水稻花发育相关基因EL1的图位克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上种植面积最大、最重要的粮食作物之一,也是研究单子叶植物发育分子生物学的理想模式植物。水稻是我国最重要的粮食作物,研究其生殖器官发育的分子机制具有重要的理论意义和应用价值。在水稻中,花器官发育相关的基因大多是通过同源克隆而来,而大多数同源克隆基因的功能因为与性状缺乏联系而无法最终确定。通过花器官突变体的发现和观察研究、克隆基因,并进行功能分析最终确定基因的功能,是研究花器官发育基因的功能和调控模式的有效方法。同时研究表明,单双子叶植物间可能存在相同的花器官和相同的调控模式,但具体机理尚不清晰。因此,对水稻花器官发育的研究在揭示花发育相关基因的作用及其相互关系、探明植物生殖发育,特别是花发育的奥秘中起了十分重要的作用。
     本研究通过图位克隆的方法从水稻中分离了一个水稻花器官发育相关基因ELONGATEDLODICULES 1(EL1),在对突变体进行表型观察和细胞学分析的基础上,并对其表达模式和功能进行了分析,明确了EL1基因的功能和作用模式。主要结果如下:
     1.el1突变体的表型观察和细胞学分析
     我们在保持系缙2B中发现了1个性状表现稳定遗传的水稻花器官突变体,其花器官形态表现为第1轮内颖弯曲呈S状;第2轮浆片变形伸长,有些多一颖壳状组织;第3轮雄蕊减少,第4轮子房和柱头均出现增多的现象。该突变体四轮花器官均发生突变,育性并没有发生改变。鉴于该突变体的突变性状未见报道,我们将其命名为el1(elongated lodicules 1,浆片伸长)突变体。
     2.EL1基因的遗传分析和初步定位
     利用4个恢复系与el1突变体杂交,F_1代植株表型正常,与野生型表型相同;F_2代出现表型分离,正常型与突变型的比例为3:1,表明el1突变体性状为单隐性基因控制。
     用水稻SSR标记分析其中一个F_2代分离群体(el1×602),先用分子标记分析亲本间即el1突变植株与602之间的多态性分析,再用在亲本间表现多态性的引物作连锁分析,将EL1基因定位在第1染色体短臂SSR引物RM1232与RM5389之间,遗传距离分别为7.3cM和4.5cM。
     3.EL1基因的精细定位和候选基因的筛选
     构建大于5000株的F_2代大群体,利用新合成的SSR,InDel,STS等标记将EL1基因定位在SSR引物RM128(PS2C8)和RM1152之间,遗传距离分别为0.83cM和0.79cM,两标记间的物理距离为645Kb。在定位区间相应位置上发现一个可能与花器官发育相关的MADS-box基因OsMADS32,OsMADS32初步筛选为EL1的候选基因。
     4.候选基因的克隆分析和确定
     OsMADS32的测序分析:对el1突变体与野生型的OsMADS32基因的cDNA和DNA进行了测序分忻,发现el1突变体中,OsMADS32基因的编码区内发生了一个碱基T的缺失,导致翻译的提前终止,从而进一步确定OsMADS32为EL1的候选基因。
     候选基因的酶切验证:根据测序结果,在碱基缺失位置上恰好存在一个内切酶RsaI的位点,设计引物扩增基因内部一段约200bp的序列(包括突变何点),酶切检测突变群体。结果显示,此突变何点与突变性状完全连锁,确定了OsMADS32就是EL1的候选基因。
     5.EL1基因的时空表达分析
     EL1基因在穗部的特异表达:通过半定量RT-PCR和QPCR的方法检测,EL1基因在根、茎、叶、穗中的表达情况,发现EL1基因只在水稻的穗中特异表达。
     EL1基因的RNA原位杂交分析:在野生型中,花原基发育初期,EL1的转录信号在整个花原基和整个小花分生组织的顶端被检测到;但是在花原基发育后期,EL1的转录信号在浆片、雄蕊和雌蕊比在颖片中更为强烈。
     6.候选基因的功能验证
     EL1基因的RNAi分析:构建RNA干涉表达载体,转化粳稻品种中花11的幼胚愈伤组织,阳性植株表型与突变体表型相同,进一步验证和明晰了EL1基因在水稻花器官发育过程中的功能。
     EL1基因的过量表达分析:我们构建了以35S启动的EL1基因的过表达载体,获得转基因阳性植株,转基因植株小花内三轮器官没有变化,而内颖变短、变细。
     7.EL1基因的进化分析
     对主要的MADS-box基因进行分子进化分析,结果表明EL1和小麦MADS-box基因TaAGL14和TaAGL15构成一个分枝,根据现有的基因序列信息,此分枝中只存在于禾本科中。
     8.花发育相关基因的表达分析
     选取11个花器官发育相关基因,这些基因在野生型和突变体表达无差异,此结果初步说明了EL1基因在水稻花器官发育过程中的独特性和独立性。
Rice(Oryza sativa L.) is not only one of the most important food crops in the world but also a model plant for study of the molecular developmental biology in monocots.Research on rice reproductive mechanism is significant both in theory and in human agriculture.In rice,most of genes involved in floral development were isolated by screening the cDNA or DNA library with the probes homologous to sequences of dicot plants,and their functions were identified by the altered morphology of floral organs in transgenic plant.The acquisition and research on the rice mutants related to floral development play an important role in understanding the function and interaction of genes in reproductive process,especially in floral development.
