免疫毒素hIL-2-Luffin P1联合芳维A酸乙酯对Hut-78细胞和Jurkat细胞杀伤作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:皮肤T细胞淋巴瘤(cutaneous T cell lymphomas, CTCL)和急性T细胞白血病(acute T cell leukemia, ATCL)均为来源于T细胞的恶性肿瘤,其发生率和病死率均呈上升趋势,严重威胁人类的健康。通常采用的治疗方法是放疗或化疗,但这些治疗措施抗肿瘤能力低并有明显的毒副作用。长期使用非特异免疫抑制剂可使患者免疫功能严重受损,导致许多并发症。
     免疫毒素被称为“生物导弹”,它是由具有靶向能力的分子(载体)和具有细胞毒性的分子组合而成的具有特异性杀伤能力的杂合分子。它通过载体的靶向作用,使其所携带的毒素分子到达靶细胞,发挥特异性杀伤作用。免疫毒素作为一种新型的治疗手段主要有两个特性优于其它治疗方案:其一是免疫毒素对肿瘤细胞的杀伤作用不依赖于宿主的免疫系统,而是依赖靶向载体所携带的毒素起作用;其二是免疫毒素对正常细胞无杀伤作用,但能被有效地内吞入靶细胞,具有特异性杀伤靶细胞的特性。因此,采用免疫毒素治疗肿瘤具有突出的优势。美国FDA首次批准免疫毒素药物DAB389IL-2,也称为地尼白介素2(denileukin diftitox)治疗皮肤T细胞淋巴瘤的临床研究,虽已进入Ⅲ期临床试验但仍存在一些问题。目前免疫毒素存在的主要问题是:一方面,是由于现有的免疫毒素多是由异源性的抗体为靶向载体,免疫原性强;另一方面,由于通常的毒素分子量较大,对组织的渗透性差。要想提高免疫毒素对靶细胞的杀伤作用,主要通过以下途径改善:①寻找靶细胞上特异的靶点以及通过调节细胞表面靶点的表达促进免疫毒素的作用。②降低免疫毒素的抗原性,包括对载体及毒素的改造,降低它们的分子量,以及选择人源化的载体及毒素分子。因此,免疫毒素分子的小型化和人源化是免疫毒素研究的发展趋势。
     T淋巴细胞相关的肿瘤及部分B淋巴细胞相关的肿瘤高表达CD25分子,CD25是IL-2受体(IL-2R)的α链,它与IL-2Rβ、IL-2Rγ链共同构成高亲和力的IL-2受体。在理论上可利用低浓度的人IL-2融合蛋白选择性作用于这些淋巴瘤细胞,介导对瘤细胞的抑制或杀伤作用。用人IL-2作为载体具有靶向性好、免疫原性低,半衰期长、可在动物中应用的优势。
     植物来源的核糖体灭活蛋白(RIP)是一类作用很强的毒素,它们直接作用于核糖体,灭活其60S大亚基,具有很强的抑制蛋白质合成的活性以及诱导细胞凋亡的作用。Luffin家族是一类从丝瓜种子中提取的RIP,而Luffin P1是新近发现的Luffin家族成员,是迄今已发现的活性最强、分子量最小(5.2 kD)单链核糖体失活蛋白。由于它具有分子量小的特点,不仅便于靶向载体携带进入靶细胞,还有利于降低免疫毒素的免疫原性,减少毒副作用,提高疗效。
     维A酸类药物具有调节上皮细胞分化与生长、维持上皮组织正常角化过程、抗肿瘤等作用,已用于多种肿瘤的诱导分化治疗。维A酸类药物还可以上调IL-2R的α、β链的表达,通过调节细胞表面靶点的表达而促进免疫毒素的作用。在初步临床试验中免疫毒素与维A酸联合应用治疗CTCL,使病情缓解率提高,并且没有出现毒副作用的增加。
     基于以上理由,我们设想利用基因工程方法构建一种新的免疫毒素hIL-2-Luffin P1,使其hIL-2片段特异性识别表达IL-2受体的肿瘤靶细胞,从而把毒素分子带入靶细胞内,发挥抗肿瘤的作用。另一方面,希望凭借芳维A酸乙酯能上调IL-2受体的表达而与上述免疫毒素联合使用,以提高免疫毒素的靶向结合能力,增强hIL-2-Luffin P1对靶细胞的杀伤作用。
     目的:构建、表达及纯化能特异性杀伤皮肤T细胞淋巴瘤和急性T细胞白血病的重组免疫毒素hIL-2-Luffin P1及作为对照的毒素分子蛋白Luffin P1。观察hIL2-Luffin P1、芳维A酸乙酯、hIL2-Luffin P1联合芳维A酸乙酯、Luffin P1对Hut-78细胞和Jurkat细胞增殖、凋亡及细胞周期的影响。
     方法:(1)应用PCR扩增目的基因(hIL2-Luffin P1、Luffin P1)片段,然后将它们分别克隆到表达载体pET32a(+)中,并对重组质粒进行酶切鉴定及基因测序。测序正确的重组质粒转化到表达菌BL21中,进行诱导表达。分别用鼠抗人的His单克隆抗体、兔抗人IL-2多克隆抗体进行Western blot鉴定。蛋白大量诱导表达后经过蛋白的纯化、复性、脱盐、肠激酶酶切、再纯化,最后用兔抗人IL-2多克隆抗体进行Western blotting鉴定目的蛋白hIL2-Luffin P1中IL-2成分的表达。(2)应用免疫细胞化学技术检测Hut-78细胞、Jurkat细胞表面CD25分子的表达。然后分为hIL-2-Luffin P1组、芳维A酸乙酯组、hIL-2-Luffin P1联合芳维A酸乙酯组、Luffin P1组,分别于不同浓度和不同时相点分别作用于Hut-78细胞和Jurkat细胞。应用MTT法观察细胞的生长抑制率,流式细胞仪检测细胞的早期凋亡及细胞周期。
     结果:(1)成功构建了带有KDEL结构的原核表达质粒PET32a(+)-hIL-2-Luffin P1和PET32a(+)-Luffin P1。(2)经过蛋白的诱导表达,超声破菌后,分离结果显示,hIL-2-Luffin P1蛋白以包涵体的形式存在,而Luffin P1蛋白为部分可溶性表达。经过蛋白的纯化、肠激酶酶切及鉴定,最后得到了具有较好活性的hIL2-Luffin P1蛋白及作为对照的毒素分子蛋白Luffin P1(。3)免疫细胞化学结果显示:IL-2受体α链(CD25)在Hut-78细胞和Jurkat细胞表面高表达,其表达阳性细胞比例分别为79.32%和54.47%。(4)MTT结果显示:hIL-2-Luffin P1组、芳维A酸乙酯组、hIL-2-Luffin P1联合芳维A酸乙酯组均可抑制Hut-78细胞和Jurkat细胞增殖,且呈剂量和时间依赖性效应。其中联合组的作用明显强于单一用药组,而Luffin P1组对两种细胞增殖均没有明显的抑制作用。hIL-2-Luffin P1组和hIL-2-Luffin P1联合芳维A酸乙酯组对Hut-78细胞的抑制率明显高于Jurkat细胞。hIL-2-Luffin P1对Hut-78细胞和Jurkat细胞的IC50分别为27.361μg/ml和39.634μg/ml。芳维A酸乙酯组对Hut-78细胞和Jurkat细胞均有明显的抑制作用,但对两种细胞抑制率的差异不明显。(5)Annexin V/PI双标法流式细胞术检测显示,hIL-2-Luffin P1、芳维A酸乙酯、hIL-2-Luffin P1联合芳维A酸乙酯均可以诱导Hut-78细胞和Jurkat细胞发生早期凋亡,其中联合组的作用明显强于单一用药组。而Luffin P1无明显诱导细胞凋亡的作用。(6)流试细胞术检测细胞周期显示:hIL-2-Luffin P1组及hIL-2-Luffin P1联合芳维A酸乙酯组均可使Hut-78和Jurkat细胞停滞在G1期,提示hIL-2-Luffin P1或hIL-2-Luffin P1联合芳维A酸乙酯均能阻止两种细胞由G1期向S期转化。
     结论:用基因工程方法成功构建、表达、纯化了免疫毒素hIL-2-Luffin P1蛋白及毒素分子Luffin P1蛋白。hIL-2-Luffin P1能够抑制Hut-78细胞和Jurkat细胞增殖,促进Hut-78细胞和Jurkat细胞凋亡,使细胞周期停滞在G1期,并且其抑制增殖和诱导凋亡的作用呈剂量和时间依赖性效应。而毒素Luffin P1蛋白对上述两种细胞的增殖、凋亡及细胞周期均无明显作用。这提示免疫毒素hIL-2-Luffin P1能够针对表达IL-2R的Hut-78细胞和Jurkat细胞产生定向杀伤作用。hIL-2-Luffin P1联合芳维A酸乙酯也能抑制Hut-78细胞和Jurkat细胞的增殖,促进Hut-78细胞和Jurkat细胞凋亡,并可使细胞周期停滞在G1期,二者合用时抑制增殖和诱导凋亡的作用也呈剂量和时间依赖性效应。hIL-2-Luffin P1联合芳维A酸乙酯的作用明显比单用hIL-2-Luffin P1或单用芳维A酸乙酯时强。由此提示免疫毒素hIL-2-Luffin P1联合芳维A酸乙酯对Hut-78细胞和Jurkat细胞具有协同作用。本课题的研究结果对皮肤T细胞淋巴瘤和急性T细胞白血病的治疗具有探索、启示和借鉴意义。
Background
     Cutaneous T cell lymphomas (CTCL) and acute T cell leukemia originate from T cells. The morbidity and mortality of CTCL and acute T cell leukemia have increasing trend, which greatly threatening human health. Conventional radiotherapy or chemotherapy show poor anti-tumor and significant toxicity and side effects. Long-term use of nonspecific immunosuppressants obviously impair the immunity and results in many complications.
