the miscibility of supramolecular polymer blends [J]. Polymer, 2009, 50: 177-188.
    [15] Kanoo P, Gurunatha K L, Maji T K. Temperature-controlled synthesis of metal-organic coordination polymers: crystal structure, supramolecular isomerism, and porous property [J]. Cryst. Growth. Des., 2009, 9: 4147-4156.
    [16] Demus D, Goodby J W, Gray G W, Spiess H W, Vill V. Handbook of liquid crystals [M]. Weinheim: Wiley-VCH, 1998.
    [17] Kato T. Self-assembly of phase-segregated liquid crystal structures [J]. Science, 2002, 295: 2414-2418.
    [18] Tschierske C. Micro-segregation, molecular shape and molecular topology- partners for the design of liquid crystalline materials with complex mesophase morphologies [J]. J. Mater. Chem., 2001, 11: 2647-2671.
    [19] Stupp S I, LeBonheur V, Walker K, Li L S, Huggins K E, Keser M, Amstutz A. Supramolecular materials: self-organized nanostructures [J]. Science 1997, 276: 384-389.
    [20] Kato T, Yasuda T, Kanie K, Ihata O, Mizoshita N, Hanabusa K, Ukon M, Shimizu Y. Supramolecular liquid-crystalline materials formed by hydrogen-bonded assembly processes. [J]. Abstr. Pap. Am. Chem. S., 1999, 218: U484-U484.
    [21] Kato T, Mizoshita N, Kanie K. Hydrogen-bonded liquid crystalline materials: Supramolecular polymeric assembly and the induction of dynamic function [J]. Macromol. Rapid. Comm., 2001, 22: 797-814.
    [22] Campidelli S, Lenoble J, Barbera J, Paolucci F, Marcaccio M, Paolucci D, Deschenaux R. Supramolecular fullerene materials: Dendritic liquid-crystalline fulleropyrrolidines [J]. Macromolecules, 2005, 38: 7915-7925.
    [23] Chen Y, Shen Z, Gehringer L, Frey H, Stiriba S E. Supramolecular thermotropic liquid crystalline materials with nematic mesophase based on methylated hyperbranched polyethylenimine and mesogenic carboxylic acid [J]. Macromol. Rapid. Comm., 2006, 27: 69-75.
    [24] Kato T, Frechet, J M J. Development of supramolecular hydrogen-bonded liquid crystals and its impact on liquid-crystalline and materials science [J]. Liq. Cryst., 2006, 33: 1429-1433.
    [25] Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: Self-organized soft materials [J]. Angew. Chem. Int. Edit., 2006, 45: 38-68.
    [26] Kato T, Frechet J M J. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures [J]. J. Am. Chem. Soc., 1989, 111: 8533-8534.
    [27] Kato T, Frechet J M J. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side chain [J]. Macromolecules, 1989, 22, 3818-3819.
    [28] Brienne M J, Gabard J, Lehn J M, Stibor I. Macroscopic expression of molecular recognition. Supramolecular liquid crystalline phases induced by association of complementary heterocyclic components [J]. Chem. Commun., 1989, 1868-1870.
    [29] Paraschiv I, Giesbers M, van Lagen B, Grozema F C, Abellon R D, Siebbeles L D A, Marcelis A T M, Zuilhof H, Sudholter E J R. H-bond-stabilized triphenylene-based columnar discotic liquid crystals [J]. Chem. Mater., 2006, 18: 968-974.
    [30] Kanie K, Nishii M, Yasuda T, Taki T, Ujiie S, Kato T. Self-assembly of thermotropic liquid-crystalline folic acid derivatives: hydrogen-bonded complexes forming layers and columns [J]. J. Mater. Chem., 2001, 11: 2875-2886.
    [31] Kanie K, Yasuda T, Ujiie S, Kato T. Thermotropic liquid-crystalline folic acid derivatives: supramolecular discotic and smectic aggregation [J]. Chem. Commun., 2000, 1899-1900.
    [32] Kato T, Matsuoka T, Nishii M, Kamikawa Y, Kanie K, Nishimura T, Yashima E, Ujiie S. Supramolecular chirality of thermotropic liquid-crystalline folic acid derivatives [J]. Angew. Chem. Int. Edit., 2004, 43: 1969-1972.