     In this study,we isolated a gene,ELONGATED LODICULES 1(EL1) involved in the flower development in rice,we have completed the investigation of the anatomical structure of floral organs,genetic analysis,fine mapping and further analyzed its functions.Our results may provide some information on the molecular mechanism of the controlling of floral organ development in plants.The results as follows:
     1.Phenotypic Observation and Cytological Analysis of el1
     The rice el1 mutant was found from a spontaneous mutation in an indica maintainer line Jin 2B. In the whorl 1 of el1 flower,palea/lemma is in the shape of crook "S".In whorl 2 the lodicules were elongated and two stamens were transformed into lodicule-like organs.In the whorl 3 of el1 flower, stamens number decreased.In the whorl 4 of el1 flower,lodicules and/or pistils number increased. Because the phenotypic traits have not been reported,temporarily designated as el1(elongated lodicules 1) mutant.
     2.Genetic Analysis and Preliminary Mapping of EL1
     The genetic analysis was conducted on the F_1 hybrids and F_2 populations obtained from 4 crosses.The F_1 population of four crosses showed wild-type phenotype.In the four F_2 populations, all the segregation rates of wild-type and el1 mutation plants fit the ratio of 3:1.Therefore,the el1 mutant phenotype is controlled by a single recessive gene.
     We used the SSR marker to analyze one F_2 populations(el1×602) of crosses,and in this cross, the gene EL1 was mapped between RM1232 and RM5389 on chromosome 1 with respective genetic distance 7.3 and 4.5 cM.
     3.Fine Mapping of EL1 and Filtrating the Candidate Genes
     The gene EL1 was mapped between(RM128) PS2C8 and RM1152 with genetic distances 0.83 cM and 0.79 cM(physical distant:645Kb) by new developmental SSR,InDel,STS marker.In this region,a prominent candidate gene,OsMADS32,which is a transcription factor with MADS domain. This domain defined function has been well established in the regulation of flower development in higher plants,was identified.So we filtrated OsMADS32 was the candidate gene of EL1.
     4.Determining the Candidate Gene of EL1 and Cloning Analysis
     Sequence Analysis of OsMADS32:We sequenced the cDNA and DNA of OsMADS32 of mutant plant and wild-type plant.We compared the OsMADS32 transcripts and found a single nucleotide T deletion resided at the el1 mutated allele,causing a premature translation stop. Furthermore,the results showed OsMADS32 was the candidate gene of EL1.
     Digestion Analysis of the Candidate Gene:An original Rsal restriction site was identified and experimentally confirmed in the wild-type allele,while in the mutant allele the Rsal restriction site was abolished due to the T deletion.We amplified a 200bp sequence(including mutant locus) and digested the mutant plants population,but none of them was able to be catalyzed.Taken together, these results indicated that the candidate gene that we isolated was the candidate gene.
     5.Temporal and Spatial Expression Patterns of EL1
     EL1 was specifically expressed in panicle:To determine the temporal and spatial expression patterns of EL1 gene,semi-quantitative RT-PCR and quantitative PCR were used to detect the expression of EL1 in root,stem,leaf and panicle,and the results showed that EL1 was only specifically expressed in panicle.
     The in situ hybridization of EL1:While the floral organ initiation,EL1 transcripts were detected in all flower primordia and spikelet apical meritems.After floral organ initiation,EL1 was abundantly expressed in the lodicules,stamens and pistils stranger than in palea/lemma.
     6.Functional Analysis of the Candidate Gene
     RNA Interference of EL1:We constructed the RNA interference vector.Construct was introduced into embryo callus of rice cv.Zhonghuall(Oryza sativa L.ssp.japonica) by Agrobacterium-mediated T-DNA transfer.The phenotype of positive plants were the same as mutants',furthermore,the results confirmed the function of El1 in rice flower development.
     Overexpression of EL1:We constructed the over expression vector of El1 by 35S promotor and achieved transgenic positive plants.the palea of the ransgenic positive plants become short and narrow but the inner three whorls organs have not changed.
     7.Phylogeny Analysis of EL1 gene
     A phylogenetic tree was constructed using the main MADS-box genes,the results showed that EL1 was clustered with two wheat MADS-box genes(TaAGL14 and TaAGL15,respectively).Based on the gene sequence,it is a unique branch in grass.