     Immunotoxins, also called biological missiles, comprise a targeting molecule (vehicle) and a cytotoxic component. They specificly kill target cells Immunotoxins have two major advantages:①. the killing effects of immunotoxins on tumor cells does not depend on the host’s immune system, but depend on toxins carried by targeting vectors;②. immunotoxins do not kill normal cells, but they can specifically kill target cells after enter the target tumor cells. Hence, immunotoxins are ideal agent for tumor therapy. DAB389IL-2, i.e, denileukin diftitox, was the first immunotoxin approved by FDA for the treatment of CTCL, and is now under phase III clinical study. However, there are some problems about DAB389IL-2. The major problems about immunotoxins include: high immunogenicity of heterologous antibodies which are used as targeting vectors in current immunotoxins, and poor tissue permeability due to large molecular weight of immunotoxin. To enhance the killing effect of immunotoxins on target cells, the following should be considered:①to seek specific targets on target cells and enhance the effect of immunotoxins through up regulating the expression of cell surface targets;②to reduce immunotoxin antigenicity by modifying vectors and toxins, reduce their molecular weight or select human-derived vectors and toxin molecules. Accordingly, To miniaturize immunotoxins and choses human-derived immunotoxins are the two major solutions in the field of constructing immunotoxins.
     T cell associated tumors and a small number of B cell associated tumors highly express CD25. CD25 (αchain of IL-2 receptor) and IL-2 receptorβandγchains constitute high-affinity IL-2 receptor. In theory, low concentrations of human IL-2 fusion protein can selectively act on these lymphoma cells. Hence, IL-2 R can be an ideal therapeutic target on these tumor cells, which mediates T lymphoma cell suppression or killing. Human IL-2 is characterized by good targeting performance, low immunogenicity, long half-life time, and applicability in animals.
     Plant-derived ribosomes inactivate proteins (RIPs) are a kind of toxins with strong toxicity, and they directly act on ribosomes to inactivate 60S subunit, thus strongly suppressing protein synthesis activity and inducing apoptosis. The Luffin family consists of RIPs extracted from the seeds of Luffa cylindrica. Luffin P1, a recently discovered member of the Luffin family, is the smallest RIP yet known (molecular weight, 5.2kD), and it exhibits high activity on suppressing protein synthesis. Due to its low molecular weight, Luffin P1 can enter target cells easily, and help to reduce immunogenicity and side effect of immunotoxins, as well as increases therapeutic effect.
     Retinoic acid (RA) regulates epithelial cell differentiation and growth, maintains normal keratinization of epithelial tissue, and prevents tumorigenesis; hence, retinoic acid has been used to induce the differentiation of various tumors. In addition, retinoic acid upregulates the expression of IL-2 Rα,βchains, so it can regulate the expression of IL-2 receptor on target cell surface and promote the action of immunotoxins. In preliminary clinical studies, the combination of retinoic acid and immunotoxin increases the remission rate of CTCL, and does not increase toxicity and side effects.
     Accordingly, we constructed a new immunotoxin hIL-2-Luffin P1 by gene engineering, so as to (1) allow human IL-2 to specifically recognize IL-2 receptors on tumor cells and toxin molecules to enter target cells to exert their anti-tumor effect; (2) upregulate IL-2 receptor expression by retinoic acid to increase the targeting performance of the immunotoxin and enhance the killing effect of hIL-2-Luffin P1 on target cells.
     Objectives: To construct, express and purify hIL-2-Luffin P1 immunotoxin and Luffin P1 protein and observe the effects of hIL2-Luffin P1 and hIL2-Luffin P1 plus arotinoid ethylester on the proliferation and apoptosis of Hut-78 cells and Jurkat cells.
     Methods: (1) Target gene fragments (hIL2-Luffin P1, Luffin P1) were amplified by PCR and cloned into the expression vector pET32a (+). The recombinant plasmids were subjected to identification by enzymatic digestion and gene sequencing. The correctly constructed recombinant plasmids were used to transform BL21 bacteria, followed by induced expression. Western blotting was carried out to identify the expressed protein using mouse anti-human His and rabbit anti-human IL-2 polyclonal antibodies. The expressed protein was subjected to purification, renaturation, desalting, digestion with enterokinase, and re-purification, and Western blotting analysis of hIL2-Luffin P1 protein was performed using rabbit anti-human IL-2 polyclonal antibody. (2) CD25 expression on Hut-78 cells and Jurkat cells was analyzed immunocytochemically. Hut-78 cells and Jurkat cells were treated with hIL-2-Luffin P1, arotinoid ethylester, hIL-2-Luffin P1 plus arotinoid ethyl ester and Luffin P1 at different concentrations for different time periods. The cell growth inhibition rate was determined by MTT assay. Early apoptosis and cell cycle distribution were analyzed by flow cytometry.