    [33] Gronwald O, Snip E, Shinkai S. Gelators for organic liquids based onself-assembly: a new facet of supramolecular and combinatorial chemistry [J]. Curr. Opin. Colloid In., 2002, 7: 148-156.
    [34] George M, Weiss R G. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids [J]. Accounts Chem. Res., 2006, 39: 489-497.
    [35] Terech P, Weiss R G. Low molecular mass gelators of organic liquids and the properties of their gels [J]. Chem. Rev., 1997, 97: 3133-3160.
    [36] Dastidar P. Supramolecular gelling agents: can they be designed? [J]. Chem. Soc. Rev., 2008, 37: 2699-2715.
    [37] Yagai S, Karatsu T, Kitamura A. Photocontrollable self-assembly [J]. Chem.-Eur. J., 2005, 11: 4054-4063.
    [38] Murata K, Aoki M, Nishi T, Ikeda A, Shinkai S. New cholesterol-based gelators with light- and metal-responsive functions [J]. Chem. Commun., 1991, 24: 1715-1718.
    [39] Ayabe M, Kishida T, Fujita N, Sada K, Shinkai S. Binary organogelators which show light and temperature responsiveness [J]. Org. Biomol. Chem., 2003, 1: 2744-2747.
    [40] Sugiyasu K, Fujita N, Takeuchi M, Yamada S, Shinkai S. Proton-sensitive fluorescent organogels [J]. Org. Biomol. Chem., 2003, 1: 895-899.
    [41] Haines S R, Harrison R G. Novel resorcinarene-based pH-triggered gelator [J]. Chem. Commun., 2002, 2846-2847.
    [42] Maitra U, Mukhopadhyay S, Sarkar A, Rao P, Indi S S. Hydrophobic pockets in a nonpolymeric aqueous gel: Observation of such a gelation process by color change [J]. Angew. Chem. Int. Edit., 2001, 40: 2281-2283.
    [43] Ahmed S A, Sallenave X, Fages F, Mieden-Gundert G, Muller W M, Muller U, Vogtle F, Pozzo J L. Multiaddressable self-assembling organogelators based on 2H-chromene and N-acyl-1,omega-amino acid units [J]. Langmuir, 2002, 18: 7096-7101.
    [44] Mizoshita N, Suzuki Y, Kishimoto K, Hanabusa K, Kato T. Electrooptical properties of liquid-crystalline physical gels: a new oligo(amino acid) gelatorfor light scattering display materials [J]. J. Mater. Chem., 2002, 12: 2197-2201.
    [45] Suzuki Y, Mizoshita N, Hanabusa K, Kato T. Homeotropically oriented nematic physical gels for electrooptical materials [J]. J. Mater. Chem., 2003, 13: 2870-2874.
    [46] Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator [J]. Chem. Commun., 2002, 374-375.
    [47] Mohmeyer N, Wang P, Schmidt H W, Zakeeruddin S M, Gratzel M. Quasi-solid-state dye sensitized solar cells with 1,3 : 2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators [J]. J .Mater. Chem., 2004, 14: 1905-1909.
    [48] Ajayaghosh A, George S J, Praveen V K. Gelation-assisted light harvesting by selective energy transfer from an oligo(p-phenylenevinylene)-based self-assembly to an organic dye [J]. Angew. Chem. Int. Edit., 2003, 42: 332-335.
    [49] Ono Y, Kanekiyo Y, Inoue K, Hojo J, Nango M, Shinkai S. Preparation of novel hollow fiber silica using collagen fibers as a template [J]. Chem. Lett., 1999, 475-476.
    [50] Kobayashi S, Hamasaki N, Suzuki M, Kimura M, Shirai H, Hanabusa K. Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents [J]. J. Am. Chem. Soc., 2002, 124: 6550-6551.
    [51] Gundiah G, Mukhopadhyay S, Tumkurkar U G, Govindaraj A, Maitra U, Rao C N R. Hydrogel route to nanotubes of metal oxides and sulfates [J]. J. Mater. Chem., 2003, 13: 2118-2122.
    [52] Llusar M, Roux C, Pozzo J L, Sanchez C. Design of organically functionalised hybrid silica fibres through the use of anthracenic organogelators [J]. J. Mater. Chem., 2003, 13: 442-444.
