非金属元素掺杂及分子印迹聚合物修饰TiO_2纳米管阵列电极光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2是光降解有机物的催化剂中性质好、光催化活性高、研究最广泛深入的一种半导体。阳极氧化法制备的TiO_2纳米管阵列具有比表面积大、光吸收效率高、与钛基体结合牢固等优点,表现出比TiO_2纳米膜更高的光催化性能和光电转化效率。因此,通过对TiO_2纳米管阵列进行合理的改性和修饰而进一步提高其光催化活性,为TiO_2纳米管阵列能够被实际推广使用具有重要意义。非会属元素掺杂是改善TiO_2光催化活性的一种有效方法。光电催化氧化方法可阻止光生电子和空穴发生简单复合,能够有效提高TiO_2纳米管的光催化反应效率。为此,制备了氮掺杂和硼掺杂TiO_2纳米管阵列电极,并对材料进行了系统表征和光电催化性能的研究。另外,增强TiO_2纳米管对目标物的吸附是提高光电催化效果的关键。分子印迹聚合物对特定的目标分子具有特异选择性。所以,在TiO_2纳米管阵列电极上修饰一薄层分子印迹聚合物,以期改善TiO_2吸附污染物的能力,提高光电催化活性。本论文围绕以上内容,主要开展了以下几个方面的工作:
     (1)应用加热法在氮气气氛中焙烧阳极氧化TiO_2纳米管制备了氮掺杂TiO_2纳米管电极。电极为致密的阵列结构,平均孔径为80 nm,平均管长为250 nm。X射线光电子能谱(XPS)、X射线衍射(XRD)和紫外-可见漫反射光谱(DRS)分析显示,500℃和600℃制得的电极的氮掺杂量分别为0.6 at.%和0.9 at.%;在500℃制备的氮掺杂电极为锐钛矿相,600℃制备的电极为锐钛矿相和金红石相混合晶相;氮掺杂提高了TiO_2纳米管对可见光的吸收。可见光照下,反应6小时,两种氮掺杂TiO_2纳米管电极对五氯酚的光电催化降解率均比相同温度下焙烧的TiO_2电极提高了28%左右,并且五氯酚的光催化和电化学作用间存在显著的协同作用。对氮掺杂TiO_2纳米管电极具有可见光活性的机理进行了简要探讨。
     (2)以阳极氧化TiO_2纳米管阵列为基底,应用化学气相沉积法制备了硼掺杂TiO_2纳米管电极。通过扫描电镜(SEM)、XPS、XRD和DRS对电极进行表征,显示高度有序的纳米管阵列沿垂直钛基体方向生长,平均管长为800 nm,纳米管管壁呈齿纹状;硼原子掺杂到TiO_2晶格中,形成Ti-B-O键;XRD谱图中观察到锐钛矿相的(101)晶面和金红石相的(110)晶面的衍射峰,同时TiO_2纳米管的平均粒径增大了10 nm;DRS谱图表明TiO_2纳米管在紫外区的吸收强度也明显增强,并且吸收边带红移了20 nm。光电化学性能测试中,硼掺杂TiO_2纳米管电极的紫外和可见光电流密度均明显高于TiO_2纳米管电极,并且紫外光转化效率达到31.5%。光电催化实验表明,硼掺杂电极对五氯酚的紫外和可见光电催化降解速率的提升幅度高于对降解率的提升幅度。此外,应用电化学方法制备了不同硼掺杂量的TiO_2纳米管阵列电极。该方法能够一步完成纳米管形成和硼掺杂,简化了制备过程,降低了实验成本。SEM结果显示纳米管底部氧化层的厚度为30nm,氟硼化钠加到阳极氧化电解液中不会影响TiO_2纳米管阵列的形貌。XPS、XRD和DRS分析表明,硼原子在低硼掺杂量(1.5 at.%)样品中以Ti-B-O态存在,而在较高硼掺杂量(3.1 at.%和3.8 at.%)样品中硼的化学环境与B_2O_3相似;硼掺杂电极的晶相以锐钛矿相为主,混合少量金红石相;不同含量的硼掺杂均使TiO_2纳米管的吸收延伸至可见光区,同时提高了在紫外光区的吸收,当硼掺杂量为3.1 at.%时,对提高TiO_2纳米管的可见和紫外光吸收贡献最大。在相同实验条件下,三种硼掺杂电极的光电流密度和对阿特拉津的光电催化降解效率均高于TiO_2纳米管电极,其中硼掺杂量为3.1at.%的电极效果最好。
     (3)以TiO_2纳米管阵列为基底,采用自由基聚合的方法合成四环素分子印迹聚合物(MIP),制备了MIP修饰的TiO_2纳米管电极。电极表面仍然为紧密的纳米孔状结构,平均管径为50 nm。DRS分析表明,MIP的修饰提高了TiO_2纳米管电极的可见光吸收。吸附实验中,MIP修饰的TiO_2纳米管电极对四环素的最大吸附量为34.88 ng,是TiO_2纳米管电极的1.5倍。在模拟太阳光照下,电极迅速产生光响应,光电流密度随外加偏压的增加而依次增大。由于MIP具有特异的选择吸附性能,因此MIP修饰的TiO_2电极对四环素的光电催化降解能力和矿化能力优于TiO_2电极。另外,无分子印迹的聚合物选择性差,厚的分子印迹聚合物对光的衰减程度更深,因而都不利于光电催化反应的讲行。
Nano titanium dioxide(TiO_2) has long been regarded as the most promising photocatalyst because of its outstanding photocatalytic(PC) activity and finds its wide applications in breaking down many kinds of organic pollutants.TiO_2 nanotube arrays prepared by anodization method possess great specific surface area,prominent light absorption ability and strong mechanical strength,and thus exhibit better PC performance and higher photoelectron conversion efficiency than TiO_2 nano film.Therefore,it is important to further improve its photocatalytic activity by reasonable doping or modification to realize practical application of TiO_2 nanotube arrays.It has been proved that nonmetal doping would be a viable way to improve the photocatalytic activity of TiO_2.Photoelectrocatalytic(PEC) oxidation can prevent the simple combination of photogenerated electrons and holes, consequently improving the PC efficiency of TiO_2 nanotube arrays.Considering what mentioned above,in the present work,nitrogen doping and boron doping TiO_2 nanotube array electrodes were prepared and characterized.Meanwhile,the PEC capabilities of these electrodes were investigated.Additionally,increasing the adsorption of the organic pollutants over TiO_2 nanotube is considered to be an important parameter in enhancing the degradation rates of PEC oxidation.Molecular imprinted polymer(MIP) has unique property of specific affinity for target compound.Therefore,the MIP-modified TiO_2 nanotube array electrode was prepared.Higher PEC activity might be obtained with improved adsorption capability of the electrode.In this dissertation,some works were carried out as follows:
     (1) The N-doped TiO_2 nanotube array electrodes were prepared by forming nanotube-like TiO_2 film in anodization process on Ti sheets and afterward being annealed under N_2 flow at 500 and 600℃.The electrodes presented compact array configuration with an average pore diameter of approximately 80 nm and the nanotube length of approximately 250 nm.The total nitrogen concentrations for electrodes prepared at 500 and 600℃analyzed by X-ray photoelectron spectroscopy(XPS) were 0.6 at.%and 0.9 at.%,respectively.X-ray diffraction(XRD) indicated that the crystal structure of N-doped electrode prepared at 500℃was pure anatase phase and the other N-doped one was a mixture of anatase and rutile phases. UV-vis absorption spectra(DRS) showed noticeable increase of visible light absorption for TiO_2 nanotube array electrodes due to nitrogen doping.Under visible light irradiation,the PEC degradations of PCP in 6 h on N-doped electrodes were both 8%higher than those on TiO_2 electrodes annealed under 500 and 600℃,respectively,and there was a synergetic effect between PC and electrochemical processes.At last,the possible visible PEC mechanism was discussed.