     Results: (1) Prokaryotic expression plasmids PET32a(+)-hIL-2-Luffin P1 and PET32a(+)-Luffin P1 were constructed successfully. (2) hIL-2-Luffin P1 protein was mainly detected in inclusion bodies, and Luffin P1 protein was expressed in partial soluble form. After protein purification, digestion with enterokinase and identification, highly active hIL-2-Luffin P1 and Luffin P1 proteins were obtained. (3) Immunocytochemical analysis demonstrated high expression of CD25 on Hut-78 cells and Jurkat cells, with an expression rate of 79.32% and 54.47%, respectively. (4) MTT assay demonstrated that hIL-2-Luffin P1 protein, retinoic acid, or both suppressed the proliferation of Hut-78 cells and Jurkat cells in a dose and time-dependent manner. The suppression effect of hIL-2-Luffin P1 protein and arotinoid ethylester was significantly higher than that of hIL-2-Luffin P1 protein or arotinoid ethylester, and Luffin P1 protein had no obvious inhibitory effect on the proliferation of the two cell types. After treatment with hIL-2-Luffin P1 or hIL-2-Luffin P1 and arotinoid ethyl ester, the inhibition rate of Hut-78 cells were significantly higher than that of Jurkat cells. IC50 of hIL-2-Luffin P1 for Hut-78 cells and Jurkat cells were 27.361μg/ml and 39.634μg/ml, respectively. arotinoid ethyl ester significantly and similarly suppressed Hut-78 cells and Jurkat cells. (5) Flow cytometry demonstrated that hIL-2-Luffin P1, arotinoid ethyl ester or hIL-2-Luffin P1 and retinoic acid induced early apoptosis of Hut-78 cells and Jurkat cells. The apoptosis rate was significantly higher in cells treated with hIL-2-Luffin P1 and arotinoid ethyl ester than in those treated with arotinoid ethyl ester or hIL-2-Luffin P1. Luffin P1 did not show effect of inducting apoptosis. (6) Flow cytometry demonstrate that after treatment with hIL-2-Luffin P1 or hIL-2-Luffin P1 and arotinoid ethyl ester, Hut-78 cells and Jurkat cells were retained at G1 phase, suggesting that both hIL-2 -Luffin P1 and hIL-2-Luffin P1 plus arotinoid ethylester prevent cell cycle transition from G1 phase to S phase in both cell types.
     Conclusions: Recombinant hIL-2-Luffin P1 immunotoxin and Luffin P1 protein were successful constructed and expressed by gene engineering. hIL-2-Luffin P1 suppresses the proliferation of Hut-78 cells and Jurkat cells, promotes apoptosis of these two cell types in a dose-and time-dependent manner, and makes these cells arrested at G1 phase. In contrast, Luffin P1 protein does not influence the proliferation, apoptosis and cell cycle of these two cells types. It is suggested that hIL-2-Luffin P1 protein shows specific targeting killing effect on IL-2R expressing Hut-78 cells and Jurkat cells. The effect of hIL-2-Luffin P1 plus arotinoid ethylester is similar with that of hIL-2-Luffin P1 alone, but is stronger than that of hIL-2-Luffin P1 or arotinoid ethyl ester, suggesting the synergism of hIL-2-Luffin P1 and arotinoid ethylester in influencing Hut-78 cells and Jurkat cells. This study may be helpful for treating CTCL and acute T cell leukemia.
引文
1. Pastan I, Hassan R, Fitzgerald DJ, et al. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006, 6(7): 559-565.
    2. Bremer E. Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res, 2005. 65(8): 3380-3388.
    3. Flavell DJ, Boehm DA, Noss A, et al. Therapy of human T-cell acute Iymphablastie leukaemia with a combination of anti-CD7 and ami-CD38-SAPORBqiN immunotoxins is significantly better than therapy with each in-dividual inmaunotoxin. Br J Cancer. 2001, 84(4): 571-578.
    4. Descotes J. Methods of evaluating immunotoxicity. Expert Opin Drug Metab Toxicol, 2006 (2): 249-259.
    5. Jorge C, Deborah T, Charles K, et al. Phase I study of bortezanib in refractory or relapsed acute leukemias. Clin Cancer Res. 2004, 10(10): 3371-3376.
    6. Wong L. Toxin conjugate therapy of cancer. Semin Oncol. 2005. 32(6): 591-595.
    7. Kreitman RJ, Recombinant immunotoxins for the treatment of haematological malignancies. Expert Opin Biol Ther. 2004, 4(7): 1115-1128.
    8. Kawakami K, Nakajima O, Morishita R, et al. Targeted anticancer immunotoxins and cytotoxic agents with direct killing moieties. ScientificWorldJournal.2006 7(6): 781-790.
    9. Tejuca M, Diaz I, Figueredo R, et al. Construction of an immunotoxin with the pore forming protein StI and ior C5, a monoclonal antibody against a colon cancer cell line. Immunopharmacol. 2004, 4(6): 731-744.
    10. Kreitman RJ. Immunotoxins for Targeted Cancer Therapy. AAPS J. 2006, 8(3): 532-551.
    11. Foss FM. Biological correlates of acute hypersensitivity events with DAB (389) IL-2 (denileukin diftitox, ONTAK) in cutaneous T-cell lymphoma: decreased frequency and severity with steroid premedication. Clin Lymphoma. 2001. 1(4): 298-302.
    12. Vasir JK. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat, 2005. 4(4): 363-74.
    13. Borchmann P, Schnell R, Engert A. Immunotherapy of Hodgkin's lymphoma. Eur JHaematol Suppl. 2005(66): 159-65.
    14. Rustamzadeh E. Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. Neurooncol, 2005: 1-10.
    15. Oang HX. Studies on the anti-mitogenic, anti-phage and hypotensive effects of several ribosome inactivating proteins. Comp Biochem Physiol C Toxicol Pharmacol. 2001. 128(3): 359-66.
    16. Parkash A. Purification and characterization of charantin, a napin-like ribosome-inactivating peptide from bitter gourd (Momordica charantia) seeds. J Pept Res. 2002. 59(5): 197-202.
    17. Johannes L, Decaudin D. Protein toxins: intracellular trafficking for targeted therapy. Gene Ther. 2005. 12(18): 1360-1368.
    18. Olsnes S. The history of ricin, abrin and related toxins. Toxicon, 2004, 44(4): 361-370.
    19. Linardou H, Epenetos AA, Deonarain MP. A recombinant cytotoxic chimera based on mammalian deoxyribonuclease-I. Cancer. 2000, 86(4): 561-569.
    20. Li F, Xia HC. Purification and Characterization of Luffin P1, a RibosomeInactivating Peptide from the Seeds of Luffin cykubdrica. Peptides. 2003, 24(6): 799-805.
    21. Barras K, Ueda M, Tanabe M, et al. Targeting activated lymphocytes with an entirely human immunotoxin analogue human pancreatic RNase1-human IL-2 fusion. Cytokine. 2000, 12(6): 786-790.
    22. Foss FM. Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann N Y Acad Scim. 2001, 941(3): 166-176.
    23. Pestka JJ, Uzarski RL, Islam Z. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology. 2005, 206(2): 207-219.
    24. Maistre CF. DAB (389) IL-2(denileukin diftitox, ONTAK): other potential applications. Clin Lymphoma. 2000. 1(1): 37-40.
    25. Foss FM. DAB (389) IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma. 2000, 1(2): 110-117.
    26. Bertram JS, Vine AL. Cancer prevention by retinoids and carotenoids: independent action on a common target. Biochim Biophys Acta. 2005, 1740(2): 170-178.