    [53] Moreau J J E, Vellutini L, Man M W C, Bied C. New hybrid organic-inorganic solids with helical morphology via H-bond mediated sol-gel hydrolysis of silylderivatives of chiral (R,R)- or (S,S)-diureidocyclohexane [J]. J. Am. Chem. Soc., 2001, 123: 1509-1510.
    [54] Trivedi D R, Ballabh A, Dastidar P. An easy to prepare organic salt as a low molecular mass organic gelator capable of selective gelation of oil from oil/water mixtures [J]. Chem. Mater., 2003, 15: 3971-3973.
    [55] Lee K Y, Mooney D J. Hydrogels for tissue engineering [J]. Chem. Rev., 2001, 101: 1869-1879.
    [56] Murdan S, Gregoriadis G, Florence A T. Sorbitan monostearate polysolbate 20 organogels containing niosomes: a delivery vehicle for antigens? [J]. Eur. J. Pharm. Sci., 1999, 8: 177-185.
    [57] Friggeri A, Feringa B L, van Esch J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator [J]. J. Control. Release., 2004, 97: 241-248.
    [58] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R. Electroluminescence in conjugated polymers [J]. Nature, 1999, 397: 121-128.
    [59] Ma Y G, Che C M, Chao H Y, Zhou X M, Chan W H, Shen J C. High luminescence gold(I) and copper(I) complexes with a triplet excited state for use in light-emitting diodes [J]. Adv. Mater., 1999, 11: 852-857.
    [60] Roy V A L, Zhi Y G, Xu Z X, Yu S C, Chan P W H, Che C M. Functionalized arylacetylene oligomers for organic thin-film transistors (OTFTs) [J]. Adv. Mater., 2005, 17: 1258-1261.
    [61] Pisula W, Menon A, Stepputat M, Lieberwirth I, Kolb U, Tracz A, Sirringhaus H, Pakula T, Mullen K. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzoeoronene [J]. Adv. Mater., 2005, 17: 684-689.
    [62] Hou J H, Tan Z A, Yan Y, He Y J, Yang C H, Li Y F. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains [J]. J. Am. Chem. Soc., 2006, 128: 4911-4916.
    
    [63] Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells [J]. Chem. Mater., 2004, 16: 4533-4542.
    [64] Ichikawa M, Hibino R, Inoue M, Haritani T, Hotta S, Araki K, Koyama T, Taniguchi Y. Laser oscillation in monolithic molecular single crystals [J]. Adv. Mater., 2005, 17: 2073-2077.
    [65] Ichikawa M, Hibino R, Inoue M, Haritani T, Hotta S, Koyama T, Taniguchi Y. Improved crystal-growth and emission gain-narrowing of thiophene/phenylene co-oligomers [J]. Adv. Mater., 2003, 15: 213-217.
    [66] Klare J E, Tulevski G S, Sugo K, de Picciotto A, White K A, Nuckolls C. Cruciform pi-systems for molecular electronics applications [J]. J. Am. Chem. Soc., 2003, 125: 6030-6031.
    [67] Klare J E, Tulevski G S, Nuckolls C. Chemical reactions with upright monolayers of cruciform pi-systems [J]. Langmuir, 2004, 20: 10068-10072.
    [68] Schulz B, Orgzall I, Freydank A, Xu C G. Self-organization of substituted 1,3,4-oxadiazoles in the solid state and at surfaces [J]. Adv. Colloid Interfac., 2005, 116: 143-164.
    [69] Dingemans T J, Murthy N S, Samulski E T. Javelin-, hockey stick-, and boomerang-shaped liquid crystals. Structural variations on p-quinquephenyl [J]. J. Phys. Chem. B, 2001, 105: 8845-8860.
    [70] Semmler K J K, Dingemans T J, Samulski E T. Biaxial smectic phases in non-linear mesogens: optical properties and phase behaviour of an oxadiazole liquid crystal [J]. Liq. Cryst., 1998, 24, 799-803.
    [71] Madsen L A, Dingemans T J, Nakata M, Samulski E T. Thermotropic biaxial nematic liquid crystals [J]. Phys. Rev. Lett., 2004, 92: 145505.