     (2) The boron-doped TiO_2 nanotube array electrode was prepared by forming a nanotube-like TiO_2 film in an anodization process on a Ti sheet,followed by chemical vapor deposition treatment,and was characterized by scanning electron microscope(SEM),XPS, XRD and DRS.The highly ordered vertically oriented nanotube arrays were obtained with the length of approximately 800 nm and there were ripples present in the side-walls of the tubes. Analysis by XPS indicated that the introduced boron was probably incorporated into TiO_2 and the chemical environment surrounding boron might be Ti-B-O.The anatase(101) and rutile (110) diffraction peaks were observed in the B-doped electrode and the CVD process led to an increase in crystal size of 10 nm.DRS showed stronger absorption intensity in UV region and the absorption edge shifted 20 nm to a lower energy.The B-doped electrode exhibited higher UV and visible photocurrent densities than TiO_2 electrode,and a notable photoconversion efficiency of 31.5%was achieved under UV light irradiation.Furthermore, the B-doped TiO_2 nanotube electrode exhibited higher PEC activity than non-doped one and contributed more to the UV and visible PEC degradation rate of PCP than PCP degradation efficiency.The boron-doped TiO_2 nanotube arrays were fabricated by potentiostatic anodization of titanium in an aqueous electrolyte containing fluoride ion and sodium fluoroborate(NaBF_4).This electrochemical method provides a one-step way to prepare B-doped electrode,which not only predigests the preparation procedure but also reduces the experimental cost.SEM images showed a barrier layer of approximately 30 nm at the end of the nanotubes and the addition of NaBF_4 had no effect on the morphology of TiO_2 nanotube arrays.XPS data indicated that the boron atoms were successfully incorporated into the TiO_2 matrix,forming Ti-B-O bond in the sample with small amount of boron(1.5 at.%),and the chemical environment surrounding boron was more similar to that in B_2O_3 in the samples with larger amounts of boron(3.1 at.%and 3.8 at.%).The B-doped TiO_2 nanotube arrays with a mixture of anatase phase and very little rutile phase were identified by XRD.Red shifts and enhanced absorption intensities in both UV and visible light regions were observed in the spectra of UV-vis absorption of B-doped samples,especially the B-doped electrode with 3.1 at.%of boron.Under the same experimental conditions,B-doped nanotube array electrodes showed improved photocurrent densities and visible PEC degradation of atrazine.By comparison,the sample with 3.1 at.%of boron exhibited the best PEC performance.
     (3) The modified TiO_2 nanotube array electrode was prepared by coating a thin layer of molecular imprinted polymer(MIP).Its surface was well structured with compact voids and the average pore diameter decreased from approximately 80 nm to 50 nm.A distinguishable red shift in the absorption spectrum was observed.The maximum of adsorption capacity at equilibrium condition was about 34.88 ng for the MIP-modified sample,which was nearly 1.5-fold of that for the TiO_2 nanotube arrays.Photocurrent was generated on the MIP-modified photoanode and increased with the increase of positive bias potential under simulated solar light irradiation.Due to the better adsorption capability of MIP-modified TiO_2 nanotube array electrode,it increased not only the TC removal efficiency but also the mineralization of TC in the PEC process.In addition,the TC removal on nonimprinted-modified electrode was lower due to its poor adsorption of the target compound, and the thick MIP layer would weaken the light more deeply,which was unfavorable to PEC degradation.
引文
[1]Augustynski J.The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO_2.Electrochimica Acta.1993,38(1):43-46.
    [2]张金龙,陈锋,何斌等.光催化.上海:华东理工大学出版社.2004.
    [3]Gennari F C,Qasquevich D M.Kinetics of the anatase-rutile transformation in TiO_2 in the presence of Fe_2O_3.Journal of Materials Science.1998,33(6):1571-1578.
    [4]周武艺.纳米TiO_2的掺杂改性及光催化性能的研究:(博士学位论文).长沙:湖南大学,2005.
    [5]李广勤.二氧化钛光催化材料的可控制备及性能研究:(博士学位论文).北京:中国科学院理化技术研究所,2007.
    [6]周武艺,唐绍裘,万隆等.纳米TiO_2光催化降解有机物的机理及其影响因素的研究.中国陶瓷工业.2003,10(5):26-29.
    [7]沈伟韧,赵文宽,贺飞等.TiO_2光催化反应及其在废水处理中的应用.化学进展.1998,10(4):349-361.
    [8]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode.Nature.1972,238(5358):37-38.
    [9]Carey J H,Lawrence J,Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions.Bulletin Environmental Contamination Toxicology.1976,16(6):697-701.
    [10]Hoffmann H R,Martin S T,Chci W,et al.Environmental applications of semiconductor photocatalsis.Chemical Reviews.1995,95(1):69-96.
    [11]Garraway E R,Hoffmann A J,Hoffmann M R.Photocatalytic production of H_2O_2 and organic peroxides on quantum-sized semiconductor colloids.Environmental Science & Technology.1994,28(5):776-785.
    [12]张莉,王立明,张立娟等.有机污染的半导体光催化降解研究进展.太阳能学报.2005,26(2):228-234.
    [13]Zhao J C,Wu K,Wu T X,et al.Photode-gradation of dyes with poor solubility in an aqueous surfactant/TiO_2 dispersion under visible light irradiation.Journal of Chemical Society,Faraday Transaction.1998,94(5):673-676.
    [14]Wu T X,Liu G M,Zhao J C et al.Photoassisted degradation of dye pollutants.V.Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO_2 dispersions.Journal of Physical Chemistry B.1998,102(30):5845-5851.
    [15]Fujishima A,Rao N T,Tryk A D.Titanium dioxide photocatalysis.Journal of Photochemistry and Photobiology C:Photochemistry Reviews.2000,1(1):1-21.
    [16]韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望.化学物理学报.2003,16(5):339-349.
    [17]Oills D F,Pelizzetti E,Serpone N.Photocatalysis:Fundamentals and applications.New York:Wiley Pr.,1989.
    [18] Moazzem M, Gregory H, Raupp B. Polychromatic radiation field model for a honeycomb monolith photocatalytic reactor. Chemical Engineering Science. 1999, 54(15-16): 3027-3034.
    
    [19] 蒋展鹏,王海燕,杨宏伟.电助光催化技术研究进展.化学进展.2005,17(4):622-630.
    
    [20] Vinodgopal K, Hotechandani S, Kamat P. Electrochemically assisted photocatalysis. TiO_2 particlate film electrodes for photocatalytic degradation of 4-chlorophenol. Journal of Physical Chemistry. 1993, 97(35): 9040-9044.
    [21] Vinodgopal K, Satfford U, Gray U Ket al. Electrochemically assisted photocatalysis 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol. Journal of Physical Chemistry. 1994, 98(27): 6797-6803.
    [22] Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO_2/TiO_2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chemistry of Materials. 1996, 8(8): 2180-2187.
    [23] Kim D H, Anderson M A. Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environmental Science & Technology. 1994, 28(3): 479-483.
    [24] Kesselman J M, Lewis N S, Hoffmann M R. Photoelectrochemical degradation of 4-chlorocatechol at TiO_2 electrodes: comparison between sorption and photoreactivity. Environmental Science & Technology. 1997, 31(8): 2298-2302.