    27. Chou WC, Dang CV. Acute promyelocytic leukemia: recent advances in therapy andmolecular basis of response to arsenic therapies. Curr Opin Hematol. 2005, 12(1): 1-6.
    28. Stadler R, Kremer A. Therapeutic advances in cutaneous T-cell lymphoma (CTCL): from retinoids to rexinoids. Semin Oncol. 2006, 33(3): 7-10.
    29.黄培堂编译.《分子克隆实验指南》第三版,北京,科学出版社, 2002.
    30.卢圣栋主编.《现代分子生物学实验技术》第二版,北京,中国协和医科大学出版社, 1999.
    31.黄培堂,俞炜源,陈添弥等译.《PCR技术实验指南》第二版,北京,科学技术出版社, 1998.
    32. Dieffenbach CW, Dveksler GS. PCR Primer: A laboratory manual. Cold Spring Harbor Laboratory Press, 1995.
    33. Towbin H, Staehelin T, Gordon J, et a1. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci, 1979, 76(7): 4350.
    34. Laemmli J. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(4): 680.
    35.沈关心,周汝麟主编.《现代免疫学实验技术》第三版,湖北武汉,科学技术出版社, 2002.
    36.彭秀玲,袁汉英,谢毅,等.基因工程实验技术.第二版,湖南长沙,科学技术出版社, 1997.
    37.金冬雁,黎孟枫,等译著.分子克隆实验指南.第二版,北京科学出版社, 1998.
    38. Kroll DJ, Marcell T, Simpson S, et a1. A multifunctional prokaryotic protein expression system: overproduction, affinity purification, and selective detection. DNA-Cell-Bio1, 1993, 12(5): 441-453.
    39. Hannig G, Makrides SC. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends-Biotechnol. 1998, 16(2): 54-60.
    40. Hui JX, Ji JF, Lv AG, et al. Construction and Expression of Novel Immunotoxin cpIL-4(13D)-PE38KDEL with Increased Activity. Biochemistry. 2005, 70(1): 62-68.
    41. Jang JS, Wang SM, Chen GR, et al. Synergistic cytotoxic effect of immunotoxin HEL-PE38KDEL and cis-platin against tumor cells. Ai Zheng. 2002, 21(4): 360-363.
    42. Zhan J, Chen Y, Wang K, et al. Expression of ricin A chain and ricin A chain-KDEL in Escherichia coli. Protein Expr Purif. 2004, 34(2): 197-201.
    43. He D, Yang H, Lin Q, et al. Arg9-peptide facilitates the internalization of an anti-CEAimmunotoxin and potentiates its specific cytotoxicity to target cells. Int J Biochem Cell Biol. 2005, 37(1): 192-205.
    44. Marollean JP, Baccard M, Flageul B, et al. High-dose recombinant interleukin-2 in advanced cutaneous T-cell lymphoma. Arch Dermatol, 1995, 131(8): 574-579.
    45. McCoy J, La Ville E. Expression and purification of thioredoxin fusion proteins. Curr Protoc Protein Sci. 2001, 13(2): 128-132.
    46. McCoy J, Lavallie E. Expression and purification of thioredoxin fusion proteins. Curr Protoc Mol Biol. 2001 Chapter 16:Unit16.8.
    47. Hammarstr?m M, Woestenenk EA, Hellgren N, et al. Effect of N-terminal solubility enhancing fusion proteins on yield of purified target protein. Struct Funct Genomics, 2006, 7(1): 1-14.
    48. Frank H, Joopvanden H, Nadine Z. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme and Microbial Technology, 2004, 34 (3): 235-241.
    49. StefankováP, Perecko D, Barák I, et al. The thioredoxin system from Streptomyces coelicolor. Basic Microbiol. 2006, 46(1): 47-55.
    50.李育阳主编.基因表达技术,第一版,北京:科学出版社, 2002年, 125-138.
    51. Kane JF, Hartley DL. Formation of recombinant protein inclusions in Escherrichia coli. Tibtech. 1989, 6(1): 95-101.
    52. Cui T, Gao Y, Liew OW, et al. Efficient preparation of an acyclic permutant of kalata B1 from a recombinant fusion protein with thioredoxin. Biotechnol. 2007, 130(4): 378-84.
    53. Lewis VA, Basso L, Blake N, et al. Human nerve growth factor receptor and cytosine deaminase fusion genes. Hum Gene Ther. 2003, 14(10): 1009-1016.
    54. Burgess R, Jendrisak J. A procedure for the rapid large scale purification of E coli DNA dependant RNA polymerase involving polymin P precipitation and DNA cellulose chromatography. Biochemistry. 1975, 14(4): 4634-4645.
    55. Smith DB, Johnson KS. Single step purification of polypeptides expressed in E coli as fusions with glutathione-S-transferase. Gene. 1988, 67(1): 31-40.
    56. Johannes B, Ulrich B. A method for increasing theyield of properly foldedrecombinant fusionproteins. Anal Biochem, 1992, 205(2): 263-270.
    57. Bachner J. A method for increasing the yield of properly folded recombinant fusionproteins: Single-chine immunotoxin from renaturation of bacterial inclusion bodies. Anal-Biochem. 1992, 205(1): 263-267.
    58. Fischer B, Summer I, Goodenough P, et al. Isolation, renaturation, and formation of disulfide bonds of eularyotic protein expressed in Escherichia colias inclusion bodies. Biotechnol/Bioegieering. 1993, 41(1): 3-13.
    59. Kotz EA, Anderson D, Thiers BH. Cutaneous T-cell lymphoma. J Eur Acad Dermatol Venereol. 2003, 17(2): 131-137.
    60. Pillet AH, Juffroy O, Mazard-Pasquier V, Human IL-Rbeta chains form IL-2 binding homodimers. Eur Cytokine Netw. 2008, 19(1): 49-59.
    61.李秋荣,马健. T细胞膜脂肪微区域与白细胞介素-2α受体,肠外与肠内营养, 2004, 11(5), 262-264.
    62. Lam J, Pope E. Pediatric pityriasis lichenoides and cutaneous T-cell lymphoma. Curr Opin Pediatr. 2007, 19(4): 441-445.
    63. Ohno N, Kreitman RJ, Saito T, et al. Augmentation of the activity of an immunotoxin, anti-Tac(Fv)-PE40KDEL, in T cell lines infected with human T cell leukemia virus type-I. Leuk Lymphoma, 2002, 43(4): 885-888.
    64. Wang X, Rickert M, Garcia KC, et al. Structure of the Quatermary Complex of Interleukin-2 with Its {alpha}, {beta}, and {gamma}c Receptors. Science. 2005, 310(5751): 1159-1163.
    65. Hess S, Summer I. Degree of CD25 expression in T-cell lymphoma is dependent on tissue site implications for targeted therapy. Clin Cancer Res. 2004, 10(16): 5587-5594.
    66. Talpur R, Jones DM, Alencar AJ, et al. CD25 expression is correlated with histological grade and response to denileukin diftitox in cutaneous T-cell lymphoma. J Invest Dermatol. 2006, 126(3): 575-583.
    67. Parkash A, Ngtb, Tso WW, et al. Isolation and Characterization of Luffacylin, a Ribosome Inactivating Peptide with Anti Fungal Ac-tivlty from Sponge Courd(Luffin cykubdrica) seeds. Peptides. 2002, 23(6): 1019-1024
    68. Sheng Wu Hua , Xue Yu Sheng Li Xue Bao, et al. In vitro Inhibition of Human Melanoma Cells by Immunotoxin Luffin B-Ng76. Acta Biochim Biophys Sin (Shanghai), 1998, 30(6): 561-564.