    [72] Acharya B R, Primak A, Kumar S. Biaxial nematic phase in bent-core thermotropic mesogens [J]. Phys. Rev. Lett., 2004, 92: 145506.
    [73] Kang S, Saito Y, Watanabe N, Tokita M, Takanishi Y, Takezoe H, Watanabe J. Low-birefringent, chiral banana phase below calamitic nematic and/or smectic C phases in oxadiazole derivatives [J]. J. Phys. Chem. B, 2006, 110: 5205-5214.
    [74] Choi S W, Kang S, Takanishi Y, Ishikawa K, Watanabe J, Takezoe H. Intrinsic chiral domains enantioselectively segregated from twisted nematic cells of bent-core mesogens [J]. Chirality, 2007, 19: 519-519.
    [75] Parra M, Belmar J, Zunza H, Zuniga C, Fuentes G, Martinez R. 2,5-Disubstituted 1,3,4-oxadiazoles: synthesis and mesomorphic behavior [J]. J. Prak. Chem.-Chem. Ztg., 1995, 337: 239-241.
    [76] Reddy R A, Tschierske C. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems [J]. J. Mater. Chem., 2006, 16: 907-961.
    [77] Lai C K, Ke Y C, Su J C, Chien-Shen, Li W R. Heterocyclic 1,3,4-oxadiazole as columnar core [J]. Liq. Cryst., 2002, 29: 915-920.
    [78] Wen C R, Wang Y J, Wang H C, Sheu H S, Lee G H, Lai C K. Columnar metallomesogens derived from 1,3,4-oxadiazoles and X-ray crystal structure of dichlorobis[2,5-bis(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole]palladium(II) [J]. Chem. Mater., 2005, 17: 1646-1654.
    [79] Zhang Y D, Jespersen K G, Kempe M, Kornfield J A, Barlow S, Kippelen B, Marder S R. Columnar discotic liquid-crystalline oxadiazoles as electron-transport materials [J]. Langmuir, 2003, 19: 6534-6536.
    [80] Kim B G, Kim S, Park S Y. Star-shaped discotic nematic liquid crystal containing 1,3,5-triethynylbenzene and oxadiazole-based rigid arms [J]. Tetrahedron Lett., 2001, 42: 2697-2699.
    [81] Qu S, Chen X F, Shao X, Li F, Zhang H Y, Wang H T, Zhang P, Yu Z X, Wu K, Wang Y, Li M. Self-assembly of highly luminescent bi-1,3,4-oxadiazole derivatives through electron donor-acceptor interactions in three-dimensional crystals, two-dimensional layers and mesophases [J]. J. Mater. Chem., 2008, 18: 3954-3964.
    [82] Qu S, Li M. Columnar mesophases and phase behaviors of novel polycatenar mesogens containing bi-1,3,4-oxadiazole [J]. Tetrahedron, 2007, 63: 12429-12436.
    [83] Adachi C, Tsutsui T, Saito S. Organic electroluminescent device having a holeconductor as an emitting layer [J]. Appl. Phys. Lett., 1989, 55: 1489-1491.
    [84] Adachi C, Tsutsui T, Saito S. Blue light-emitting organic electroluminescent devices [J]. Appl. Phys. Lett., 1990, 56: 799-874
    [85] Hoshino S, Ebata K, Furukawa K. Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure [J]. J. Appl. Phys., 2000, 87: 1968-1973.
    [86] Tamoto N, Adachi C, Nagai K. Electroluminescence of 1, 3, 4-oxadiazole and triphenylamine-containing molecules as an emitter in organic multilayer light emitting diodes [J]. Chem. Mater., 1997, 9: 1077-1085.
    [87] Bettenhausen J, Strohriegl P. Efficient synthesis of starburst oxadiazole compounds [J]. Adv. Mater. 1996, 8: 507-510.
    [88] Kaminorz Y, Schulz B, Schrader S, Brehmer L. OLEDs based on new oxadiazole derivatives [J]. Synthetic Met., 2001, 122: 115-118.
    [89] Schulz B, Bruma M, Brehmer L. Aromatic Poly (1, 3, 4-Oxadiazole)s as Advanced materials [J]. Adv. Mater. 1997, 9: 601-613.