    [25] Hidaka H, Kazuhiko T S, Zhao J et al. Photoelectrochemical decomposition of amino acids on a TiO_2/OTE paniculate film electrode. Journal of Photochemistry and Photobiology A: Chemistry. 1997, 109(21): 165-170.
    [26] Calvo M E, Candal R J, Bilmes S A. Photooxidation of organic mixtures on biased TiO_2 films. Environmental Science & Technology. 2001, 35(20): 4132-4138.
    [27] Candal R J, Zeltner W A, Anderson M A. Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environmental Science & Technology. 2000, 34(16): 3443-3451.
    [28] Yang S G, Quan X, Li X Y et al. Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO_2/Ti electrode. Photochemical & Photobiological Sciences. 2006, 5(9): 808-814.
    [29] Yang S G, Liu Y Z, Sun C. Preparation of anatase TiO_2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution. Applied Catalysis A: General. 2006, 301(2): 284-291.
    [30] Li X Z, Liu H L, Yue P T. Photoelectrocatalytic oxidation of rose Bengal in aqueous solution using a Ti/TiO_2 mesh electrode. Environmental Science & Technology. 2000, 34(20): 4401-4406.
    [31] Quan X, Yang S G, Ruan X L et al. Preparation of titania nanotubes and their environmental applications as electrode. Environmental Science & Technology. 2005, 39(10): 3770-3775.
    [32] Quan X, Ruan X L, Zhao H M et al. Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO_2 nanotube film electrode. Environmental Pollution. 2007, 147(2): 409-414.
    [33]Zhao X,Zhu Y F.Synergetic degradation of rhodamine B at a porous ZnWO_4 film electrode by combined electro-oxidation and photocatalysis.Environmental Science & Technology.2006,40(10):3367-3372.
    [34]Zhao X,Yao W Q,Wu Y et al.Fabrication and photoelectrochemical properties of porous ZnWO_4 film.Journal of Solid State Chemistry.2006,179(8):2562-2570.
    [35]Vinodgopal K,Kamat P V.Enhanced rates of photocatalytic degradation of an azo dye using SnO_2/TiO_2 coupled semiconductor thin films.Environmental Science & Technology.1995,29(3):841-845.
    [36]Harper J C,Christensen P A,Egerton T A et al.Mass transport characterization of a novel gas sparged photoelectrochemical reactor.Journal of Applied Electrochemistry.2001,31(3):267-273.
    [37]Zen J M,Chung H H,Yang H H et al.Photoelectrocatalytic oxidation of o-phenols on copper-plated screen-printed electrodes.Analytical Chemistry.2003,75(24):7020-7025.
    [38]Zhang F,Zhao J,Shen T et al.TiO_2-assisted photodegradation of dye pollutants Ⅱ.Adsorption and degradation kinetics of eosin in TiO_2 dispersions under visible light irradiation.Applied Catalysis B:Environmental.1998,15(1-2):147-156.
    [39]Ssuer T,Neto G C,Jose H J et al.Kinetics of photocatalytic degradation of reactive dyes in a TiO_2 slurry reactor.Journal of Photochemistry and Photobiology A:Chemistry.2002,149(1-3):147-154.
    [40]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社.2002.
    [41]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社.2001.
    [42]Mao L Q,Li Q L,Dang H X et al.Synthesis of nanocrystalline TiO_2 with high photoactivity and large specific surface area by sol-gel method.Material Research Bull.2005,40(2):201-208.
    [43]Lizama C,Bravo C,Caneo C et al.Photocatalytic degradation of surfactants with immobilized TiO_2:comparing two reaction systems.Environmental Technology.2005,26(8):909-914.
    [44]Yin S,Ihara K,Aita Y et al.Visible-light induced photocatalytic activity of TiO_(2-X)A_(y)(A=N,S) prepared by precipitation route.Journal of Photochemistry and Photobiology A:Chemistry.2006,179(1-2):105-114.
    [45]徐瑞芬.纳米TiO_2在涂料中的抗菌性能研究.北京化工大学学报(自然科学版).2002,29(5):46-49.
    [46]吴季怀,郝三存,林建明等.染料敏化纳米TiO_2纳米晶太阳能电池研究进展.华侨大学学报.2003,24(4):6-15.
    [47]Iijima.S.Helical microtubules of graphitic carbon.Nature.1991,354(11):56-58.
    [48]Tenne R,Margulis,Genut M et al.Polyhedral and cylindrical structures of tungsten disulphide.Nature.1992,360(6403):444-446.
    [49]Feldman Y,Wasseman E,Srolovitz D J et al.High-rate,gas-phase growth of MoS_2 nested inorganic fullerenes and nanotubes.Science.1995,267(13):222-225.
    [50]Chopra N G,Luyken R J,Cherrey K et al.Boron nitride nanotubes.Science.1995,269(5226):966-967.
    [51]Zhang Y,Gu H,Iijima S et al.Heterogeneous growth of B-C-N nanotubes by laser ablation.Chemical Physics Letters.1997,279(5-6):264-269.
    [52]Lin H P,Mou C Y."Tubules-within-a-tubule" hierarchical order of mesoporous molecular sieves in MCM-41.Science.1996,273(5276):765-768.
    [53]Zhang Y,Phillipp F,Meng G W et al.Photoluminescence of mesoporous silica molecular sieves.Journal Applied Physics.2000,88(4):2169-2171.
    [54]Ghadiri M R,Grania J R,Buehler L K.Artificial transmembrane ion channels from self-assembling peptide nanotubes.Nature.1994,369(6478):301-303.
    [55]Famer V C,Adams M J,Frawer A R et al.Synthetic imogolite:properties,synthesis and application.Clay Minerals.1983,18(4):459-472.
    [56]Li G,McGown L B.Molecular nanotube aggregates of β-and γ-cyclodextrins linked by diphenylhexatrienes.Science.1994,264(5156):249-251.
    [57]Hacohen Y R,Grunbaum E,Tenne R et al.Cage structures and nanotubes of NiCl_2.Nature.1998,395(6700):336-338.
    [58]Sung S L,Tsai S H,Tseng C H et al.Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition.Applied Physics Letters.1999,74(2):197-199.
    [59]Gong D,Grimes C A,Varghese O K et al.Titanium oxide nanotube arrays prepared by anodic oxidation.Journal Matters Research.2001,16(12):3331-3334.
    [60]张云怀,胡夫,肖鹏.TiO_2纳米管的制备及应用研究.材料导报.2007,5(21):91-94.
    [61]Martin C R.Membrane-based synthesis of nanomaterials.Chemistry of Materials.1996,8(8):1739-1746.
    [62]Hoyer P.Formation of a titanium dioxide nanotube array.Langmuir.1996,12(6):1411-1413.
    [63]杨绍贵.纳米TiO_2及其复合膜电极的制备与光电催化性能研究:(博士学位论文).大连:大连理工大学,2004.
    [64]李晓红,张校刚,力虎林.TiO_2纳米管的模极法制备及表征.高等学校化学学报.2001,22(1):130-132.
    [65]Imai H,Takai Y,Shimizu K et al.Direct preparation of anatase TiO_2 nanotubes in porous alumina membranes.Journal of Materials Chemistry.1999,9(12):2971-2972.
    [66]Peng T Y,Yang H P,Chang G et al.Synthesis of bambooshaped TiO_2 nanotubes in nanochannels of porous aluminum oxide membrane.Chemistry Letters.2004,33(3):336-337.