     8.Expression Analysis of Genes Involved in Flower Development
     We chose 11 genes involved in fllower development,and the expression did not detect significantly changes in all the genes between el1 mutant and wild-type.The result preliminary indicated the uniqueness of EL1 gene in flower development in rice
引文
1.Agrawal KG Abe K,Yamazaki M,Miyao A,Hirochika A(2005)Conservation of the E-ftinction for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of OsMADSl gene.Plant Mol Biol 59:125-135
    2.Alabadi D,Oyama T,Yanovsky MJ,Harmon FG Mas P,Kay SA(2001)Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.Science 293:880-883
    3.Ambrose BA,Lerner DR.Ciceri P,Padilla CM,Yanofsky MF.Schmidt RJ.(2000)Molecular and genetic analyses of the Silkyl gene reveal conservation in floral organ specification between eudicots and monocots.Mol Cell.5:569-579
    4.Angenent GC.,Colombo L(1996)Molecular control of ovule development.Trends Plant Sci 1:228-232
    5.Angenent GC.,Franken J,Busscher M.Colombo L,Van Tunen AJ(1993)Petal and stamen formation in petunia is regulated by the homeotic gene FBP1.Plant J A:101-112
    6.Angenent GC.,Franken J.Busscher M,van Dijken A,van Went JL,Dons HJ,van Tunen AJ(1995)A novel class of MADS-boxgenes is involved in ovule development in Petunia.Plant Cell 10:1569-1582
    7.Aoki S,Uehara K,Imafuku M,Hasebe M,Ito M(2004)Phylogenyand divergence of basal angiosperms inferred from APETALA3 and PISTILLATA-\\ke MADS-box genes.J Plant Res 117:229-244
    8.Aubert D,Chen LJ,Moon YH,Martin D.Castle LA,Yang CH.Sung ZR(2001)EMF1 a novel protein involved in the control of shoot architecture and flowering in Arabidopsis.Plant Cell 13:1865-1875
    9.Becker A,Theissen G(2003)The major clades of MADS-box genes and their role in the development and evolution of flowering plants.Mol Phylogenet Evol 29:464-489
    10.Blazquez MA,Green R,Nilsson O,Sussman MR,Weigel D(1998)Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter.Plant Cell 10:791-800
    11.Blazquez MA,Soowal LN,Lee I.Weigel D(1997)LEAFY expression and flower initiation in Arabidopsis.Development 124:3835-3844
    12.Bohlenius H,Eriksson S,Parcy F,Nilsson O(2007)The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering.Science 316:367-367
    13.Bommert P,Satoh-Nagasawa N,Jackson D,Hirano YH(2005)Genetics and evolution of grass inflorescence and flower development.Plant Cell Physiol 46:69-78
    14.Bonhomme F,Sommer H,Bernier G and Jacqmard A(1997)Characterization of SaMADS D from Sinapis alba suggests a dual function of the gene:in inflorescence development and floral organogenesis.Plant Mol Biol 34:573-583
    15.Bowman JL,Alvarez J,Weigel D,Meyerowitz EM.Smyth DR(1993)Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes.Development 119:721-743
    16.Bowman,JL,Smyth,DR,and Meyerowitz,EM(1991)Genetic interactions among floral homeotic genes of Arabidopsis.Development 112:1-20
    17.Bradley D,Carpenter R,Copsey L,Vincent C.,Rothstein S,Coen E(1996)Control of inflorescence architecture in Antirrhinum.Nature 379:791-797
    18.Bradley D,Carpenter R,Sommer H,Hartley N.Coen E(1993)Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the PLENA locus of Antirrhinum.Cell 72:85-95
    19.Bradley D,Ratcliffe O,Vincent C.,Carpenter R,Coen E(1997)Inflorescence commitment and architecture in Arabidopsis.Science 275:80-83
    20.Carmona MJ,Ortega N,and Garcia-Marota F(1998)Isolation and molecular characterization of a new vegetative MADS-box gene from Solatium tuberosum L.Planta 207:181-188
    21.Chen(2004)A microRNA as a translational repressor of AP'ETALA2 in Arabidopsis flower development.Science 303:2022-2025
    22.Chen ZX,Wu JG Ding WN,Chen HM,Wu P,Shi CH(2006)Morphogenesis and molecular basis on naked seed rice,a novel homeotic mutation of OsMADSl regulating transcript level of AP3 homologue in rice.Planta 223:882-890
    23.Chuck G Muszynski M,Kellogg E,Hake S,Schmidt RJ(2002)The control of spikelet meristem identity by the branched silklessl gene in maize.Science 298:1238-1241
    24.Chung YY,Kim SR,Kang HG.,Noh YS,Min CP.David F,An G(1995)Characterization of two rice MADS box genes homologous to GLOBOSA.Plant Sci 109:45-56
    25.Clark SE,Running MP,Meyerowitz EM(1993)CLAVATAI.a regulator of meristem and flower development in Arabidopsis.Development 119:397-418
    26.Clark SE,Running MP,Meyerowitz EM(1995)CLAVATAI is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATAI.Development 121:2057-2067
    27.Coen ES,Meyerowitz EM(1991)The war of the whorls genetic interactions controlling flower development.Nature 353:31-37
    28.Coen ES,Nugent JM(1994)Evolution of flowers and inflorescences.Development Suppl:107-116
    29.Colombo L,Franken J,Koetje E,van Went J,Dons HJM,Angenent GC.,van Tunenai AJ(1995)The petunia MADS box gene FBPU determines Ovule identity.Plant Cell 7,1859-1868
    30.Conner J,Liu Z(2000)LEUN1G.,a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.Proc Nat! Acad Sci U S A 97:12902-12907
    31.Cseke LJ,Cseke SB,Ravinder N,Taylor LC.,Shankara,Sen B,Thakur R,Karnosky DF,Podila GK(2005)SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees.Gene 358:1-16
    32.Davies B,Egea-Cortines M,de Andrade Silva E,Saedler Hm,Sommer H(1996)Multiple interactions amongst floral hometic MADS box proteins.EMBO J 15:4330-4343
    33.De Bodt S,Raes J,Van de Peer Y,Theissen G(2003) And then there were many:MADS goes genomic.Trends Plant Sci 8:475-483
    34.Ditta G,Pinyopich A,Robles P,Pelaz S,Yanofsky MF(2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity.Curr Biol 14:1935-1940
    35.Doi K,Izawa T,Fuse T,Yamanouchi U,Kubo T,Shimatani Z,Yano M,Yoshimura A(2004) EhdI,a B-type response regulator in rice confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hdl.Genes Dev 18:926-936
