机电一体化系统方案生成及优选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统方案的生成具有较高的创新层次。现行的机电一体化系统方案设计基本上是依赖于设计者的经验,并没有形成科学的设计方法,因此,如何从依赖经验的设计进化为遵循科学理论和方法的设计是产生创新方案的关键。
     本文以实现工作机功能的机电一体化系统为研究对象,对机电一体化系统方案创新设计理论与方法进行了系统、深入的研究,主要就以下六个方面进行了研究:
     1.构建了机电一体化系统功能结构
     不同技术系统对“功能”这个术语的理解和描述在物理效应、物质/能量/信息的变换以及数据运算间的逻辑关系等方面差异很大。构建了机电一体化系统的功能结构,提出、阐述了机电一体化系统的若干基本特性和诸特性间的关系,以及机电一体化系统设计的若干原理,从而为进一步提出系统设计模型和方法奠定了基础。
     2.阐述了机电一体化系统逻辑结构,提出了基于机电单元的机电一体化系统方案设计过程模型及三子系统设计方法
     认为机电一体化系统本质上是现代机械系统。从功能出发可将机电一体化系统划分为控制和执行两大功能模块。机电一体化系统具有单元级和系统级逻辑结构。提出基于机电单元的机电一体化系统方案设计过程模型,以及三个子系统的设计方法。用单元化设计思想——控制功能分散和控制回路独立,来进行机电一体化系统设计,选用适当的配套部件加以实现,是快速、高效、可靠地开发机电一体化系统的有效途径。
     3.提出了机电一体化系统方案生成推理进程模型及计算机辅助求解策略
     基于变换功能的层次性和目的功能(效应)的多元性,建立了变换功能和目的功能(效应)特征模型,提出了针对机电一体化系统创新方案生成的功能空间拓展及推理规律。提出了一种变换功能、技术、目的功能、作用原理解循环求解的计算机辅助方案生成进程模型,在此基础上提出了适用于计算机处理的方案生成与/或树形式化表达方法,探讨了相应的求解算法。
     4.提出并阐述了机电一体化系统方案优选的信息量原理
     将公理设计的基本原理(尤其是信息公理)应用于机电一体化系统方案优选过程,对广泛存在于设计过程中的不确定性进行了深刻阐释。
     基于机电一体化系统功能、状态的定性、定量双重属性和时变本质,提出了基于信息量的功能需求、设计参数、机电一体化率、控制效率等概念,以及机电一体化系统方案优选的一系列原理:时域参数控制原理、信息量大优先原理、最大控制效率原理,从而为有效改善机电一体化系统的性能、选择较优设计方案提供了新的思路。
     5.阐释了面向对象的机电一体化系统方案表达方法
     针对以往机电一体化设计文献过于强调系统物理结构和物理行为、忽视系统逻辑结构和逻辑行为的现状,本文用面向对象思想对机电一体化系统的结构、行为和原理方案解进行了阐释。
     机电一体化系统的逻辑结构可以由面向对象的参考模型或基于统一建模语言(UML,Unified Modeling Language)的类图来进行表达;为了描述对象(以及系统与环境)间的接口(通讯)行为,使交互可视化,应用消息序列图(MSC, Message Sequence Charts)来表达机电一体化系统逻辑行为。在此基础上,以CD播放机为实例,应用统一建模语言和消息序列图对机电一体化系统各主要子系统/组件的原理方案解进行了全面的表达。
     6.应用实例
     深入研究了快速成型机(激光分层实体制造系统、熔融挤压成型系统)、激光影碟机等典型机电一体化系统的方案设计及优选,对提出及拓展的各种理论及方法进行了验证。
The generation of system scheme requires high degree of creativity. Generally speaking, existing scheme generation of mechatronic systems relies largely on designer’s empirical experience, without developing into scientific design methodology. Therefore, the key of generating creative schemes is to progress from present empiricism-based design to an approach guided by scientific theories and methodology.
     This dissertation studies the mechatronic system that realizes the function of working machine, unfolds a systematic and in-depth investigation into the theory and methodology of creative scheme generation of mechatronic systems, and is composed of the following sections.
     1) Constructing the function structure of mechatronic system
     Diverse technology systems differ greatly in their interpretation and description of the term‘function’concerning physical effect, material/energy/information transformation, as well as logical relations in statistical arithmetic. Chapter One constructs the function structure of mechatronic system, proposes and explicates basic characteristics of mechatronic system and the relations between these characteristics, and formulates fundamental principles in mechatronic system design, so as to lay a solid foundation for further attempts to propose a design model and methodology for mechatronic systems.
     2) Proposing logical structure of mechatronic system, and updating the tri-subsystem design method
     A mechatronic system is essentially a mechanical system characteristic of modern technology. A mechatronic system, from the perspective of function, is divided into the two functional modules of control and execution. Moreover, the logical structure of mechatronic system is manifest as element layer and system layer.