    [67]Kasuga T,Hiramatsu M,Hoson A et al.Formation of titanium oxide nanotube.Langmuirm.1998,14(12):3160-3163.
    [68]Kasuga T,Hiramatsu M,Hoson A et al.Titania nanotubes prepared by chemical processing.Advanced Materials,1999,11(15):1307-1311.
    [69]Sun X M,Li Y D.Synthesis and characterization of ion-exchangeable titanate nanotubes.Chemistry-A European Journal.2003,9(10):2229-2238.
    [70]Du G H,Chen Q,Che R C et al.Preparation and structure analysis of titanium oxide nanotubes.Applied Physics Letters.2001,79(26):3702-3804.
    [71]Wang W Z,Varghese O K,Paulose M et al.A study on the growth and structure of titania nanotubes.Journal of Materials Research.2004,19(2):417-422.
    [72]王芹,陶杰,翁履谦等.氧化钛纳米管的合成机理与表征.材料开发与应用.2004,19(5):9-12.
    [73]Yao B D,Chan Y F,Zhang X Y et al.Formation mechanism of TiO_2 nanotubes.Applied Physics Letters.2003,82(2):281-283.
    [74]韩文涛,马建华,郝彦忠.二氧化钛纳米管的研究进展.河北科技大学学报.2005,26(3):199-202.
    [75]王保玉,张景会,刘湛鋆.TiO_2纳米管的制备与表征.精细化工.2003,1(6):333-336.
    [76]Tsai C C,Teng H.Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment.Chemistry of Materials.2004,16(22):4352-4358.
    [77]Khan M A,Jung H T,Yang O B.Synthesis and characterization of ultrahigh crystalline TiO_2nanotubes.Journal of Physical Chemistry B.2006,110(13):6626-6630.
    [78]Wang Y Q,Hu G Q,Duan X F et al.Microstructure and formation mechanism of titanium dioxide nanotubes.Chemical Physics Letters.2002,365(15):427-431.
    [79]赵慧敏,陈越,全燮等.Zn掺杂TiO_2纳米管电极制备及其对五氯酚的光电催化降解.科学通报.2007,52(2):158-162.
    [80]赖跃坤,孙岚,左娟等.氧化钛纳米管阵列制备及形成机理.物理化学学报.2004,20(9):1063-1066.
    [81]Mor C K,Varghese O K,Paulose M et al.Fabrication of tapered,conical-shaped titania nanotubes.Journal of Materials Research.2003,18(11):2588-2593.
    [82]Mor G K,Carvalho M A,Varghese O K et al.A room temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination.Journal of Materials Research.2004,19(2):628-634.
    [83]Mor G K,Shankar K,Paulose M et al.Enhanced photocleavage of water using titania nanotube arrays.Nano Letters.2005,5(1):191-195.
    [84]Zhao J,Wang X,Li L.Electrochemical fabrication of well-ordered titania nanotubes in H_3PO_4/HF electrolyte.Electronics Letters.2005,41(13):771-772.
    [85]Bauer S,Kleber S,Schmuki P.TiO_2 nanotubes:tailoring the geometry in H_3PO_4/HF electrolyte.Electrochemistry Communications.2006,8(8):1321-1325.
    [86]Beranek R,Hildebrand H,Schmuki P.Self-organized porous titanium oxide prepared in H_2SO_4/HF electrolytes.Electrochemical and Solid-State Letters.2003,6(3):B12-B14.
    [87]Ruan C,Paulose M,Varghese O K et al.Enhanced photoelectrochemical-response in highly ordered TiO_2 nanotube-arrays anodized in boric acid containing electrolyte.Solar Energy Materials and Solar Cells.2006,90(9):1283-1295.
    [88]Macak J M,Sirotna K,Schmuki P.Self-organized porous titanium oxide prepared in Na_2SO_4/NaF electrolytes.Electrochimica Acta.2005,50(18):3679-3684.
    [89]Macak J M,Tsuchiya H,Schmuki P.High-aspect-ratio TiO_2 nanotubes by anodization of titanium.Angewandte Chemie International Edition.2005,44(14):2100-2102.
    [90]Ghicov A,Tsuchiay H,Schmuki P et al.Titanium oxide nanotubes prepared in phosphate electrolytes.Electrochemistry Communications.2005,7(5):505-509.
    [91]Paulose M,Mor G K,Varghese O K et al.Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays.Journal of Photochemisty and Photobiology A:Chemistry.2006,178(1):8-15.
    [92]孙岚,李静,庄惠芳等.TiO_2纳米管阵列的制备、改性及其应用研究进展.无机化学学报.2007,23(11):1841-1850.
    [93]Ruan C,Paulose M,Varghese O K et al.Fabrication of highly ordered TiO_2,nanotube arrays using an organic electrolyte.Journal of Physical Chemistry B.2005,109(33):15754-15759.
    [94]Paulose M,Shankar K,Yoriya S et al.Anodic growth of highly ordered TiO_2 nanotube arrays to 134μm in length.Journal of Physical Chemistry B.2006,110(33):16179-16184.
    [95]Shankar K,Mor G K,Fitzgerald A et al.Cation effect on the electrochemical formation of very high aspect ratio TiO_2 nanotube arrays in formamide-water mixtures.Journal of Physical Chemistry C.2007,111(1):21-26.
    [96]Albu S P,Ghicov A,Macak J M et al.250μm long anodic TiO_2 nanotubes with hexagonal self-ordering.Physical Status Solidi.2007,1(2):R65-R67.
    [97]Prakasam H E,Shankar K,Paulose M et al.A new benchmark for TiO_2 nanotube array growth by anodization.Journal of Physical Chemistry C.2007,111(20):7235-7241.
    [98]Macak J M,Schmuki P.Anodic growth of self-organized anodic TiO_2 nanotubes in viscous electrolytes.Electrochimica Acta.2006,52(3):1258-1264.
    [99]Macak J M,Aldabergerova S,Ghicov A et al.Smooth anodic TiO_2 nanotubes:annealing and structure.Physical Status Solidi.2006,203(10):R67-R69.
    [100]郑青,周保学,白晶等.TiO_2纳米管阵列及其应用.化学进展.2007,19(1):117-122.
    [101]陶杰,陶海军.TiO_2纳米管阵列的制备及应用研究进展.机械制造与自动化.2008,37(1):1-4.
    [102]Hippe C,Wark M,Lork E et al.Platinum-filled oxidic nanotubes.Microporous and Mesoporous Materials.1999,31(3):235-239.
    [103]Idakiev V,Yuan Z Y,Tabakova T et al.Titanium oxide nanotubes as support of nano-sized gold catalysts for low temperature water-gas shift reaction.Applied Catalysis A:General.2005,281(1-2):149-155.
    [104]Kumbhar A,George C.Synthesis of iron(Ⅲ)-doped titania nanoparticles and its application for photodegradation of sulforhodamine-B pollutant.Journal of Nanoparticles Research.2005,7(4-5):489-498.
    [105]Huang J G,Kunitake T,Onoue S Y.A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle.Chemical Communications.2004,(8):1008-1009.
    [106]Xie Y B.Photoelectrochemical application of nanotubular titania photoanode.Electrochemical Acta.2006,51(17):3399-3406.
    [107]Wang M,Guo D J,Li H L.High activity of novel Pd/TiO_2 nanotube catalysts for methanol electro-oxidation.Journal of Solid State Chemistry.2005,178:1996-2000.
    [108]邵颖,薛宽宏,何春建等.TiO_2纳米管对十二烷基苯磺酸钠的光催化降解.化学世界.2003,44(4):174-178.