    36.Drews GN,Bowman JL,Meyerowitz EM(1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product.Cell 65:991-1001
    37.Egea-Cortines M,Saedler H,Sommer H(1999) Ternary complex formation between the MADS-box proteins SQUAMOSA,DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus.EMBOJ 18:5370-5379
    38.Evans RT,Malmberg RL(1989) Alternative pathways of tobacco placental development:time and commitment and analysis of a mutant.Dev Biol 136:273-283
    39.Favaro R,Immink R,Ferioli V,Bernasconi B,Byzova M,Angenent GC,Kater M,Colombo L(2002)Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants.Mol Genet Genomics 268:152-159
    40.Favaro R,Immink RG,Ferioli V,Bernasconi B,Byzova M,Angenent GC,Kater M,Colombo L(2002)Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants.Mol Genet Genomics 268:152-159
    41.Favaro R,Pinyopich A.Battaglia R,Kooiker M,Borghi L,Ditta G,Yanofsky MF,Kater MM,Colombo L (2003) MADS-Box protein complexes control carpel and ovule development in Arabidopsis.Plant Cell 15:2603-2611
    42.Ferrandiz C,Gu Q,Martienssen R,Yanofslcy MR.(2000) Redundant regulation of meristem identity and plant architecture by FRUTTFULL,APETALAl and CAULIFLOWER.Development 127:725-734
    43.Finnegan EJ,Kovac KA,Jaligot E,Sheldon CC,Peacock WJ,Dennis ES(2005) The downregulation of FLOWERING LOCUS C(FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms.Plant J 44:420-432
    44.Fischer A,Baum N,Saedler H,Theissen G(1995) Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies.Nucl Acids Res 23:1901-1911
    45.Flanagan CA,Hu Y,Ma H(1996) Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development.Plant J 10:343-353
    46.Fornara F,Parenicova L,Falasca G.,Pelucchi N,Masiero S,Ciannamea S,Lopez-Dee Z,Altamura MM,Colombo L,Kater MM(2004)Functional characterization of OsMADS18,a member of the AP1/SQUA subfamily of MADS-box genes.Plant Physiol 135:2207-2219
    47.Gallois JL,Nora FR,Mizukami Y,Sablowski R(2004)WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem.Genes and Development 18:375-380
    48.Gocal GF,Pharis RP,Yeung EC.,Pearce D(1991)Changes after decapitationin concentrations of indole-3-acetic.acid and abscisic acid in the larger axillary bud of Phaseolus vulgaris L.cv.tender green.Plant Physiol 95:344-350
    49.Gomez-Mena C.,de Folter S,Costa M M,Angenent GC.,Sablowski R(2005)Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.Development 132:429-438
    50.Greco R,Stagi L,Colombo L.Agenent GC.,Sari-Gorla M.PeME(1997)MADS-box genes expressed in developing inflorescences of rice and sorghum.Mol Gen Genet 253:615-623
    51.Gregis V,Sessa A,Colombo L,Kater MM(2006)AGL24,SHORT VEGETATIVE PHASE and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis.Plant Cell 18:1373-1382
    52.Gu Q,Ferrandiz C.,Yanofsky MF,Martiessen R.(1998)The FRUIT-FULL MARS-box gene mediates cell differentiation during Arabidopsis fruit development.Development 125:1509-1517
    53.Gustafson-Brown C.,Savidge B,Yanofsky MF(1994)Regulation of the Arabidopsis floral homeotic gene APETALA1.Cell 16:131-143
    54.Hama E,Takumi S,Ogihara Y,and Murai K(2004)Pistillody is caused by alterations of the class B MADS box gene expression pattern in alloplasmic wheats.Planta 218:712-720
    55.Hardenack S,Ye D,Saedler H,Grant S(1994)Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion.Plant Cell 6:1775-1787
    56.Honma T,Goto K(2001)Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.Nature 409:525-529
    57.Huala E,Sussex IM(1992)LEAFY interacts with floral homeotic genes to regulate Arabidonsis floral development.Plant Cell A:901-913.
    58.Huang T,Bohlenius H,Eriksson S,Parcy F,Nilsson O(2005)The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering.Science 309:1694-169
    59.Huijser P,Klein J,Lonning WE,Meijer H,Saedler H,Sommer H(1992)Bracteomania,an inflorescenceanomaly,is caused by the loss of function of MADS-box gene squamosa in Antirrhinum majus.EMBO J 11:1239-1249
    60.Imaizumi T,Tran HG.,Swartz TE,Briggs WR,Kay SA(2003)FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.Nature 426:302-306
    61.Immink R,Ferrario S,Busscher-Lange J,Kooiker M,Busscher M,Angenent GC(2003)Analysis of the petunia MADS-box transcription factor family.Mol Genet Genomics 268:598-606
    62.Irish VF,Litt A(2005)Flower development and evolution:gene duplication,diversification and redeployment.Curr Opin Genet Dev 15:454-460
    63.Irish VF,Sussex IM(1990)Function of the apetala-1 gene during Arabidopsis floral development.Plant Cell 2:741-753
    64.Jack T(2001)Relearning our ABCs new twists on an old model.Trends Plant Sci 6:310-316
    65.Jack T(2004)Molecular and genetic mechanisms of floral control.Plant Cell 16:1-17
    66.Jack T,Brochkman LL,and Meyerowitz EM(1992)The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens.Cell 68:683-697
    67.Jeon JS.Jang S,Lee S,Nam J,Kim C.,Lee SH,Chung Y,Kim SR,Lee mH,Cho YG An G(2000)Leafy hull sterilel is a homeotic mutation in a rice MADS Box gene affecting rice flower development.Plant Cell 12:871-884
    68.Jia HW,Chen R,Cong B,Cao KM,Sun CR,Luo D(2000)Characterization and transcriptional profile of two rice MARS-box genes.Plant Sci 155:115-122
    69.Jofuku KD,den Boer BG Van Montagu M,Okamuro JK(1994)Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.Plant Cell 6:1211-1225
    70.Kang HG Jang S,Chung JE,Cho YG An G(1997)Characterization of two rice MADS box genes that control flowering time.Mol Cells 7:559-566
    71.Kang HG Jeon JS,Lee S,An G(1998)Identification of class B and class C floral organ identity genes from rice plants.Plant Mol Biol 38:1021-1029
    72.Kang SG Hannapel DJ(1995)Nucleotide sequences of novel potato(Solatium tuberosum L.)MADS-box cDNAs and their expression in vegetative organs.Genel66:329-330
    73.Kater M,Dreni L.Colombo L(2006)Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis.J Exp Bot 57:3433-3444.