    69. Castelletti D, Colombatti M. Peptide analogues of a T-cell epitope of ricin toxin A-chainprevent agonist-mediated human T cell response. Immunol. 2005, 17(4): 365-372.
    70. Islam MR, Nishida H, Funatsu G, et al. Complete Amino Acid Sequence of Luffin2a, a Ribosome2Inactivating Protein from the Seeds of Sponge Gourd( Luffa cylindrica). Agric Biol chem. 1990, 54(8): 2967-2978.
    71. Islam MR, Hirayama H, Funatsu G, et al. Complete Amino Acid Sequence of Luffin2b, a Ribosome2 Inactivating Protein from Songe Gourd(Luffa cylindrica) Seeds Agric. Biol. Chem. 1991, 55(3): 229-238.
    72. Sandvig K, Deurs B. Membrane traffic exploited by toxins. Annu Rev. Cell Dev Biol. 2002, 18(6): 1-24.
    73. Sandvig K, Deurs B. Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO. 2000, 19(22): 5943-5950.
    74. Kim EJ, Hess S, Richardson SK, et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. Clin Invest. 2005, 115(4): 803-812.
    75. Chen A, Hu T, Mikoryak C, et al. Retrograde transport of protein toxins under conditions of COPI dysfunction. Biochim Biophys Acta. 2002, 1589(2): 124-139.
    76. Lorente A, Lauvrak SU, Deurs B, et al. Induction of direct endosome to endoplasmic reticulum transport in Chinese hamster ovary (CHO) cells (Ld1F) with a temperature-sensitive defect in epsilon-coatomer protein (epsilon-COP). Biol Chem. 2003, 278(37): 35850-35855.
    77. Dandvig K, Crrimmer S, Lauvrak SU, et al. Pathways followed by ricin and Shiga toxin into cells. Histochem Cell Biol. 2002, 117(5): 131-141.
    78. Sandvig K, Grimmer S, Lauvrak SU, et al. Pathways followed by ricin and Shiga toxin into cells. Histochem Cell Biol. 2002, 117(2): 131-141.
    79. Bagga S, Seth D, Batra JK, et al. The cytotoxic activity of ribosome-inactivating protein saporin-6 is attributed to its rRNA N-glycosidase and internucleosomal DNA fragmentation activities. J Biol Chem. 2003, 278(7): 4813-4820.
    80. Dickinson A, Cant A. Haemopoietic stem-cell transplantation: improving immune reconstitution, avoiding graft-versus-host disease. Lancet. 2002, 360(9327): 98-109.
    81. Martin PJ, Pei J, Gooley T, et al. Evaluation of a CD25-specific immunotoxin for prevention of graft-versus-host disease after unrelated marrow transplantation. Biol Blood Marrow Transplant. 2004, 10(8): 552-560.
    82. Bagel J, Garland WT, Breneman D, et al. Administration of DAB389IL-2 to patients with recalcitrant psoriasis: a double-blind, phase II multicenter trial. J Am Acad Dermatol. 1998, 38(6): 938-944.
    83. Dhawan SS, Quyyumi AA. Rheumatoid arthritis and cardiovascular disease. Curr Atheroscler Rep. 2008, 10(2): 128-133.
    84. Nagy G, Clark JM, Buzas E, et al. Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol Lett. 2008, 19(3), 24-29.
    85. Greten TF, Jaffee EM. Cancer vaccines. Curr Protoc Hum Genet. 2001, 13(4): 8-15.
    86. Litzinger MT, Fernando R, Curiel TJ, et al. IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood. 2007, 110(9): 3192-3201.
    87. Phillips SM, Bhopale MK, Constantinescu CS, et al. Effect of DAB(389)IL-2 immunotoxin on the course of experimental autoimmune encephalomyelitis in Lewis rats. J Neurol Sci. 2007, 15 (2): 59-69.
    88. Sánchez-Martínez R, Castillo AI, Steinmeyer A, et al. The retinoid X receptor ligand restores defective signalling by the vitamin D receptor. EMBO Rep. 2006, 7(10): 1030-1034.
    89. Cheng C, Michaels J, Scheinfeld N, et al. Alitretinoin: a comprehensive review. Expert Opin Investig Drugs. 2008, 17(3): 437-443.
    90. Ocadiz-Delgado R, Castaneda-Saucedo E, Indra AK, et al. Impaired cervical homeostasis upon selective ablation of RXRalpha in epithelial cells. Genesis. 2008, 46(1): 19-28.
    91. Mukherjee S, Date A, Patravale V, et al. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006, 1(4): 327-48.
    92. Kempf W, Kettelhack N, Duvic M, et al. Topical and systemic retinoid therapy for cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 2003, 17(6): 1405-1419.
    93. Zhang C, Duvic M. Treatment of cutaneous T-cell lymphoma with retinoids. Dermatol Ther. 2006, 19(5): 264-271.
    94. Guillemin MC, Raffoux E, Vitoux D, et al. Invivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. Exp Med. 2002, 196: 1373-1380.
    95. Witcher M, Ross DT, Rousseau C, et al. Synergy between all-trans retinoic acid andtumor necrosis factor pathways in acute leukemia cells. Blood. 2003, 102(5): 237-245.
    96. Faul MM,Ratz AM, Sullivan KA, et al. Synthesis of novel retinoid X receptor selective retinoids. Org Chem. 2001, 66(17): 5772-5782.
    97. Witcher M, Shiu HY, Guo Q, et al. Combination of retinoic acid and tumor necrosis factor overcomes the maturation block in a variety of retinoic acid-resistant acute promyelocytic leukemia cells. Blood. 2004, 104(3): 3335-3342.
    98. Goto S, Okada N, Kaneko A, et al. Different Effects of All-Tans-Retinoic Acid on Phorbol Ester-Stimulated and Phytohemagglutinin-Stimulated Interleukin-2 Expression in Human T-cell Lymphoma HUT-78 Cells. Cell Struct Funct. 2008, 33 (1): 13-19.
    99. Breitman RJ, Pastan I. Immunotoxins in the treatment of hematologic malignancies. Curr Drug Targets. 2006, 7(10): 1301-1311.
    100.attini E, Gianni M, Terao M, et al. Retinoid related molecules an emerging class of apoptosis with promising therapeutic potential in oncology: harmacological activity and mechanisms of action. Curr Pharm Des. 2004, 10(4): 433-439.
    101.Mehta K, Ocanas L, Malavasi F, et al. Retinoic acid-induced CD38 antigen as a target for immunotoxin-mediated killing of leukemia cells. Mol Cancer Ther. 2004, 3(3): 345-352.
    102.Candia PD, Solit DB, Giri D, et al. Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc Natl Acad Sci U S. 2003, 100(6): 12337-12342.
    103.Klaus M, Debatin PF. Death receptors in chemotherapy and cancer. Oncogene. 2004, 23(5): 2950- 2966.
    104.Reyes PA, Vargas MF, García KP, et al. Apoptosis related genes expressed in cultured Fallopian tube epithelial cells infected in vitro with Neisseria gonorrhoeae. Biol Res. 2007, 40(3): 319-327.