    [90] Pei Q, Yang Y. 1,3,4-Oxadiazole-containing polymers as electron-injection and blue electroluminescent materials in polymer light-emitting diodes [J]. Chem. Mater., 1995, 7: 1568-1575.
    [91] Wang C S, Kilitziraki M, Palsson L O, Bryce M R, Monkman A P, Samuel I D W. Polymeric alkoxy PBD [2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole] for light-emitting diodes [J]. Adv. Funct. Mater., 2001, 11: 47-50.
    [92] Janietz S, Anlauf S. A new class of organosoluble rigid-rod fully aromatic poly(1,3,4-oxadiazole)s and their solid-state properties, 1 - Synthesis [J]. Macromol. Chem. Physic., 2002, 203: 427-432.
    [93] Janietz S, Anlauf S, Wedel A. A new class of organosoluble rigid-rod, fully aromatic poly(1,3,4-oxadiazole)s and their solid-state properties, 2 - Solid-state properties [J]. Macromol. Chem. Physic., 2002, 203: 433-438.
    [94] Buchwald E, Meier M, Karg S, Posch P, Schimdt H W, Strohriegl P, Riess W, Schwoerer M. Enhanced efficiency of polymer light emitting diodes utilizing oxadiazole polymers [J]. Adv. Mater., 1995, 7: 839-842.
    [95] Estroff L A, Hamilton A D. Water gelation by small organic molecules [J]. Chem. Rev., 2004, 104: 1201-1217.
    [96] Sangeetha N M, Maitra U. Supramolecular gels: Functions and uses [J]. Chem. Soc. Rev., 2005, 34: 821-836.
    [97] de Jong J J D, Lucas L N, Kellogg R M, van Esch J H, Feringa B L. Reversible optical transcription of supramolecular chirality into molecular chirality [J]. Science, 2004, 304: 278-281.
    [98] Recent examples: (a) Sagara Y, Yamane S, Mutai T, Araki K, Kato T. A Stimuli-responsive, photoluminescent, anthracene-based liquid crystal: emission color determined by thermal and mechanical processes [J]. Adv. Funct. Mater., 2009, 19: 1869-1875.
    [99] Teng M J, Kuang G C, Jia X R, Gao M, Li Y, Wei Y. Glycine-glutamic-acid-based organogelators and their fluoride anion responsive properties [J]. J. Mater. Chem., 2009, 19: 5648-5654.
    [100] Pal S K, Agarwal A, Abbott N L. Chemically responsive gels prepared from microspheres dispersed in liquid crystals [J]. Small, 2009, 5: 2589-2596.
    [101] Fong W K, Hanley T, Boyd B J. Stimuli responsive liquid crystals provide 'on-demand' drug delivery in vitro and in vivo [J]. J. Control. Release, 2009, 135: 218-226.
    [102] Hou Q F, Wang S C, Zang L B, Wang X L, Jiang S M. Hydrogen-bonding A(LS)(2)-type low-molecular-mass gelator and its thermotropic mesomorphic behavior [J]. J. Colloid Interf. Sci., 2009, 338: 463-467.
    [103] Ziessel R, Pickaert G, Camerel F, Donnio B, Guillon D, Cesario M, Prange T. Tuning organogels and mesophases with phenanthroline Ligands and their copper complexes by inter- to intramolecular hydrogen bonds [J]. J. Am. Chem. Soc., 2004, 126: 12403-12413.
    [104] Camerel F, Bonardi L, Schmutz M, Ziessel R. Highly luminescent gels and mesogens based on elaborated borondipyrromethenes [J]. J. Am. Chem. Soc., 2006, 128: 4548-4549.
    [105] Yang H, Yi T, Zhou Z G, Zhou Y F, Wu J C, Xu M, Li F Y, Huang C H.Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives [J]. Langmuir, 2007, 23: 8224-8230.
    [106] Hashimoto M, Ujiie S, Mori A. Low molecular weight gelators with hexagonal order in their liquid-crystal phases and gel states: 5-cyano-2-(3,4,5-trialkoxybenzoylamino)tropones [J]. Adv. Mater., 2003, 15: 797- 800.