     Chapter Two proposes the model of scheme design process of mechatronic system based on mechatronic element, and updates the design method of tri-subsystem. A swift, efficient, reliable and effective approach to mechatronic system design applies the element design theory, i.e., with distributed control functions and independent control loops, to mechatronic system design, so as to realize the scheme through selectively employing appropriate components.
     3) Presenting scheme generation reasoning and computer-aided solving strategy
     In accordance with the layeredness of transformation function and the multi-element nature of purpose function (effect), we construct characteristics models of transformation function and purpose function (effect), and propose function space prolongation of creative scheme generation of mechatronic system as well as the reasoning trajectory. Furthermore, we present a computer-aided process model of scheme generation, in which transformation function, technology, purpose function and working principle realize circular solving. We then proceed to put forward the formal expression of‘and’/’or’tree of scheme generation to be applied to computer processing, and probe into the corresponding solving arithmetic.
     4) Explicating information-content based optimality of mechatronic system scheme
     Chapter Four applies the basic principles of axiom design (information axiom in particular) to the optimality process of mechatronic system scheme, and analyzes thoroughly the indeterminacies ubiquitous in the deign process. Taking into account the qualitative and quantitative attributes and the time-variable nature of the function and state of mechatronic system, we present a set of concepts, such as information-content based function, design parameter, mechatronic ratio and control efficiency. We also propose a series of principles for optimal scheme generation of mechatronic system, such as time-domain parameter control principle, maximum information optimality principle, and maximum control efficiency principle, so as to proffer a new design direction to effectively improve the performance of mechatronic systems.
     5) Elucidating scheme representation of object-oriented mechatronic system
     In response to the research status-quo that over-emphasizes physical structure and behavior while ignoring logical structure and behavior of the system, we apply object-based thinking to the scheme solving of structure, behavior and principle of mechatronic system.
     Logical structure of mechatronic system can be expressed as object-oriented reference model or UML-based class diagram (UML, Unified Modeling Language). In order to describe the interface (communication) behavior of object (as well as system and environment) and render interaction visible, we employ MSC (Message Sequence Charts) to express the logical behavior of mechatronic system. Furthermore, we apply UML and MSC to express the principle scheme solving of mechatronic system.
     6) Instantiation
     We conduct a thorough investigation into the scheme design and optimality of such mechatronic systems as rapid prototyping systems (in particular, Slicing Solid Manufacturing System, and Melted Extrusion Molding System) and CD player, which serves to testify the theory and methodology proposed and developed in this dissertation.
引文
[1]PAHLG,BEITZW. Engineering design: a systematic process(2nd edi-tion)[M]. London:Springier,1994.
    [2]SUHN P. The principle of design[M].USA:Oxford University Press,1990.
    [3]韩晓建,邓家.机械产品设计的过程建模[J].北京航空航天大学学报,2000,26(5):604-607.
    [4]黄洪钟,赵正佳,关立文,等.基于遗传算法的方案智能优化设计[J].计算机辅助设计与图形学学报,2002,14(5):437-441.
    [5]SHIMOMURAY, YOSHIOKAM, TAKEDAH, et al. Representation of design object based on the functional evolution process model[J]. Journal of Mechanical Design,1998,120(7):221-229.
    [6] DENG Y M, TOR S B, BRITTON G A. Abstracting and exploring functional design information for conceptual mechanical product design[J]. Engineering with Computers,2000,16(1):36-52.
    [7]ZHANG WY, TOR S B, BRITTONG A, et al. EFDEX: a knowl-edge-based expert system for functional design of engineering sys-tems[J]. Engineering with Computers,2001,17(4):339-353.
    [8]GOEL A. Design, analogy and creativity[J]. IEEE Expert,1997,12(2):62-70.
    [9]PRABHAKAR S, GOEL A. Functional modeling for enabling adap-tive design of devices for new environments[J]. Artificial Intelligence in Engineering,1998,12(4):417-444.
    [10]QIANL, GERO J S. Function-behavior-structure paths and their role in analogy-based design[J]. Artificial Intelligence for Engi-neering Design, Analysis and Manufacturing-AIEDAM,1996,10(4):289-312.
    [11]宋慧军, 林志航.基于域结构模板的机械产品概念设计方案生成[J].机械工程学报,2001,37(9):24-29.
    [12] 曹东兴 , 檀润华 , 苑彩云 , 等 . 基于功能分解的机械产品概念设计 [J]. 机械工程学报,2001,37(11):13-17.
    [13]曹东兴,檀润华,苑彩云,等.基于状态空间表示法的机械产品概念设计[J].计算机辅助设计与图形学学报,2002,14(2):172-175.