    [109]秦亮,陶杰,王玲等.Ti/TiO_2-Pt修饰电极的制备及电催化性能研究.稀有金属材料与工程.2007,36(10):1870-1873.
    [110]Macak J M,Zlama I M,Schmuki P.Self-organized TiO_2 nanotube layers as highly efficient photocatalyst.Small.2007,3(2):300-304.
    [111]赖跃坤,孙岚,林昌健等.奥氏体-贝氏体球铁的发展.第九届全国有机电化学语与工业学术会议论文集.厦门,2004.
    [112]孙岚,宫娇娇,庄惠芳等.TiO_2纳米管阵列光催化降解苯酚.2007,24(4):317-320.
    [113]Lai Y K,Sun L,Lin C J et al.Effects of the structure of TiO_2 nanotube array on Ti substrate on its photocatalytic activity.Journal of the Electrochemical Society.2006,153(7):D123-D127.
    [114]Albu S P,Ghicov A,Schmuki P et al.Self-organized,free-standing TiO_2 nanotube membrane for flow-through photocatalytic applications.Nano Letters.2007,7(5):1286-1289.
    [115]Zhang H F,Lin C J,Lai Y K et al.Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity.Environmental Science & Technology.2007,41(13):4735-4740.
    [116]Liu Z Y,Zhang X T,Nishimoto S et al.Highly ordered TiO_2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol.Journal of Physical Chemistry C.2008(1):112,253-259.
    [117]Regan B O,Gratzel M A.Low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO_2.Nature.1991,353(6346):737-740.
    [118]Maak J M,Tshchiya H,Schmuki P et al.Dye-sensitized anodic TiO_2 nanotubes.Electrochemical Communications.2005,7(11):1133-1137.
    [119]Shankar K,Mor G K,Prakasam H E et al.Highly-ordered TiO_2 nanotube arrays up to 220μm in length:use in water photoelectrolysis and dye-sensitized solar cells.Nanotechnology.2007,18(6):065707.
    [120]Paulose M,Shankar K,Varghese O et al.Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes.Nanotechnology.2006,17(5):1446-1448.
    [121]Paulose M,Shankar K,Grimes C A et al.Application of highly-ordered TiO_2 nanotube arrays in heterojunction dye-sensitized cells.Journal of Physics D:Applied Physics.2006,39(12):2498-2503.
    [122]Wang H,Yip C T,Xie M H et al.Yitania-nanotube-array-based photovoltaic cells.Applied Physics Letters.2006,89(2):023508.
    [123]Adachi M,Murata Y,Okada I et al.Formation of titania nanotubes and applications for dye-sensitized solar cells.Journal of the Electrochemical Society.2003,150(8):G488-G493.
    [124]吕明,苏雪筠,饶平根等.新型光解水制氢用半导体光催化材料的研究进展.材料导报.2005,19(5):1-3.
    [125]Varghese O K,Paulose M,Shankar K et al.Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays.Journal of Nanoscience and Nanotechnology.2005,5(7):1158-1165.
    [126]Jong H P,Sungwook K,Allen J B et al.Novel carbon-doped TiO_2 nanotube arrays with high aspect ratios for efficient solar water splitting.Nano Letters.2006,6(1):24-28.
    [127]Mor G K,Shankar K,Varghese O K et al.Photoelectro-chemical properties of titania nanotubes.Journal of Materials Research.2004,19(10):2989-2996.
    [128]Varghese O K,Gong D,Paulose M et al.Hydrogen sensing using titania nanotubes.Sensors and Actuators B:Chemical.2003,93(1-3):338-344.
    [129]Varghese O K,Gong D,Grimes C A et al.Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure.Advanced Materials.2003,15(7-8):624-627.
    [130]Varghese O K,Mor G K,Grimes C A et al.A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations.Journal of Nanoscience and Nanotechnology.2004,4(7):733-737.
    [131]Mor G K,Varghese O K,Paulose M et al.A self-cleaning,room-temperature titania-nanotube hydrogen gas sensor.Sensor Letters.2003,1(1):42-46.
    [132]Zhao J,Wang X,Chen R et al.Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates.Materials Letters.2005,59(18):2329-2332.
    [133]Prida V M,Velez M H,Cervera M et al.Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes.Journal of Magnetism and Magnetic Materials.2005,294(2):e69-e72.
    [134]Ch S H,Finones R R,Jin S et al.Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.Biomaterials.2005,26(24):4938-4943.
    [135]菅盘铭,夏亚穆,李德宏等.掺杂TiO_2纳米粉的合成、表征及催化性能研究.催化学报.2001,22(2):161-164.
    [136]Martra G.Lewis acid and base sites at the surface of microcrystalline TiO_2 anatase:relationships between surface morphology and chemical behaviour.Applied Catalysis A:General.2000,200(1-2):275-285.
    [137]Serpone N,Texier I,Emeline A V et al.Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO_2/water interfaces in the presence of prominent hole scavengers.Journal of Photochemistry and Photobiology A:Chemistry.2000,136(3):145-155.
    [138]Moonsiri M,Raugsunvigit P,Chavadej S.Effect s of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products.Chemical Engineering Journal.2004,97(2-3):241-248.
    [139]Sun B,Vorontsov A V,Smirniotis P G.Role of Platinum deposited on TiO_2 in phenol photocatalytic oxidation.Langmuir.2003,19(8):3151-3156.
    [140]Liu Y C,Juang L C.Electrochemical Methods for the preparation of gold-coated TiO_2nanoparticles with variable coverages.Langmuir.2004,20(16):6951-6955.
    [141]辛柏福,井立强,任志宇等.多价态共存的Ag-TiO_2光催化剂的制备及光催化活性.化学学报.2004,62(12):1110-1114.
    [142]Shan Z,Lian G.Synthesis and characterization of Pt,Au or Pd clusters deposited titania-modified mesoporous silicate MCM-41.Materials Chemistry and Physics.2002,78(2):512-517
    [143]Kitana M,Kikuchi H,Hosoda T et al.Photocatalytic decomposition of water into H_2 and O_2using the visible light responsive TiO_2 thin film photocatalysts.The 3rd Asia-Pacific Congress on Catalysis.Dalian Institute of Chemical Physics Press,2003,574-575.
    [144] Bessekhouad Y, Robert D, Weber J V. Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A: Chemistry. 2004, 163(3): 569-580.
    [145] Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS-TiO_2 coupled semiconductors-photocatalytic oxidation of indole. Journal of Molecular Catalysis A: Chemical. 2001, 165(1-2): 265-273.
    [146] Lo S C, Lin C F, Wu C H et al. Capability of coupled CdSe/TiO_2 for photocatalytic degradation of 4-chlorophenol. Journal of Hazard Materials. 2004,114(1-3): 183-190.
    [147] Pilkenton S, Raftery D. Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO_2-SnO_2 photocatalysts. Solid State Nuclear Magnetic Resonance. 2003, 24(4): 236-253.
    [148] Chen S, Paulose M, Ruan C et al. Electrochemically synthesized CdS nanoparticle-modified TiO_2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cell. Journal of Photochemistry and Photobiology A: Chemistry. 2006, 177(2-3): 177-184.
    [149] Sun W T, Yu Y, Pan H Y et al. CdS quantum dots sensitized TiO_2 nanotube-array photoelectrodes. Journal of the American Chemical Society. 2008, 130(4): 1124-1125.
    [150] Ileperuma O A, Tennakone K, Dissanayake W D D P. Photocatalytic behaviour of metal doped TiO_2. Applied Catalysis. 1990, 62(1): L1-L5.