    [107] Kuang G C, Ji Y, Jia X R, Li Y, Chen E Q, Wei Y. Self-assembly of amino-acid-based dendrons: Organogels and lyotropic and thermotropic liquid crystals [J]. Chem. Mater., 2008, 20: 4173-4175.
    [108] Pang D M, Wang H T, Li M. Smectic A liquid crystals from dihydrazide derivatives with lateral intermolecular hydrogen bonding [J]. Tetrahedron, 2005, 61: 6108-6114.
    [109] Wang H T, Pang D M, Xin H, Li M, Zhang P, Tian W J. Low molecular mass organogel from mesomorphic N-(4-hexyloxybenzoyl)-N '-(4 '-nitrobenzoyl)hydrazine [J]. Liq. Cryst., 2006, 33: 439-443.
    [110] Bai B L, Wang H T, Xin H, Zhang F L, Long B H, Zhang X B, Qu S N, Li M. Hydrazide-based organogels and liquid crystals with columnar order [J]. New J. Chem., 2007, 31: 401-408.
    [111] Qu S N, Li F, Wang H T, Bai B L, Xu C Y, Zhao L J, Long B H, Li M. Twin-tapered molecules containing bi-dihydrazine units: Self-assembly through intermolecular quadruple hydrogen bonding and liquid crystalline Behavior [J]. Chem. Mater., 2007, 19: 4839-4846.
    [112] Qu S N, Wang H T, Yu Z X, Bai B L, Li M. Helical ribbons tuned by alkoxy chains in achiral twin-tapered dihydrazide derivatives [J]. New J. Chem., 2008, 32: 2023-2026.
    [113] Qu S N, Li M. Self-assembly of linear-shaped bi-dihydrazine derivative through intermolecular quadruple hydrogen bonding [J]. Tetrahedron, 2008, 64: 10890-10895.
    [114] Guillon, D. Columnar order in thermotropic mesophases [M]. Struct. Bonding (Berlin), 1999, 95: 42-82.
    [115] Hamuro Y, Geib S J, Hamilton A D. Oligo anthranilamides. Non-peptide subunits that show formation of specific secondary structure [J]. J. Am. Chem. Soc., 1996, 118: 7529-7541.
    [116] Hamuro Y, Geib S J, Hamilton A D. Novel folding patterns in a family of oligoanthranilamides: Non-peptide oligomers that form extended helical secondary structures [J]. J. Am. Chem. Soc., 1997, 119: 10587-10593.
    [117] Xue C C, Jin S, Weng X, Ge J J, Shen Z H, Shen H, Graham M J, Jeong K U, Huang H B, Zhang D, Guo M M, Harris F W, Cheng S Z D. Self-assembled "supra-molecular" structures via hydrogen bonding and aromatic/aliphatic microphase separation on different length scales in symmetric-tapered bisamides [J]. Chem. Mater., 2004, 16: 1014-1025.
    [118] Shen H, Jeong K U, Xiong H M, Graham M J, Leng S W, Zheng J X, Huang H B, Guo M M, Harris F W, Cheng S Z D. Phase behaviors and supra-molecular structures of a series of symmetrically tapered bisamides [J]. Soft Matter., 2006, 2: 232-242.
    [119] Beginn U, Lattermann G, Festag R, Wendorff J H. Mesogenic low molecular and polymeric hydrazides. Part II: Mesophase characterization [J]. Acta. polym., 1996, 47: 214-218.
    [120] Rozenberg M, Loewenschuss A, Marcus Y. An empirical correlation between stretching vibration redshift and hydrogen bond length [J]. Phys. Chem. Chem. Phys., 2000, 2: 2699-2702.
    [121] Abdallah D J, Weiss R G. n-alkanes gel n-alkanes (and many other organic liquids) [J]. Langmuir, 2000, 16: 352-355.
    [122] Jung J H, Shinkai S, Shimizu T. Spectral characterization of self-assemblies of aldopyranoside amphiphilic gelators: What is the essential structural difference between simple amphiphiles and bolaamphiphiles? [J]. Chem.-Eur. J., 2002, 8: 2684-2690.
    [123] George S J, Ajayaghosh A. Self-assembled nanotapes of oligo(p-phenylene vinylene)s: Sol-gel controlled optical properties in fluorescent pi-electronic gels [J]. Chem.-Eur. J., 2005, 11: 3217-3227.