    [14]WYNNEH, IRENE M Y W. Current research in the conceptual design of mechanical product[J]. Computer-Aided Design,1998,30(5):377-389.
    [15]UMEDAY, ISHII M, YOSHIOKAM, et al. Supporting conceptual design based on the function-behavior-state modeler[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1996,10(4):275-288.
    [16]宋玉银,蔡复之,张伯鹏,等.面向并行工程的集成产品信息建模技术研究[J].计算机研究与发展,1998,35(2):164-168.
    [17] 孙 正 兴 , 张 福 炎 . 特 征 设 计 方 法 在 方 案 设 计 中 的 应 用 初 探 [J]. 机 械 设 计 与 研究,1999,15(1):21-24.
    [18]顾新建,谭建荣,祁国宁.机械产品信息基因模型[J].中国机械工程,1997,8(2):77-79.
    [19] 宋玉银 , 蔡复之 , 张伯鹏 , 等 . 基于实例推理的产品概念设计系统 [J]. 清华大学学报,1998,38(8):5-8.
    [20]TOMIYAMAT. General design theory and its extension and applica-tion[A]. Grabowski H, Rude S, Grein G. Universal Design Theory [C].Aachen:Shaker Verlag,1998.25-44.
    [21]SUSHKOVV. TRIZ:a systematic approach to conceptual design[A]. Grabowski H, Rude S, Grein G. Universal Design Theory[C]. Aachen:Shaker Verlag,1998.223-234.
    [22]牛占文,徐燕申,林 岳,等.实现产品创新的关键技术———计算机辅助创新技术[J].机械工程学报,2000,36(1):11-14.
    [23]邓家.产品设计的基本理论与技术[J].中国机械工程,2000,11(1/2):139-143.
    [24]BHATTAS, GOELA, PRABHAKARS. Innovative in analogical de-sign: a model-based approach[A]. Proceedings of the Third Inter-national Conference on AI in Design[C]. Dordrecht:KluwerAcadem-ic Publishers, 1994.57-74.
    [25]LEE Dongkon, LEE Kyung-Ho. An approach to case-based sys-tem for conceptual ship design assistant[J]. Expert Systemswith Ap-plications, 1999,16(1):97-104.
    [26]MOSTOW J, BARLEYM, WEINRICHT. Automated resue of design plans in BOGART[J]. International Journal of Artificial Intelligence in Engineering,1992,4(4):181-196.
    [27]何斌. 有助于产品创新的概念设计理论与方法的研究[D].杭州:浙江大学,2006
    [28]张帅.基于循环映射模型的概念设计自动化策略研究[J].机算机辅助设计与图形学学报,2005,17(3):491-497.
    [29] Rolf Isermann,Modeling and Design methodology for Mechatronic system, IEEE/ASME, Transactions on mechatronics, vol.1, No.1, March, 1996:16-28.
    [30] Isermann, Rolf. Information processing for mechatronic systems. Robotics and Autonomous Systems. Volume: 19, Issue: 2, December, 1996: 117-134.
    [31] Jürgen Gausemeier, Martin Flath, Stefan M?hringer Conceptual Design of Mechatronics Systems Supported by Semi-formal Specification IEEE/ASME, International Conference on Advanced Intelligent Mechatronics Proceedings 8-123 July 2001 Como, Italy:888-892.
    [32] Jürgen Gausemeier, Martin Flath and Stefan M?hringer, Modelling and Evaluation of Principle Solutions of Mechatronic Systems, Exemplified by Tyre Pressure Control in Automative Systems. International Conference on Engineering Design ICED 01 Glasgow, August 21-23, 2001.
    [33]Gausemeier, J., Flath, M. and M?hringer, S. Modelling of Functions of Mechatronic Systems, Exemplified by Tyre Pressure Control in Automotive System, Int. J. Vehicle Design, 2001, Special Issue.
    [34]Porter I.D. Schemebuilder Mechatronics, Proceedings of Engineering Design Conference, 1998.
    [35]Dr John Counsell, Ian Porter, David Dawson, Marcus Duffy, Schemebuilder Computer Aided Conceptual Design, Schemebuilder: computer aided knowledge based design of mechatronics systems. (http://www.lancs.ac.uk).(http://www.comp.lancs.ac.uk )
    [36] Bracewell, R H, and Sharpe, J E E. Functional descriptions used in computer support for qualitative scheme generation-“Schemebuilder” [J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1996, 10(4): 333-346.
    [37] Bracewell, R.H., Chaplin, R.V., Langdon, P.M., Li, M., Oh, V.K., Sharpe, J.E.E. and Yan, X.T., Integrated Platform for AI Support of Complex Design (Part I): Rapid Development of Schemes from First Principles. in CACD 95. 1995. Lancaster: Springer.