    1. Oshioka Y, Tsutsumi Y, Nakagawa S, et al. Recent progress on tumor missile therapy and tumor vascular targeting therapy as a new approach. Curr Vasc Pharmacol. 2004, 2(3): 259-270.
    2. Pastan I, Kreitman RJ. Immunotoxins for targeted cancer therapy. Adv Drug Deliv Rev. 1998, 31(2): 53-88.
    3. Chen KC, Kim J, Li X, et al. Modeling recombinant immunotoxin efficacies in solid tumors. Ann Biomed Eng. 2008, 36(3): 486-512.
    4. Vyas SP, Singh A, Sihorkar V, et al. Lingand receptor mediated drug delivery an emerging paradigm in cellular drug targeting. Crit Rev Ther Drug Carrier Syst. 2001, 18(1): 68-76.
    5. Heasley LE. Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene. 2001, 20(13): 1563-1569.
    6. Sethi T, Langdon S, Smyth J, et al. Growth of small cell lungcancer cells stimulation by multiple neuropeptides and inhibition by broadspectrum antagonists in vitro and in vivo. Cancer Res. 1992, 52(9): 2737-2742.
    7. Kulke MH. Neuroendocrine tumors clinical presentation andmanagement of localized disease. Cancer Treat Rev. 2003, 29(5): 363-370.
    8. Petit T, Davidson KK, Lawrence RA, et al. Neuropeptide receptorstatus in human tumor cell lines. Anticancer Drugs. 2001, 12(2): 133-136.
    9. Bruell D, Bruns CJ, Yezhelyev M, et al. Recombinant anti EGFR immunotoxin 425(scFv)-ETA demonstrates antitumor activity against disseminated human pancreatic cancer in nude mice. Mol Med. 2005, 15(2): 305-313.
    10. Raymond E, Faiver S, Armand JP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therap. Drugs. 2000, 60(1): 15-23.
    11. Huang SM, Harari PM. Epidermal growth factor receptor inhibition in cancer therapy biology rationale and preliminary clinical results. Invest New Drugs. 1999, 17(3): 259-269.
    12. Duff SE, Li C, Garland JM, et al. CDl05 is important for angiogensis evidence and potential applications. FASEB. 2003, 17(9): 984-992.
    13. Fonsatti E, Altomonte M, Arslan P, et al. Endoglin(CD105) a target for anti-angiogenetic cancer therapy. Curt Drug Targets. 2003, 4(4): 291-296.
    14. Beatty JD. Immunotherapy of colorectal cancer. Cancer. 1992, 70(5): 1425-1433.
    15. Wang RF, Rosenberg SA. Human tumor antigens recognized by T lymphocytes implications for cancer therapy. Leukoc Biol. 1996, 60(3): 296-309.
    16. Bussemakers MJ. Changes in gene expression and targets for therapy. Eur Uro. 1999, 35(5-6): 408-412.
    17. Kreitman RJ, Wilson WH, White JD, et al. Phase I trail of recombinant immunotoxin anti-Tac(Fv)-PE38(LMB-2) in patients with hematologic malliganies. Clin Oncol. 2000, 18(7): 1622-1636.
    18. Bruggen P, Travetsari C, Chomez P, et al. A gene encoding an antigen-recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991, 254(6): 1643-1647.
    19. Mitsiades N, Mitsiades CS, Poulaki V, et al. Intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human multiple loma cells. Blood. 2002, 99(6): 2162-2171.
    20. Wang H, Dai J, Li B, et al. Expression, purification, and characterization of an immunotoxin containing a humanized anti-CD25 single-chain fragment variable antibody fused to a modified truncated Pseudomonas exotoxin A. Protein Expr Purif. 2008, 58(1): 140-147.
    21. Olsnes S. The history of ricin, abrin and related toxins. Toxicon. 2004, 44(4): 361-370.
    22. Li F, Xia HC, et aI. Purification and Characterization of Luffin P1, a ribosome inactivating Peptide from the Seeds of Luffin cykubdrica. Peptides. 2003, 24(6): 799-805.
    23. Parkash A, Tso WW. Isolation and Characterization of Luffacylin,a Ribosome Inactivating Peptide with Anti Fungal Ac-tivlty from Sponge Courd(Luffin cykubdrica)seeds. Peptides. 2002, 23(6): 1019-1024.
    24. Linardou H, Epenetos AA, Deonarain MP, et al. A recombinant cytotoxic chimera based on mammalian deoxyribonuclease-I. Cancer. 2000, 86(4): 561-569.
    25. Kishida K, Masuho Y, Hara T, et al. Protein-synthesis inhibitory protein from seeds of Luffa cylindria roem. FEBS Letters. 1983, 153(1): 209-212.
    26. Castelletti D, Colombatti M. Peptide analogues of a T-cell epitope of ricin toxin A-chain prevent agonist-mediated human T cell response. Immunol. 2005, 17(4): 365-372.
    27. Volk HD, Muller S, Yarkoni S, et al. Mechanisms of dichotomous action of IL-2-Pseudomonas exotoxin 40 (IL-2-PE40) on cell-mediated and humoral immune response. Immunol. 1994, 153(6): 2497-505.
    28. Nichols JC. Hara T, Recombinant fusion toxins a new class of targeted biologic therapeutics. Cancer Treat Res. 1993, 68(7): 145-160.
    29. Frankel AE, Powell BL, Lilly MB, et al. Diphtheria toxin conjugate therapy of cancer. Cancer Chemother Biol Response Modif. 2002, 20(8): 301-313.
    30. Ramnath V, Kuttan G, Kuttan R, et al. Antitumor effect of abrin on transplanted tumors in mice. FEBS Letters. 2002, 522(6): 59-66.
    31. Armstrong S, Yates SP, Merrill AR, et al. Insight into the catalytic mechanism of Pseudomonas aeruginosa exotoxin. Biol Chem. 2002, 277(48): 46669-46675.
    32. Reiter YR. Recombinant immunotoxins in targeted cancer cell therapy. Adv Cancer Res. 2001, 81(3): 93-124.
    33. Kreitman RJ, Margulies I, Stetler S, et al. Cytotoxic activity of disulfide- stabilized recombinant immunotoxin RFB4 (dsFv)-PE38 (BL22) toward fresh malignant cells from patients with B-cell leukemias. Clin Cancer Res. 2000, 6(4): 1476-1487.
    34. Kuan CT, Wikstrand CJ, Archer G, et al. Increased binding affinity enhances targeting of glioma xenografts by EGFRvIII specific scFv. Cancer. 2000, 88(6): 962-962.
    35. Wels W, Biburger M, Muller T, et al. Recombinant immunotoxins and retargeted killer cells employing engineered antibody fragments for tumor specific targeting of cytotoxic effectors. Cancer Immunol Immunother. 2004, 53(3): 217-226.
    36. Du X, Ho M, Pastan I, et al. New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukemia cells. Immunother. 2007, 30(6): 607-613.
    37. Pestka JJ, Uzarski RL, Islam Z, et al. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology. 2005, 206(2): 207-219.
    38. Psarras K, Ueda M, Tanabe M, et al. Targeting activated lymphocytes with an entirely human immunotoxin analogue human pancreatic RNase1-human IL-2 fusion. Cytokine. 2000, 12(6): 786-790.
    39. Foss FM. Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann N Y Acad Sci. 2001, 941(3): 166-176.
    40. Yamazaki M, Yajima T, Tanabe M, et al. Mucosal T cells expressing high levels of IL-7 receptor are potential targets for treatment of chronic colitis. Immunol. 2003, 171(3): 1556-1563.