    [151] Han X X, Zhou R X, Lai G H et al. Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO_2 catalysts. Journal of Molecular Catalysis A: Chemical. 2004, 209(1-2): 83-87.
    [152] Kapoor P N, Uma S, Rodriguez S et al. Aerogel processing of MTi_2O_5 (M = Mg, Mn, Fe, Co, Zn, Sn) compositions using single source precursors: synthesis, characterization and photocatalytic behavior. Journal of Molecular Catalysis A: Chemical. 2005, 229(1-2): 145-150.
    [153] Wang Y M, Liu S W, Lu M K et al. Preparation and photocatalytic properties of Zr~(4+)-doped TiO_2 nanocrystals. Journal of Molecular Catalysis A: Chemical. 2004, 215(1-2): 137-142.
    [154] Yanagisawa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu~(2+) doped layered hydrogen titanate. International Journal of Inorganic Materials. 2000, 2(4): 339-346.
    [155] Li X Z, Li F B, Yang C L et al. Photocatalytic activity of WO_x-TiO_2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry. 2001, 141(1-3): 209-217.
    
    [156] 李芳柏,古国榜,李新军等.WO_3/TiO_2纳米材料的制备与广催化性能.物理化学学报. 2000,16(11):997-1002.
    [157] Jeon M S, Yoon W S. Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst. Applied Surface Science. 2000, 165(2-3): 209-216.
    [158] Sskata Y, Yamamoto T, Gunji H et al. Effect of lead oxide adition to the photocatalytic behavior of TiO_2. Chemistry Letters. 1998,27(2): 131-132.
    [159] Yamashita H, Harada M, Misaka J et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry. 2002, 148(1-3): 257-261.
    [160]Choi W,Termin A,Hoffmann M R.The role of metal ion dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carrier recombination dynamics.Journal of Physical Chemistry.1994,98(51):13669-13679.
    [161]徐悦华,古国榜,陈小泉等.复合纳米Fe_2O_3/TiO_2的制备、表征及光催化活性.华南理工大学学报(自然科学版).2001,29(11):76-80.
    [162]Nicole J,Tsiplakides D,Pliangos C et al.Electrochemical promotion and metal-support interactions.Journal of Catalysis.2001,204(1):23-34.
    [163]Anpo M,Takeuchi M.The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation.Journal of Catalysis.2003,216(1-2):505-516.
    [164]Yamashita H,Harada M,Misaka J et al.Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts:Fe ion-implanted TiO_2.Catalysis Today.2003,84(3-4):191-196.
    [165]Kazuhiro H,Eiji S,Akio I et al.Sensitization of TiO_2 particles by dyes to achieve H_2 evolution by visible light.Journal of Photochemistry and Photobiology A:Chemistry.2000,136(2):157-161.
    [166]Dhanalakshmi K B,Latha S,Anadan S et al.Dye sensitized hydrogen evolution from water.International Journal of Hydrogen Energy,2001,26(7):669-674.
    [167]Wu S Z,Zeng F,Zhu H P et al.Energy and electron transfers in photosensitive chitosan.Journal of the American Chemical Society.2005,127(7):2048-2049.
    [168]Ding H,Sun H,Shan Y K et al.Preparation and characterization of mesoporous SBA-15supported dye-sensitized TiO_2 photocatalyst.Journal of Photochemistry and Photobiology A:Chemistry.2005,169(1):101-107.
    [169]姚巧红,单璐,李富友等.纳米晶TiO_2电极上半菁衍生物光敏染料.物理化学学报.2003,19(7):635-640.
    [170]吴树新.改性纳米TiO_2光催化氧化还原性能的研究:(博士学位论文).天津:天津大学,2003.
    [171]Liu G M,Zhao J C.Photocatalytic degradation of dye sulforhodamine B:a comparative study of photocatalysis with photosensitization.New Journal of Chemistry.2000,24(6):411-417.
    [172]Liu G,Wu T,Zhao J et al.Photoassisted degradation of dye pollutants.8.Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO_2dispersions.Environmental Science & Technology.1999,33(12):2081-2087.
    [173]Bae E Y,Choi W Y.Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO_2 under visible light.Environmental Science & Technology.2003,37(1):147-152.
    [174]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science.2001,293(5528):269-271.
    [175]Sato S.Photocatalytic activity of NO_x-doped TiO_2 in the visible light region.Chemical Physics Letters.1986,123(1-2):126-128.
    [176]赵秀峰,张志红,孟宪锋等.B掺杂TiO_2/AC光催化剂的制备及活性.分子催化.2003,17(14):292-296.
    [177]Zhao W,Ma W,Chen C et al.Efficient degradation of toxic organic pollutants with Ni_2O_3/TiO_(2-x)B_x under visible irradiation.Journal of the American Chemical Society.2004,126(15):4782-4783.
    [178]Khan S U M,Al-Shahry M,Ingler W B.Efficient photochemical water splitting by a chemical modified n-TiO_2.Science.2002,297(5590):2243-2245.
    [179]Irie H,Watanabe Y,Hashimoto K.Carbon-doped anatase TiO_2 powders as a visible light sensitive photocatalyst.Chemistry Letters.2003,32(8):772-777.
    [180]Lettmann C,Hildenbrand K,Kisch H et al.Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst.Applied Catalysis B:Environmental.2001,32(4):215-217.
    [181]Nagaveni K,Hegde M S,Ravishiankar N et al.Synthesis and structure of nanocrystalline TiO_2with lower band gap showing high photo-catalytic activity.Langmuir.2004,20(7):2900-2907.
    [182]Choi Y,Umebayashi T,Yamamoto S et al.Fabrication of TiO_2 photocatalysts by oxidative annealing of TiC.Journal of Materials Science Letters.2003,22(17):1209-1211.
    [183]Kamat P V,Gevaert M.Photochemistry on semiconductor surfaces.Visible light induced oxidation of C_(60) on TiO_2 nanoparticles.Journal of Physical Chemistry B.1997,101(22):4422-4427.
    [184]Arana J,Dona-Rodriguez J M,Rendon E T et al.TiO_2 activation by using activated carbon as a support:Part Ⅱ.Photoreactivity and FTIR study.Applied Catalysis B:Environmental.2003,44(2):153-160.
    [185]田地,余刚,张彭义等.碳黑改性二氧化钛对气相中甲苯的光催化降解.太阳能学报.2002,23(1):66-69.
    [186]Di Valentin C,Pacchioni G,Selloni A.Theory of carbon doping of titanium dioxide.Chemistry of Materials.2005,17(26):6656-6665.
    [187]Irie H,Watanabe Y,Hashimoto K.Nitrogen-concentration dependence on photocatalytic activity of TiO_(2-x)N_x powders.Journal of Physical Chemistry B.2003,107(23):5483-5486.
    [188]Iharaa T,Miyoshi M,Iriyatna Y et al.Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping.Applied Catalysis B:Environmental.2003,42(4):403-409.
    [189]Sato S,Nakatnura R,Abe S.Visible-light sensitization of TiO_2 photocatalysts by wet-method N doping.Applied Catalysis A:General.2005,284(1-2):131-137.
    [190]Gole J L,Stout J D,Burda C et al.Highly efficient formation of visible light tunable TiO_(2-x)N_x photocatalysts and their transformation at the nanoscale.Journal of Physical Chemistry.2004,108(4):1230-1240.
    [191]Yin S,Yatnaki H,Komatsu M et al.Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine.Journal of Materials Chemistry.2003,13(12):2996-3001.