    [124] Kawamura Y, Sasabe H, Adachi C. Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films [J]. Jpn. J. Appl. Phys., 2004, 43, 7729-7730.
    [125] Demas J N, Grosby G A. Measurement of photoluminescence quantum yields [J]. J. Phys. Chem. 1971, 75: 991-1024.
    [126] Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission: phenomenon, mechanism and applications [J]. Chem. Commun., 2009, 4332-4353.
    [127] Babu S S, Praveen V K, Prasanthkumar S, Ajayaghosh A. Self-assembly of oligo(para-phenylenevinylene)s through arene-perfluoroarene interactions: pi gels with longitudinally controlled fiber growth and supramolecular exciplex-mediated enhanced emission [J]. Chem.-Eur. J., 2008, 14: 9577-9584.
    [128] Kim T H, Choi M S, Sohn B H, Park S Y, Lyoo W S, Lee T S. Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection [J]. Chem. Commun., 2008, 2364-2366.
    [129] Xue P, Lu R, Chen G, Zhang Y, Nomoto H, Takafuji M, Ihara H. Functional organogel based on a salicylideneaniline derivative with enhanced fluorescence emission and photochromism [J]. Chem.-Eur. J., 2007, 13: 8231-8239.
    [130] Chen P, Lu R, Xue P C, Xu T H, Chen G J, Zhao Y Y. Emission enhancement and chromism in a salen-based gel system [J]. Langmuir, 2009, 25: 8395-8399.
    [131] Wang C, Zhang D Q, Xiang J F, Zhu D B. New organogels based on an anthracene derivative with one urea group and its photodimer: Fluorescence enhancement after gelation [J]. Langmuir, 2007, 23: 9195-9200.
    [132] Esch J, Feringa B L. New functional materials based on self-assembling organogels: from serendipity towards design [J]. Angew. Chem. Int. Ed., 2000, 39: 2263-2266.
    [133] Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. J. Chem. Phys., 1990, 92: 508-517.
    [134] Delley B. From molecules to solids with the DMol(3) approach [J]. J. Chem.Phys., 2000, 113: 7756-7764.
    [135] Zhao Q, Li L, Li F Y, Yu M X, Liu Z P, Yi T, Huang C H. Aggregation-induced phosphorescent emission (AIPE) of iridium(III) complexes [J]. Chem. Commun., 2008, 685-687.
    [136] Huang K W, Wu H Z, Shi M, Li F Y, Yi T, Huang C H. Reply to comment on 'aggregation-induced phosphorescent emission (AIPE) of iridium(III) complexes': origin of the enhanced phosphorescence [J]. Chem. Commun., 2009, 1243-1245.
    [137] Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun., 2001, 1740-1741.
    [138] Freemantle M. New horizons for ionic liquids - Green 'designer solvents' find additional effective uses, now for enzyme catalysis and in classic organic synthesis [J]. Chem. Eng. News., 2001, 79: 21-25.
    [139] Chen J W, Law C C W, Lam J W Y, Dong Y P, Lo S M F, Williams I D, Zhu D B, Tang B Z. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles [J]. Chem. Mater., 2003, 15: 1535-1546.
    [140] Yu G, Yin S W, Liu Y Q, Chen J S, Xu X J, Sun X B, Ma D G, Zhan X W, Peng Q, Shuai Z G, Tang B Z, Zhu D B, Fang W H, Luo Y. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles [J]. J. Am. Chem. Soc., 2005, 127: 6335-6346.
    [141] Tong H, Hong Y N, Dong Y Q, Haussler M, Lam J W Y, Li Z, Guo Z F, Guo Z H, Tang B Z. Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics [J]. Chem. Commun., 2006, 3705-3707.
    [142] Kulkarni A P, Tonzola C J, Babel A, Jenekhe S A. Electron transport materials for organic light-emitting diodes [J]. Chem. Mater., 2004, 16: 4556-4573.
    [143] Wang C S, Jung G Y, Batsanov A S, Bryce M R, Petty M C. Newelectron-transporting materials for light emitting diodes: 1,3,4-oxadiazole- pyridine and 1,3,4-oxadiazole-pyrimidine hybrids [J]. J. Mater. Chem., 2002, 12: 173-180.