    41. Leland P, Taguchi J, Husain SR, et al. Human breast carcinoma cells express type II IL-4 receptors and are sensitive to antitumor activity of a chimeric IL-4-Pseudomonas exotoxin fusion protein in vitro and in vivo. Mol Med. 2000, 6(3): 165-178.
    42. Klimka A, Barth S, Drillich S, et al. A deletion mutant of Pseudomonas exotoxin-A fused to recombinant human interleukin-9 (rhIL-9-ETA) shows specific cytotoxicity against IL-9 receptor expressing cell lines. Cytokines Mol Ther. 1996, 2(3): 139-146.
    43. Benhar I, Pastan I. Characterization of B1 (Fv) PE38 and B1 (dsFv) PE38 single chain and disulfide-stabilized Fv immunotoxins with increased activity that cause complete remissions of established human carcinoma xenografts in nude mice. Clin Cancer Res. 1995, 1(9): 1023-1029.
    44. Niv R, Segal D, Reiter Y, et al. Recombinant single chain and disulfide-stabilized Fv immunotoxins for cancer therapy. Methods Mol Biol. 2003, 207(6): 255-268.
    45. Nagata S, Onda M, Numata Y, et al. Novel anti-CD30 recombinant immunotoxins containing disulfide-stabilized Fv fragments. Clin Cancer Res. 2002, 8(7): 2345-2355.
    46. Onda M, Vincent JJ, Lee B, et al. Mutants of immunotoxin anti-Tac (dsFv)-PE38 with variable number of lysine residues as candidates for site-specific chemical modification. Properties of mutant molecules. Bioconjug Chem. 2003, 14(2): 480-487.
    47. Fan D, Yano S, Shinohara H, et al. Targeted therapy against human lung cancer in nude mice by high-affinity recombinant antimesothelin single-chain Fv immunotoxin. Mol Cancer Ther. 2002, 1(8): 595-600.
    48. Kuan CT, Wikstrand CJ, Bigner DD, et al. EGFRvIII as a promising target for antibody-based brain tumor therapy. Brain Tumor Pathol. 2000, 17(2): 71-78.
    49. Tejuca M, Diaz I, Figueredo R, et al. Construction of an immunotoxin with the pore forming protein StI and ior C5, a monoclonal antibody against a colon cancer cell line. Immunopharmacol. 2004, 4(6): 731-744.
    50. Dubowchik GM, Radia S, Mastalerz H, et al. Doxorubicin immunoconjugates containingbivalent, lysosomally-cleavable dipeptide linkages. Bioorg Med Chem Lett. 2002, 12(11): 1529-1532.
    51. Kaneko T, WiIIner D, Monkovic I, et al. New hydrazone derivarives of adriam ycin and their immunoconjugates a correlation between acid stabilily and cytotoxicity. Bioconjug Chem. 1991, 2(3): 133-141.
    52. Thomas AC, Campbell JH. Conjugation of an antibody to cross-linked fibrin for targeted delivery of anti-restenotic drugs. Control Release. 2004, 100(3): 357-77.
    53. Dean GS, Pusztai L, Xu FJ, et al. Cell surface density of p185(c-erbB-2) determines susceptibility to anti-p185(c-erbB-2)-ricin A chain (RTA) immunotoxin therapy alone and in combination with anti-p170(EGFR)-RTA in ovarian cancer cells. Clin Cancer Res. 1998, 4(10): 2545-2550.
    54. Miller ML, Roller EE, Wu X, et al. Synthesis of potent taxoids for tumor-specific delivery using monoclonal antibodies. Bioorg Med Chem Lett. 2004, 14(15): 4079-4082.
    55. Afar DE, Bhaskar V, Ibsen E, et al. Preclinical validation of anti-TM EFF2-auristatin conjugated antibodies in the treatment of Prostate cancer. Mol Cancer Ther. 2004, 3(8): 921-932.
    56. Jia J, Li H, Tai S, et al. Construction and Preliminary Investigation of a Plasmid Containing a Novel Immunotoxin DT390-IL-18 Gene for the Prevention of Murine Experimental Autoimmune Encephalomyelitis. DNA Cell Biol. 2008, 27(5): 279-285.
    57. Zhan J, Chen Y, Wang K, et al. Expression of ricin A chain and ricin A chain-KDEL in Escherichia coli. Protein Expr Purif. 2004, 34(2): 197-201.
    58. Islam MR, Kung SS, Kimura Y, et al. N-acetyl-D-glucosamine-asparagine structure in ribosome-inactivating proteins from the seeds of Luffa cylindrica and Phytolacca americana. Agric Biol Chem. 1991, 55(5): 1375-1381
    59. Wang H, Dai J, Li B, et al. Expression, purification, and characterization of an immunotoxin containing a humanized anti-CD25 single-chain fragment variable antibody fused to a modified truncated Pseudomonas exotoxin A. Protein Expr Purif. 2008, 58(1): 140-147.
    60. Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004, 10(2): 415-427.
    61. Steinbach D, Onda M, Voigt A, et al. Mesothelin, a possible target for immunotherapy, isexpressed in primary AML cells. Eur J Haematol. 2007, 79(4): 281-186.
    62. Herrera L, Yarbrough S, Ghetie V, et al. Treatment of SCID/human B cell precursor ALL with anti-CD19 and anti-CD22 immunotoxins. Leukemia. 2003, 17(2): 334-8.
    63. McCoig C, Dyke G, Chou CS, et al. An anti-CD45RO immunotoxin eliminates T cells latently infected with HIV-1 in vitro. Proc Natl Acad Sci USA. 1999, 96(20): 11482-11486.
    64. Knechtle SJ. Treatment with immunotoxin. Philos Trans R Soc Lond B Biol Sci. 2001, 356(1409): 681-689.
    1. Hymes KB. Choices in the treatment of cutaneous T-cell lymphoma. Oncology (Williston Park). 2007, 21(2): 18-23.
    2. Descotes J. Methods of evaluating immunotoxicity. Expert Opin Drug Metab Toxicol. 2006 98(2): 249-259.
    3. Girardi M, Berger CL, Wilson LD, et al. Transimmunization for cutaneous T cell lymphoma: a Phase I study. Leuk Lymphoma. 2006, 47(8): 1495-1503.
    4. Olsen EA, Bunn PA. Interferon in the treatment of cutaneous T-cell lymphoma. Hematol Clinic North Am. 1995, 9(5): 1089-1094.
    5. Knobler E, Current management strategies for cutaneous T-cell lymphoma. Clin Dermatol. 2004, 22(3): 197-208.
    6. Suchin KR, Cassin M, Gottleib SL, et al. Increased interleukin 5 production in eosinophilic Sezary syndrome regulation by interferon alfa and interleukin 12. J Am Acad Dermatol. 2001, 44(5): 28-32.
    7. Mcginnis KS, Crawford G. Low-dose oral bexarotene in combination with low-dose interferon alfa in the treatment of cutaneous T-cell lymphoma clinical synergism and possible immunologic mechanisms. J Am Acad Dermatol. 2004, 50(5): 375-379.
    8. Dummer R, Cozzio A, Meier S, et al. Standard and experimental therapy in cutaneous T-cell lymphomas. Cutan Pathol. 2006, 1(3): 52-57
    9. Tsimberidou AM, Giles F, Romaguera J, et al. Activity of interferon-alpha and isotretionoin in patients with advanced, refractor lymphoid malignancies. Cancer. 2004, 100(4): 574-580.