    74.Kayes JM,Clark SE(1998)CLAVATA2,a regulator of meristem and organ development in Arabidopsis.Development 125:3843-3851
    75.Kempin SA,Savidge B,Yanofsky MF(1995)Molecular basis of the cauliflower phenotype in Arabidopsis.Science 267:522-525
    76.Kim S,Soltis DE,Soltis PS.Zanis MJ,Suh Y(2004)Phylogenetic relationships among early-diverging eudicots based on four genes:were the eudicots ancestrally woody? Mol Phylogenet Evol 31:16-30
    77.Kinoshita T,Hidano Y,Takahashi M(1976)A mutant 'long hull sterile' found out in the rice variety,'Sorachi'-Genetical studies on rice plant.Mem FacAgric Hokkaido Univ10:247-268
    78.Kojima S,Takahashi Y,Kobayashi Y,Monna L,Sasaki T,Araki T,Yano M(2002)Hd3a,a rice ortholog of Arabidopsis FT gene,promotes transition to flowering downstream of Hd1 under short-day conditions.Plant Cell Physiol 43:1096-1105
    79.Komatsu M,Chujo A,Nagato Y,Shimamoto K,Kyozuka J(2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.Development 130:3841-3850
    80.Koornneef M Hanhart CJ Van der Veen JH(1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.Mol Gen Genet 229:57-66
    81.Kotilainen M,Elomaa P,Uimari A,Albert VA,Yu D,Teeri TH(2000) GRCD1,an AGL2-like MADS box gene,participates inthe C function during stamen development in Gerbera hybrida.Plant Cell 12:1893-1902
    82.Krizek BA,Fletcher JC(2005) Molecular mechanisms of flower development:an armchair guide.Nat Rev Genet 6:688-698
    83.Kumar S,Tamura K,Jakobsen IB,Nei M(2001) MEGA2 molecular evolutionary genetic analysis software.Bioinformatics 17:1244-1245
    84.Kyozuka J,Kobayashi T,Morita M,Shimamoto K(2000) Spatially and temporally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A,B and C genes.Plant Cell Physiol 41:710-718
    85.Kyozuka J,Konishi S,Nemoto K.Izawa T,and Shimamoto K(1998) Down-regulation of RFL the FLOILFY homolog of rice accompanied with panicle branch initiation.Proc Natl Acad Sci USA 95:1979-1982
    86.Kyozuka J,Shimamoto K(2002) Ectopic expression of OsMADS3,a rice ortholog of AGAMOUS,caused a homeotic transformation of lodicules to stamens in transgenic rice plants.Plant Cell Physiol 43:130-135
    87.Larsson AS.Landberg K,Meeks-Wagner DR(1998) The TERMINAL FLOWER2(TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana.Genetics 149:597-605
    88.Laux T,Mayer KF,Berger J,Jurgens G(1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis.Development 122:87-96
    89.Lee H,Suh SS,Park E,Cho E,Ahn JH,Kim SG Lee JS,Kwon YM,Lee I(2000) The AGAMOUS-LIKE 20MADS domain protein integrates floral inductive pathways in Arabidopsis.Genes Dev 14:2366-2376
    90.Lee I,Wolfe DS,Nilsson O,Weigel D(1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS.Curr Biol7:95-104
    91.Lee S,Jeon JS,An K.Moon YH,Lee S,Chung YY,An G(2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16.Planta 217:904-911
    92.Lee S,Kim J,Son JS,Nam J,Jeong DH,Lee K,Jang S,Yoo J,Lee J,Lee DY,Kang HG,An G(2003)Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses:MADS-box genes as a test case.Plant Cell Physiol AA:1403-1411
    93.Lee SY,Kim J,Han JJ,Han MJ,An GH(2004) Functional analyses of the flowering time gene OsMADS5O,the putative SUPPRESSOR OFOVEREXPRESSION OFCO 1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice.Plant J 38:754-764
    94.Lenhard M,Jurgens G,Laux T(2002) The WUSCHEL and SHOOTMER1STEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation.Development 129:3195-206
    95.Liljegren SJ,Ditta GS,Eshed Y,Savidge B,Bowman JL,Yanofsky MF(2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis.Nature 404:766-770
    96.Lim J,Moon YH,An G,Jang SK(2000) Two rice MADS domain proteins interact with OsMADS1.Plant Mol Biol 44:513-527
    97.Litt A,Irish VF(2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:implicationsfor the evolution of floral development.Genetics 165:821-833