    [144] Wu F I, Reddy D S, Shu C F, Liu M S, Jen A K Y. Novel oxadiazole-containing polyfluorene with efficient blue electroluminescence [J]. Chem. Mater., 2003, 15: 269-274.
    [145] Liang F S, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B, Wang F S. Oxadiazole-functionalized europium(III) beta-diketonate complex for efficient red electroluminescence [J]. Chem. Mater., 2003, 15: 1935-1937.
    [146] Tzanetos N P, Kallitsis J K. Synthesis and optical properties of copolymers containing side chain oxadiazole blocks and a rigid central moiety [J]. Chem. Mater., 2004, 16: 2648-2655.
    [147] Dingemans T J, Samulski E T. Non-linear boomerang-shaped liquid crystals derived from 2,5-bis (p-hydroxyphenyl)-1,3,4-oxadiazole [J]. Liq. Cryst., 2000, 27: 131-136.
    [148] Gortz V, Goodby J W. Enantioselective segregation in achiral nematic liquid crystals [J]. Chem. Commun., 2005, 26: 3262-3264.
    [149] Qu S N, Zhao L J, Yu Z X, Xiu Z Y, Zhao C X, Zhang P, Long B H, Li M. Nanoparticles, helical fibers, and nanoribbons of an achiral twin-tapered bi-1,3,4-oxadiazole derivative with strong fluorescence [J]. Langmuir, 2009, 25: 1713-1717.
    [150] Dave J S, Vora R A. Liquid crystals and ordered fluids [M]. New York: Plenum Press, 1970.
    [151] Gray G W, Goodby J W. Smectic liquid crystal-textures and structures [M]. Philadelphia: Heyden&Son, Inc, 1984.
    [152] Mori A, Katahira K, Kida K, Takeshita H. Preferential exhibition of smectic A phase through intramolecular hydrogen bonding in 2-amino-5-phenyltropone liquid crystals [J]. Chem. Lett., 1992, 21: 1767-1770.
    [153] Mori A, Nimura R, Isobe M, Takeshita H. Conformational change of a macrobicyclic complex structure of free ligand and interactions with DMSO[J]. Chem. Lett., 1992, 21: 859-862.
    [154] Mori A, Nimura R, Takeshita H. Assistance of the intermolecular hydrogen bonding on the appearance of the smectic C phase in 2-(4-alkoxybenzoyloxy)-5-alkylaminotropone liquid crystals [J]. Chem. Lett., 1991, 20: 77–80.
    [155] Plehnert R, Schroter J A, Tschierske C. Synthesis and thermotropic liquid crystalline properties of calamitic molecules with laterally attached hydrophilic groups: Y-shaped three-block molecules which can form smectic and columnar mesophases [J]. J. Mater. Chem. 1998, 8, 2611–2626.
    [156] Tschierske C. Non-conventional liquid crystals-the importance of micro-segregation for self-organisation [J]. J. Mater. Chem., 1998, 8: 1485-1508.
    [157] Demus D, Goodby J, Gray G W, Spiess H W, Vill V. Handbook of liquid crystals [M] //Nguyen H T, Destrade C, Malthete J. Vol. 2B Chapter 7. Weinheim: Wiley-VCH. 1998.
    [158] Borisch K, Diele S, Goring P, Kresse H, Tschierske C. Tailoring thermotropic cubic mesophases: amphiphilic polyhydroxy derivatives [J]. J. Mater. Chem., 1998, 8: 529-543.
    [159] George M, Weiss R G. Chemically reversible organogels via "latent" gelators. Aliphatic amines with carbon dioxide and their ammonium carbamates [J]. Langmuir, 2002, 18: 7124-7135.
    [160] Lee Y Z, Chen X W, Chen S A, Wei P K and Fann W S. Soluble electroluminescent poly(phenylene vinylene)s with balanced electron- and hole injections [J]. J. Am. Chem. Soc., 2001, 123: 2296-2307.
    [161] Xie M X, Liu Y. Studies on the hydrogen bonding of aniline’s derivatives by FT-IR [J]. Spectrochim. Acta, Part A, 2002, 58: 2817-2826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700