    10. Psarras K, Ueda M, Tanabe M, et al. Targeting activated lymphocytes with an entirely human immunotoxin analogue human pancreatic RNase1-human IL-2 fusion. Cytokine, 2000, 12(6): 786-790.
    11. Foss FM, Waldmann TA. Interleukin-2 receptor-directed therapies for cutaneous lymphomas. Hematol Oncol Clin North Am, 2003, 17(6): 1449-1458.
    12. Borchmann P, Schnell R, Engert A. Immunotherapy of Hodgkins lymphoma. Haematol Suppl. 2005, 5(66): 159-165.
    13. Duvic M. Bexarotene and DAB389-IL2 (denileukin diftitox, ONTAK) in treatment of cutaneous T-cell lymphomas algorithms. Clin Lymphoma. 2000, 13(2): 51-57.
    14. Pastan I, Hassan R, Fitzgerald DJ, et al. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006, 6(7): 559-565.
    15. Attia P, Powell DJ, Maker AV, et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. Immunother. 2006, 29(2): 208-214.
    16. Kreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin anti-Tac (Fv)-PE38 (LMB-2) in patients with hematologic malignancies. Clin Oncol. 2000, 18(3): 1622-1636.
    17. Olsen E, Duvic M, Frankel A, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. Clin Oncol. 2001, 19(2): 376-388.
    18. LeMaistre CF, Saleh MN, Kuzel TM, et al. phase I trial of a ligand fusion-protein (DAB389 IL-2) in lymphomas expressing the receptor for interleukin-2. Blood. 1998, 91(4): 399-405.
    19. Sausville EA, Headlee D, Stetler-Steven M, et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma A phase I study. Blood. 1995, 85(2): 3457-3465.
    20. Amlot PL, Stone MJ, Cunningham D, et al. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood. 1993, 82(5): 2624-2633.
    21. Vitetta ES, Stone M, Amlot P, et al. Phase I immunotoxin trial in patients with B-cell lymphoma. Cancer Res. 1991, 51(4): 4052-4058.
    22. Spek J, Cosenza L, Woodworth T, et al. Diphtheria toxin related cytokine fusion proteins Elongation factor 2 as a target for the treatment of neoplastic disease. Mol Cell Biochem. 1994, 138(2): 151-156.
    23. Stone Mj, Sausville EA, Fay JW, et al. A phase I study of bolus versus continuous infusion of the anti-CD19 immuno-toxin, IgG-HD37-dgA, in patients with B-cell lymphoma. Blood. 1996, 88(6): 1188-1197.
    24. Messman RA, Vitetta ES, Headlee D, et al. A phase I study of combination therapywith immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Com-botox) in patients with refractory CD19+, CD22+B cell lymphoma. Clin Cancer Res. 2000, 6(3): 1302-1313.
    25. Grossbard Ml, Freedman AS, Ritz J, et al. serotherapy of B-cell neoplasms with anti-B4-blocked ricin Aphase I trial of daily bolus infusion. Blood. 1992, 79(6): 576-585.
    26. Haffner AC, Tassis A, Zepter K, et al. Expression of cancer/testis antigens in cutaneous T cell lymphomas. Cancer. 2002, 97(3): 668-670.
    27. Berger CL, Wang N, Christensen I, et al. The immune response to class I-associated tumor-specific cutaneous T-cell lymphoma antigens. Invest Dermatol. 1996, 107(6): 392-397.
    28. Berger CL, Longley BJ, Imaeda S, et al. Tumor specific peptides in cutaneous T-cell lymphoma association with chass I major histocompatibility complex and possible derivation from the clonotypic T cell receptor. Cancer. 1998, 76(7): 304-311.
    29. Maier T, Tun-Kyi A, Tassis A, et al. Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood. 2003, 102(6): 2338-2344.
    30. Gong J, Koido S, Chen D, et al. Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12. Blood, 2002, 99(7): 2512-2517.
    31. Chatterjee M, Mrozek E, Vaickus L, et al. Antiidiotype (Ab2) vaccine therapy for cutaneous T-cell lymphoma. Ann N Y Acad Sci. 1993, 690(12): 376-377.
    32. Okada CY, Wong CP, Denncy DW, et al. TCR vaccines for active immunotherapy of T cell malignancies. Immunol. 1997, 159(7): 5516-5527.
    33. Apisarnthanarax N, Talpur R, Duvic M.Treatment of cutaneous T cell lymphoma: current status and future directions.Am J Clin Dermatol. 2002, 3(3): 193-215.
    34. Berger CL, Tigelaar R, Cohen J, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood. 2005, 105(4): 1640-1647
    35. Knox SJ, Levy R, Hodgkinson S, et al. Observations on the effect of chimeric anti-CD4 monoclonal antibody in patients with mycosis fungoides. Blood. 1991, 77(1): 20-30.
    36. Apisarnthanarax N, Duvic M. Cutaneous T-cell lymphoma New immunomodulators.Dermatol Clin. 2001, 19(4): 737-745
    37. Duvic M, Cather JC. Emerging new therapies for cutaneousT-cell lymphoma. Dermatol Clin. 2000, 18(1): 147-156.
    38. Rook AH, Zaki MH, Wysocka M, et al. The role for interleukin-12 therapy of cutaneous T cell lymphoma. Ann N Y Acad Sci. 2001, 941(5): 177-184.
    39. Rook AH, Wood GS, Yoo EK, et al. Interleukin-12 therapy of cutaneous T-cell lymphoma induces lesion regression and cytotoxic T-cell responses. Blood. 1999, 94(3): 902-908.
    40. Bright JJ, Xin Z, Sriram S, et al. Superantigens augment antigen2 specific Th1 responses by inducing IL-12 production in macrophages. Leukoc Biol. 1999, 65(1): 5-10.
    41. Marollean JP, Baccard M, Flageul B, et al. High-dose recombinant interleukin-2 in advanced cutaneous T-cell lymphoma. Arch Dermatol. 1995, 131(8): 574-579.
    42. Nagatani T, Kim ST, Baba N, et al. A case of cutaneous T cell lymphoma treated with recombinant interleukin 2. Acta Derm Venero. 1988, 68(6): 504-590.
    43. Querfeld C, Rosen ST, Guitart J, et al. Phase II trial of subcutaneous injections of human recombinant interleukin-2 for the treatment of mycosis fungoides and Sézary syndrome. J Am Acad Dermatol. 2007, 56(4): 580-583.
    44. Bunn PA, Hoffman SJ, Norris D, et al. Systemic therapy of cutaneous T cell lymphomas. Ann Intern Med. 1994, 121(8): 592-602.
    45. Foss FM, Raubitscheck A, Mulshine JL, Phase I study of the pharmacokinetics of a radioimmunoconjugate, 90Y-T101, in patients with CD5-expressing leukemia and lymphoma. Clin Cancer Res. 1998, 4(11): 2691-2700.
    46. Edstrom DW, Porwit A, Ros AM. Photodynanmic therapy with topical 5-aminolevulinic acid for mycosis fungoides clinical and histological response. Acta Derm Venercol. 2001, 81(8): 184-188.
    47. Niu Z, Tobia A. Photoactivated hypericin is an anti-proliferative agent that induces a high rate of apoptotic death of normal transformed and malignant T lymphocytes implications for the treatment of cutaneous lymphoproliferative and inflammatory disorders. J Invest Dermatol. 1998, 111(5): 327-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700