    98.Lopez-Dee ZP,Wittich P.Enrico PM,Rigola D,del Buono I,Gorla MS,Kater MM,Colombo L(1999)OsMADS13,a novel rice MADS-box gene expressed during ovule development.Dev Genet 25:237-244
    99.Lozano R,Angosto T,Gomez P,Payan C,Capel J,Huijser P.Salinas J,Martinez-Zapater JM(1998) Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-box genes.Plant Physiol 117:91-100
    100.Malcomber ST.Kellogg EA(2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses.Plant Cell 16:1692-1706
    101.Malcomber ST,Kellogg EA(2005) SEPALLATA gene diversification,brave new whorls.Trends Plant Sci 10:427-435
    102.Malcomber ST,Preston JC,Reinheimer R.Kossuth J,Kellogg EA(2006) Developmental gene evolution and the origin of grass inflorescence diversity in:Leebens-Mack J,Soltis DE,Soltis PS(eds) Developmental Genetics of the Flower.Academic Press,New York,pp:383-421
    103.Mandel MA,Gustafson-Brown C,Savidge B,Yanofsky MF(1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1.Nature 360:273-277
    104.Mandel MA,Yanofsky MF(1995) The Arabidopsis AGLBIFUL MADS-box is expressed in inflorescence meristems and is negatively regulated by APETALAl.Plant Cell 7:1763-1771
    105.Mandel MA,Yanofsky MF(1995a) A gene triggering flower formation in Arabidopsis.Nature 377:522-524
    106.Mandel MA,Yanofsky MF(1995b) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALAl.Plant Cell 7:1763-1771
    107.Mayer KF,Schoof H,Haecker A,Lenhard M,Jurgens G Laux T(1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem.Cell 95:805-815
    108.McCouch SR,Kochert G,Yu ZH(1988) Molecular mapping of rice chromosome.Theor Appl Genet 76:148-159
    109.McCouch SR,Teytelman L,Xu Y,Lobos KB,Clare K,Walton M,Fu B,Maghirang R,Li ZK,Xing YZ,Zhang QF,Kono I,Yano M,Fjellstrom R,DeClerck G,Schneider D,Cartinhour S,Ware D,and Stein L(2002) Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.).DNA Research 9:199-207
    110.Meguro A,Takumi S,Ogihara,Y,Murai K(2003) WAG,a wheat AGAMOUS homolog,is associated with development of pistil-like stamens in alloplasmic wheats.Sex and Plant Reproduction 15:221-230
    111.Mena M,Mandel MA,Lerner DR,Yanofsky MF,Schmidt RJ(1995) A characterization of the MADS-box gene family in.maize.Plant J 8:845-854
    112.Michelmore RW,Paran I,Kesseli RV(1991) Identification of markers linked to disease-resistance genes by bulked segregation analysis:A rapid method to detect markers in specific genomic regions by using segregation population.Proc Natl Acad Sci USA 88:9828-9832
    113.Miguel A,Blazquez(2005) The right time and place for making flowers.Science 309:1024-1025
    114.Mizukami Y,Ma H(1992) Ectopic expression of the floral homeotic gene agamous on transgenic Arabidopsis plants alters floral organ identity.Cell 71:119-131
    115.Modrusan Z,Reiser L,Feldmann KA,Fischer RL,Haughn GW(1994) Homeotic transformation of ovules into carpellike structures in Arabidopsis.Plant Cell 6:333-349
    116.Moon YH,Kang HCx Jung JY,Jeon JS,Sung SK,An G(1999) Determination of the motif responsible for interaction between the rice APETALA/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system.Plant Physiol 120:1193-1204
    117.Munster T,Pahnke J,Di Rosa A,Kim JT,Martin W,Saedler H,and Theissen G(1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants.Proc Natl Acad Sci USA.94:2415-2420
    118.Munster T,Wingen L.U,Faigl W,Werth S,Saedler H,and Theissen G(2001) Characterization of three GLOBOSA-like MADS-box genes from maize:evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses.Gene 262:1-13
    119.Murai K,Miyamae M,Kato H,Takumi S and Ogihara Y(2003) WAP1,a wheat APETALA1 homolog,plays a central role in the phase transition from vegetative to reproductive growth.Plant Cell Physiol 44:1255-1265
    120.Nagasawa N,Miyoshi M,Kitano H,Satoh H,Nagato Y(1996) Mutations associated with floral number in rice.Planta,198:627-633.