    [192]Sano T,Negishi N,Koike K et al.Preparation of a visible light-responsive photocatalyst from a complex of Ti~(4+) with a nitrogen-containing ligand.Journal of Materials Chemistry.2004,14(3):380-384.
    [193]Nukutnizu K,Nunoshige J,Takata T et al.TiN_xO_yF_z as a stable photocatalyst for water oxidation in visible light(<570nm).Chemistry Letters.2003,32(2):196-197.
    [194]Yu J C,Yu J,Ho W et al.Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders.Chemistry of Materials.2002,14(9):3808-3816.
    [195]Hattori A,Hieoki T.High photocatalytic activity of F-Doped TiO_2 film on glass.Journal of Sol-Gel Science and Technology.2001,22(1-2):47-52.
    [196]Yamaki T,Sumita T,Yamamoto S.Formation of TiO_(2-x)F_x compounds in fluorine-implanted TiO_2.Journal of Materials Science Letters.2002,21(1):33-35.
    [197]Ohno T,Mitsui T,Matsumura M.Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light.Chemistry Letters.2003,32(4):364-365.
    [198]Umebayashi T,Yatnaki T,Itoh H et al.Band gap narrowing of titanium dioxide by sulfur doping.Applied Physics Letters.2002,81(3):454-456.
    [199]Gomez R,Lopez T,Ortiz-Islas E et al,Effect of sulfation on the photoactivity of TiO_2 sol-gel derived catalysts.Journal of Molecular Catalysis A:Chemistry.2003,193(1-2):217-226.
    [200]Umebayashi T,Yamaki T,Tanaka S et al.Visible light-induced degradation of methylene blue on S-doped TiO_2.Chemistry Letters.2003,32(4):330-331.
    [201]Ohno T,Akiyoshi M,Umebayashi T et al.Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light.Applied Catalysis A:General.2004,265(1):115-121.
    [202]Umebayashi T,Yamaki S,Yamamoto S et al.Sulfur-doping of rutile-titanium dioxide by ion implantation:photocurrent spectroscopy and first-principles band calculation studies.Applied Physics.2003,93(9):5156-5160.
    [203]洪孝挺,王正鹏,陆峰等.可见光响应型非金属掺杂TiO_2的研究进展.化工进展.2004,23(10):1077-1080.
    [204]Jimmy C,Yu J G,Ho W K,et al.Effects of F~- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 Powders.Chemistry of Materials.2002,14(9):3803-3816
    [205]Ghicov A,Macak J M,Tsuchiya H et al.Ion implantation and annealing for an efficient N-doping of TiO_2 nanotubes.Nano Letters.2006,6(5):1080-1082.
    [206]Ghicov A,Macak J M,Tsuchiya H et al.TiO_2 nanotube layers:Does effects during nitrogen doping by ion implantation.Chemical Physics Letters.2005,419(4-6):426-429.
    [207]Shankar K,Tep K C,Mor G K et al.An electrochemical strategy to incorporate nitrogen in nanostructured TiO_2 thin films:modified of bandgap and photoelectrochemical properties.Journal of Physics D:Applied Physics.2006,39(11):2361-2366.
    [208]Liu H Y,Gao L.(Sulfur,nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst.Journal of the American Ceramic Society.2004,87(8):1582-1584.
    [209]Sun H Q,Bai Y,Chen Y P et al.Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO_2 photocatalysts.Industrial & Engineering Chemistry Research.2006,45(14):4971-4976.
    [210]Li D,Haneda H,Hishita S et al.Visible-light-driven N-F-codoped TiO_2 photocatalysts.1.Synthesis by spray pyrolysis and surface characterization.Chemistry of Materials.2005,17(10):2588-2595.
    [211]Li D,Haneda H,Hishita S et al.Visible-light-driven N-F-codoped TiO_2 photocatalysts.2.Optical characterization,photocatalysis,and potential application to air purification.Chemistry of Materials.2005,17(10):2596-2602.
    [212]姜忠义,吴洪.分子印迹技术.北京:化学工业出版社,2003.
    [213]武利庆.分子印迹聚合物亲和性和选择性的理论预测与调控:(博士学位论文).北京:北京大学,2005.
    [214]小宫山真.分子印迹学-从基础到应用.吴世康,汪鹏飞译.北京:科学出版社,2006.
    [215]Wulff G,Vietmeier J,Poll H G.Enzyme-analogue built polymers,22.influence of the nature of the crosslinking on the performance of imprinted polymers in racemic resolution.Die Makromolekulare Chemie.1987,188(4):731-740.
    [216]Mukawa T,Goto T,Nariai H et al.Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates.Journal of Pharmaceutical and Biomedical Analysis.2003,30(6):1943-1947.
    [217]Wulff G,Vietmeier J.Enzyme-analogue built polymers,26.Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules.Die Makromolekulare Chemic.1989,190(7):1727-1735.
    [218]Shea K J,Dougherty T K.Molecular recognition on synthetic amorphous surfaces.The influence of functional group positioning on the effectiveness of molecular recognition.Journal of the American Society.1986,108(5):1091-1093.
    [219]Wulff G,Kristein G.Measuring the optical activity of chiral imprints in insoluble highly cross-linked polymers.Angewandte Chemic International Edition in English.1990,29(6):684-686.
    [220]Sellergren B,Lepisto M,Mosbach K.Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions.NMR and chromatographic studies on the nature of recognition.Journal of the American Chemical Society.1988,110(17):5853-5860.
    [221]Matsui J,Doblhoff-Dier O,Takeuchi T.2-(Trifluoromethyl)acrylic acid:a novel functional monomer in non-covalent molecular imprinting.Analytica Chimica Acta.1997,343(1-2):1-7.
    [222]Kukimiya A,Matsui J,Takeuchi T.Sialic acid-imprinted polymers using noncovalent interactions.Materials Science & Engineering C:Biomimetic Materials,Sensors and Systems.1997,4(4):263-266.
    [223]Yano K,Nakaqiri T,Takeuchi T,Masui J,Stereoselective recognition of dipeptide derivatives in molecularly imprinted polymers which incorporate an L-valine derivative as a novel functional monomer.Analytica Chimica Acta.1997,357(1-2):91-98.
    [224]Kido H,Miyajima T,Tsukagoshi K et al.Metal-ion complexation behavior of resins prepared by a novel template polymerization technique.Analytical Sciences.1992,8(6):749-753.
    [225]Uezu K,Nakamura H,Goto M et al.Novel metal ion-imprinted resins prepared by surface template polymerization with W/O emulsion.Journal of Chemical Engineering of Japan.1994,27(3):436-438.
    [226]Matsui J,Fujiwara K,Ugata S et al.Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent.Journal of Chromatography A.2000,889(1-2):25-31.
    [227]Matsui J,Okada M,Tsuruoka M et al.Solid-phase extraction of a triazine herbicide using a molecularly imprinted synthetic receptor.Analytical Communications.1997,34(3):85-87.
    [228]Mayes A G,Mosbach K.Molecularly imprinted polymer beads:suspension polymerization using a liquid perfluorocarbon as the dispersing phase.Analytical Chemistry.1996,68(21):3769-3774.
    [229]Sulitzky C,Ruckert B,Hall A J et al.Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators.Macromolecules.2002,35(1):79-91.
    [230]张宇辉.新型分子印迹聚合物制备方法的研究及其分子识别作用:(硕士毕业论文).北京:清华大学,2003.
    [231]Wullf G,Vesper W.Preparation of chromatographic sorbents with chiral cavities for racemic resolution.Journal of Chromatography A.1978,167:171-186.
    [232]Allender C J,Heard C M,Brain K R.Mobile phase effects on enantiomer resolution using molecularly imprinted polymers.Chirality.1997,9(3):238-242.
    [233]Nicholls I A,Ramstrom O,Mosbach K.Insights into the role of the hydrogen-bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics.Journal of Chromatography A.1995,691(1-2):349-353.
    [234]Andersson L I,Muller R,Mosbach K.Molecular imprinting of the endogenous neuropeptide Leu(5)-enkephalin and some derivatives thereof.Macromolecular Rapid Communications.1996,17(1):65-71.
    [235]Sellergren B.Direct drug determination by selective sample enrichment on an imprinted polymer.Analytical Chemistry.1994,66(9):1578-1582.
    [236]Zhu Q Z,Degelmann P,Niessner R et al.Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer.Environmental Science & Technology.2002,36(24):5411-5420.
    [237]Matsui J,Fujiwara F,Ugata S et al.Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent.Journal of Chromatography A.2000,889(1):25-31.
    [238]Caro E,Marce R M,Cormack P A G et al.On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water.Journal of Chromatography A.2003,995(1-2):233-238.
    [239]Chapuis F,Pichon V,Lanza F et al.Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers:Application to the extraction of triazines from complex matrices.Journal of Chromatography B.2004,804(1):93-101.
    [240]Chen G H,Guan Z B,Chert C T et al.A glucose-sensing polymer.Nature Biotechnology.1997,15(4):354-357.
    [241]Piletsky S A,Dubey I Y,Fedoryak D M et al.Substrate-selective polymeric membranes:selective transfer of nucleic acid components.Biopolymer Kletka.1990,6:55-58.
    [242]Hedborg E,Winquist F,Lundstrom I et al.Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices.Sensors and Actuators A:Physical.1993,37:796-783.
    [243]Sergeyeva T A,Piletsky S A,Brovko A A et al.Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes.The Analyst.1999,124(3):331-334.
    [244]Chianella I,Piletsky S A,Tothill I E et al.MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR.Biosensors and Bioelectronics.2003,18(2-3):119-127.
    [245]Zayats M,Lahav M,Kharitonov A B et al.Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors.Tetrahedron.2002,58(4):815-824.
    [246]Panasyuk T L,Mirsky V M,Piletsky S A et al.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors.Analytical Chemistry.1999,71(20):4609-4613.
    [247]Marx S,Zaltsman A,Turyan I et al.Parathion sensor based on molecularly imprinted sol-gel films.Analytical Chemistry.2004,76(1):120-126.
    [248]Malitesta C,Losito I,Zambonin P G et al.Molecularly imprinted electrosynthesized polymers:new materials for biomimetic sensors.Analytical Chemistry.1999,71(7):1366-1370.
    [249]Shen X T,Zhu L H,Li J et al.Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity.Chemical Communications.2007,(11):1163-1165.
    [250]沈先涛,朱丽华,王楠等.人工抗体型光催化剂选择性降解酚类污染物.持久性有机污染论坛2007暨第二届持久性有机污染物全国学术研讨会论文集,大连,2007.
    [251]Shen X T,Zhu L H,Liu G X et al.Enhanced photocatalytic degradation and selective removal of nitrophenol by using surface molecular imprinted titania.Environmental Science &Technology.2008,42(5):1687-1692.
    [252]Burda C,Lou Y,Chen Y et al.Enhanced nitrogen doping in TiO_2 nanoparticles.Nano Letters.2003,3(8):1049-1051.
    [253]Lindgren T,Mwabora J M,Avendano E et al.Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering.Journal of Physical Chemistry B.2003,107(24):5709-5716.
    [254]Morikawa T,Asahi R,Ohwak T et al.Band-gap narrowing of titanium dioxide by nitrogen doping.Japanese Journal of Applied Physics Part 2.2001,40(60A):L561-L563.
    [255]An T C,Zhu X H,Xiong Y.Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor.Chemosphere.2002,46(6):897-903.
    [256]Moon S C,Mametsuka H,Suzuki E.Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water.Catalysis Today.1998,45(1-4):79-84.
    [257] Grey I E, Li C, Macrae C. Boron incorporation into rutile. Phase equilibria and structure considerations. Journal of Solid State Chemistry. 1996, 127(2): 240-247.
    [258] Jung K Y, Park S B, Ihm S K. Local structure and photocatalytic activity of B_2O_3-SiO_2/TiO_2 ternary mixed oxides prepared by sol-gel method. Applied Catalysis B: Environmental. 2004, 51(4): 239-245.
    [259] Jin Z L, Lu G X. Efficient photocatalytic hydrogen evolution over Pt~(x-)/TiO_(2_y)B_y catalysts in a ternary system of K~+ Mg~(2+)/B_4O_7~(2-)/H_2O. Energy & Fuels. 2005, 19(3): 1126-1132.
    [260] Zaleska A, Sobczak J W, Grabowska E et al. Preparation and photocatalytic activity of boron-modified TiO_2 under UV and visible light. Applied Catalysis B: Environmental. 2008, 78(1-2): 92-100.
    [261] In S, Orlov A, Lambert R M et al. Effective visible light-activated B-doped and B, N-codoped TiO_2 photocatalysts. Journal of the American Society. 2007, 129(45): 13790-13791.
    [262] Gopal N O, Lo H H, Ke S C. Chemical state and environment of boron dopant in B, N-codoped anatase TiO_2 nanoparticles: An avenue for probing diamagnetic dopants in TiO_2 by electron paramagnetic resonance spectroscopy. Journal of the American Society. 2008, 130(9): 2760-2761.
    [263] Chen D M, Yang D, Jiang Z Y et al. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Industrial & Engineering Chemistry Research. 2006, 45(12): 4110-4116.
    
    [264] 岳林海,水淼,徐铸德等.稀土掺杂二氧化钛的相变和光催化活性.浙江大学学报(理学版).2000,27(1):69-74.
    [265] Robert D, Piscopo A, Weber J V. Selective solar photodegradation of organopollutant mixtures in water. Solar Energy. 2004, 77(1): 553-558.
    [266] Inumaru K, Murashima M, Kasahara T et al. Enhanced photocatalytic decomposition of 4-nonylphenol by surface-organografted TiO_2: A combination of molecular selective adsorption and photocatalysis. Applied Catalysis B. 2004, 52(4): 275-280.
    [267] Hidaka H, Nohara K, Zhao J et al. Photooxidative degradation of the pesticide permethrin catalysed by irradiated TiO_2 semiconductor slurries in aqueous media. Journal of Photochemistry and Photobiology A. 1992, 64(2): 247-254.
    [268] Uchida H, Itoh S, Yoneyama H. Photocatalytic decomposition of propyzamide using TiO_2 supported on activated carbon. Chemistry Letters. 1993, 12(12): 1995-1998.
    [269] Sampath S, Uchida H, Yoneyama H. Photocatalytic decomposition of gaseous pyridine over zeolite-supported titanium dioxide. Journal of Catalysis. 1994, 149(1): 189-194.
    [270] Reyes C, Fernandez J, Mansilla H D et al. Degradation and inactivation of tetracycline by TiO_2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry. 2006, 184(1-2): 141-146.
    [271] Kummerer K, Al-Ahmad A, Mersch-Sundermann V. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere. 2007, 40(7): 701-710.
    [272] K. Kummerer, A. Al-Ahmad, B. Bertram, M. Wieβler. Biodegradability of antineoplastic compounds in screening tests: influence of glucosidation and of stereochemistry. Chemosphere. 2007, 40(7): 767-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700