    121.Nagasawa N,Miyoshi M,Sano Y,Satoh H,Hirano H,Sakai,H,Nagato Y(2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice.Development 130:705-718
    122.Nakagawa M.,Shimamoto K,Kyozuka J(2002) Overexpression of RCN1 and RCN2,rice TERMINAL FLOWER 1/CENTRORADIALIS homologs,confers delay of phase transition and altered panicle morphology in rice.PLANT J 29:743-750
    123.Nam J,Kim J,Lee S,An G,Ma H,Nei M(2004) Type Ⅰ MADS box genes have experienced faster birth-and-death evolution than type Ⅱ MADS-box genes in angiosperms.Proc Natl Acad Sci USA 101:1910-1915
    124.Nilsson O,Lee I,Blazquez MA,Weigel D(1998) Flowering-time genes modulate the response to LEAFY activity.Genetics 150:403-410
    125.Olsen KM,Womack AR,Garrett JI,Suddith M.(2002) Contrasting evolutionary forces in the Arabidopsis thaliana floral development pathway.Genetics 160:1641-1650
    126.Panaud O,Chen X,and McCouch SR(1996) Development of microsatellite markers and characterization of simple sequence length polymorphism(SSLP) in rice(Oryza sativa L).Mol Gen Genet 259:597-607
    127.Parenicova L,de Folter S,Kieffer M,Homer DS,Favalli C,Busscher J,Cook HE,Ingram RM,Kater MM,Davies B,Angenent GC,Colombo L(2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world.Plant Cell 15:1538-1551
    128.Pelaz S,Ditta GS,Baumann E,Wisman E,Yanofsky MF(2000) B and C floral organ identity functions require SEPALLATA MADS-box genes.Natrue 405:200-203
    129.Pelaz S,Ditta.GS,Baumann E,Wisman E,Yanofsky M(2000) B and C organ identity functions require SEPALLATA MADS-box genes.Nature 405:200-203
    130.Pelaz S,Gustafson-Brown C,Kohalmi SE,Crosby WL,Yanofsky MF(2001) APETALA1 and SEPALLATA3interact to promote flower development.Plant J 26:385-394
    131.Pellegrini L,Tan S,and Richmond TJ(1995) Structure of serum response factor core bound to DNA.Nature 376:490-498
    132.Pelucchi N,Fornara F,Favalli C,Masiero S,Lago C,Pe ME,Colombo L,Kater MM(2002) Comparative analysis of rice MADS-box genes expressed during flower development.Sex Plant Reprod 15:113-122
    133.Prasad K,Parameswaran S,Vijayraghavan U(2005) OsMADS1,a rice MADS-box factor,controls ifferentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs.The Plant Journal 43:915-928.
    134.Prasad K,Sriram P,Kumar CS,Kushalappa K,Vijayraghavan U(2001) Ectopic expression of rice OsMADSl reveals a role in specifying the lemma and palea,grass floral organs analogous to sepals.Dev Genes Evol 211:281-290
    135.Prasad K,Vijayraghavan U(2003) Double-stranded RNA interference of a rice PI/GLO paralog OsMADS2,uncovers its second-whorl-specific function in floral organ patterning.Genetics 165:2301-2305.
    136.Purugganan MD,Rounsley S,Schmidt RJ,Yanofsky MF(1995) Molecular evolution of flower development:diversification of the plant MADS-box regulatory gene family.Genetics 140:345-356
    137.Rao NN,Prasad K,Kumar PR,Vijayraghavan U(2008) Distinct regulatory role for RFL the rice LFY homolog in determining flowering time and plant architecture.Proc Natl Acad Sci USA 105:3646-3651
    138.Ratcliffe OJ,Bradley DJ,Coen ES(1999) Separation of shoot and floral identity in Arabidopsis.Development 126:1109-1120
    139.Ratcliffe OJ,Nadzan GC,Reuber TL,Riechmann JL(2001) Regulation of flowering in Arabidopsis by an FLC homologue.Plant Physiol 126:122-132
    140.Ray A,Robinson-Been K,Ray S,Baker SC,Lang JD,Preuss D,Milligan SB,and Gasser CS(1994)Arabidopsis floral homeotic gene BELL(BEL1) controls ovule development throughnegative regulation of AGAMOUS gene(AG).Proc Nat Acad Sci USA 91:5761-5765
    141.Riecbemnn JL,Wang M,Meyerowitz EM(1996) DNA-binding properties of Arabidopsis MADS homeotic proteins APETALA1,APETALA3,PISTILLATA,and AGAMOUS.Nucleic Acids Res 24:3134-3141
    142.Riechmann JL.Krizek BA,Meyerowitz EM(1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1,APETALA3,PISTILLATA,and AGAMOUS.Proc NatI Acad Sci USA 93:4793-4798
    143.Riechmann JL,Meyerowitz EM(1997) MADS domain proteins in plant development.Biol Chem 378:1079-1101
    144.Rijpkema A,Royaert S,Zethof J,Van der WeerdenG GeratsT,Vandenbussche M(2006) Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage.Plant Cell 18:1819-1832
    145.Robinson-Beers K,Pruitt R.E,Gasser CS(1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants.Plant Cell A:1237-1249
    146.Robles P,Pelaz S(2005) Flower and fruit development in Arabidopsis thaliana.J Dev Biol 49:633-643
    147.Rounsley SD,Ditta GS,Yanofsky MF(1995) Diverse roles for MADS box genes in Arabidopsis development.Plant Cell7:1259-1269
    148.Schaffer R,Ramsay N,Samach A,Corden S,Putterill J,Carre IA,Coupland G(1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.Cell 93:1219-1229
    149.Schmidt RJ,Veit B,Mandel MA,Mena M,Hake S,Yanofsky MF(1993) Identification and molecular characterization of ZAG1,the maize homolog of the Arabidopsis floral homeotic gene agamous.Plant Cell 5:729-737
    150.Schultz EA(1991) LEAFY,a homeotic gene that regulates inflorescence development in Arabidopsis.Plant Cell 3:771-781
    151.Schwarz-Sommer Z,Hue I,Huijser P,Flor PJ,Hansen R,Tetens F,Lonnig WE,Saedler H,and Sommer H (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens:evidence for DNA binding and autoregulation of its persistent expression throughout flower development.EMBO J 11:251 -263
    152.Schwarz-Sommer Z,Huijser P,Nacken W,Saedler H,Sommer H.(1990) Genetic control of flower development:homeotic genes in Antirrhinum majus.Science 250:931-936
    153.Shannon S,Meeks-Wagner DR(1993) Genetic interactions that regulate inflorescence development in Arabidopsis.The Plant Cell 5:639-655
    154.Somers DE,Schultz TF,Milnamow M,Kay SA(2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.Cell 101:319-329
    155.Strayer C,Oyama T,Schultz TF,Raman R,Somers DE,Mas P,Panda S,Kreps JA,Kay SA(2000) Cloning of the Arabidopsis clock gene TOC1,an autoregulatory response regulator homolog.Science 289:768-771
    156.Suzaki T,Sato M,Ashikari M,Miyoshi M,Nagato Y,Hirano HY(2004) The gene FLORAL ORGAN NUMBER]regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1.Development 131:5649-5657
    157.Theien G(2001) Development of floral organ identity stories from the MADS house.Curr Opin Plant Biol 4:75-85
    158.Theissen G Becker A,Di RA,Kanno A,Kim JT,Miinster T,Winter KU,Saedler,H(2000) A short history of MADS-box genes in plants.Plant Mol.Biol 42:115-149
    159.Theissen G Strater T.Fischer A,Saedler H(1995) Structural characterization,chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize.Gene 156:155-166
    160.Theissen G(2001) Development of floral organ identity:Stories from the MADS house.Curr Opin Plant Biol 4:75-85
    161.Thiessen G Saedler H(2001) Floral quartets.Nature 409:469-471
    162.Trobner W,Ramirez L,Motte P,Hue H.Huijser P,Lonnig WE,Saedler H.Sommer H,Schwarz-Sommer Z (1992) GLOBOSA:a homeotic gene which interacts with deficiens in the control of Antirrhinum floral organogensis.EMBO J 11:4693-4704
    163.Uimari A,Kotilainen M,Elomaa P,Yu D,Albert VA,Teeri TH(2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene.Proc Natl Acad Sci USA 101:15817-15822
    164.Vandenbussche M,Zethof J,Royaert S,Weterings K,Gerats T(2004) The duplicated B-class heterodimer model:whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.Plant Cell 16,741-754
    165.Wagner D,Sablowski RWM,Meyerowitz EM(1999) Transcriptional activation of APETALA1 by LEAFY.Science 285:582-584
    166.Wang ZY,Tobin EM(1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1(CCA1)gene disrupts circadian rhythms and suppresses its own expression.Cell 93:1207-1217
    167.Weigel D,Alvarez J,Smyth DR.Yanofsky MF,Meyerowitz EM(1992) LEAFY controls floral meristem identity in Arabidopsis.Cell 69:843-859
    168.Weigel D,Meyerowitz EM(1994) The ABCs of floral homeotic genes.Cell 78:203-209
    169.Weigel D,Nilsson O(1995) A developmental switch sufficient for flower initiation in diverse plants.Nature 377:495-500
    170.Wellmer F,Riechmann JL,Alves-Ferreira M.Meyerowitz EM(2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers.Plant Cell 16:1314-1326
    171.Whipple CJ,Ciceri P,Padilla CM,Ambrose BA,Bandong SL,Schmidt RJ(2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis.Development 131:6083-6091
    172.Wilkinson MD,Haughn GW(1995) Unusual floral organs controls meristem identity and organ primordial fate in Arabidopsis.Plant Cell 7:1485-1499
    173.Wolfe KH,Gouy M.Yang YW,Sharp PM,Li WH(1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data.Proc Natl Acad Sci USA 86:6201-6205
    174.Xiao H,Wang Y,Liu DF,Wang WM,Li XB,Zhao XF,Xu JC,Zhai W,Zhu LH(2003) Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference.Plant Mol.Biol 52:957-966
    175.Yadav SR,Prasad K,Vijayraghavan U(2007) Divergent regulatory OsMADS2 functions control size,shape and differentiation of the highly derived rice floret second-whorl organ.Genetics 176:283-294
    176.Yamaguchi T,Lee DY,Miyao A,Hirochika H,An G Hirano HY(2006) Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa.Plant Cell 18:15-28
    177.Yamaguchi T,Nagasawa N.Kawasaki S,Matsuoka M,Nagato Y,Hirano HY(2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa.Plant Cell 16:500-509
    178.Yanofsky MF(1995) Floral meristems to floral organs:genes controlling early events in Arabidopsis flower development.Annu Rev Plant Physiol Plant Mol Biol 46:167-188
    179.Yanofsky MF,Ma H,Bowman JL,Drews GN,Feldman KA,Meyerowitz EM(1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors.Nature 346:35-39
    180.Yanofsky MF,Ma H,Bowman JL,Drews GN,Feldmann KA,Meyerowitz EM(1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors.Nature 346:35-39
    181.Yoshida N,Yanai Y,Chen LJ,Kato Y,Hiratsuka J,Miwa T,Sung ZR,Takahashi S(2001) EMBRYONIC FLOWER2,a novel polycomb group protein homolog mediates shoot development and flowering in Arabidopsis.Plant Cell 13:2471-2481
    182.Zahn LM,Kong H.Leebens-Mack JH,Kim S,Soltis PS,LandherrLL.Soltis DE,dePamphilis CW,Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes:A pre-angiosperm origin with multiple duplications throughout angiosperm history.Genetics 169:2209-2223
    183.Zik M,Irish V(2003) Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.Plant Cell 15:207-222
    184.罗琼.两份水稻花器官突变体的解剖结构观察、性状遗传分析及相关基因的分子标记定位.四川农业大学博士研究生论文.2003.
    185.桑贤春,何光华,张毅,杨正林,裴炎(2003)水稻PCR扩增模板的快速简易制备.遗传,25:705-707

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700