    [38] Hansen, C.T. & Andreasen, M.M. (2002):”Two approaches to synthesis based on the domain theory”, in Engineering Design Synthesis, (ed. A. Chakrabarti), pp. 93 - 108, ISBN 1-85233-492-4, Springer-Verlag.
    [39] Hans P. Hildre, et al, Mekatronikk metodikk, Trondheim, NTNU, 1996
    [40] Ahmad Shakeri, Principle design in mechatronic systems development process – with anintroduction to UML, 2nd Tampere international conference on machine automation, Finland – Tampere, 1998
    [41]Mary Devito, Design tool for mechatronic system integration modeling and analysis[D], Rensselaer Polytechnic Institute,1998
    [42]Murali Barathwaj Jayaram, A formal method for functional modeling and conceptual design of complex mechatronic systems[M], University of Toronto, 2002
    [43]邹慧君,廖武,郭为忠,王石刚. 机电一体化系统概念设计的基本原理[J]. 机械设计与研究1999 (3):14-17.
    [44]邹慧君,汪利,王石刚等.机械产品概念设计及其方法综述机械设计与研究,1998(2):4-8.
    [45]郭为忠.略论机电运动产品及其方案设计方法[J].机械设计,2001,7(增刊):50~52
    [46]田志斌邹慧君郭为忠机电一体化产品概念设计的三层模糊优序评价模型机械设计与研究2000 415 17.
    [47]亢金月. 机电一体化系统设计理论与方法的研究[D]. 上海上海交通大学1996.
    [48]廖武.广义执行机构的概念设计理论及实现的研究[D].上海:上海交通大学,2001.
    [49]田志斌.现代机械运动系统概念设计原理与应用研究[D].上海:上海交通大学,2001.
    [50]李瑞琴. 机电一体化系统方案创新设计理论与方法的研究[D]. 上海:上海交通大学,2004
    [51]田永利.机电产品中广义执行机构方案自动生成原理及应用研究[D],上海交通大学,2005
    [52]张青.广义执行机构的设计方法研究[D],上海交通大学,2005
    [53]徐侃烈. 机电一体化系统集成的研究与研制[D],上海大学,1999
    [54]张建民. 机电一体化系统设计[M]. 北京北京理工大学出版社1996.
    [55] Andreasen, M.M., Machine design methods based on a systematic approach – Contribution to a design theory, dissertation, [in Danish], Department of Machine Design, Lund Institute of Technology, Sweden, 1980.
    [56] Hubka, V. & Eder, W.E., “Theory of Technical Systems” Springer-Verlag, New York, 1984.
    [57] Jacob Buur, A Theoretical Approach to Mechatronics Design, dissertation, Institute for Engineering Design, Technical University of Denmark, 1990
    [58] Rosenman, M. A. and Gero, J. S.: CAD Modeling in multidisciplinary design domains, in I. Smith (ed.), Artificial Intelligence in Structural Engineering, Springer, Berlin, pp.335-347, 1998.
    [59] Pahl, G. & Beitz, W., “Engineering Design – A Systematic Approach”, The Design Council, Springer-Verlag, Berlin, 1988.
    [60] Murali Jayaram, Li Chen. Functional modeling of complex mechatronic system. DETC2003/DTM-48636
    [61]颜永年.机械电子工程[M]。北京:机械工业出版社,1999
    [62]裴仁清.机电一体化原理[M].1998
    [63]快速成形技术的功能集成研究.颜永年等.中国机械工程, 1998,8(5):13~15
    [64] Karnopp, D., Margolis, D., and Rosenberg, R., System dynamics modeling and simulation of mechatronic systems, John Wiley & Sons Inc., New York, 2000
    [65] Diaz-Calderon, A., Paredis, and C.J.J., Khosia, P.K., Automatic generation of system-level dynamic equations for mechatronic systems, Computer-aided Design, 2000(32), pp.339-354
    [66]de Vries, T.J.A., Breunese, A.P.J., and Breedveld, P.C.: Max: a mechatronic model building environment, Computer Aided Conceptual Design, Proc. 1994 Lancaster International Workshop on Engineering CACD’94, Sharpe, J and Oh., V., eds., pp. 299-318
    [67] Oh, V., Langdon, and P., Sharpe, J.E.E., Schemebuilder: an integrated environment for product design, Proceedings of 1994 Lancaster International Workshop on Engineering Design,Computer Aided Conceptual Design CACD’94
    [68] Stacey, M.K., Sharp, H.C., Petre, M., Rzevski, G. and Buckland, R.A.: A representation scheme to support conceptual design of mechatronic systems, Artificial Intelligence in Design’96, Gero, J.S., Sudweeks, F., (eds.), Kluwer Academic Publishers, Dordrecht, 1996
    [69] Gausemeier, J., Flath, M., and Mohringer: Conceptual design of mechatronic systems supported by semi-formal specification, IEEE/ASME International Conference on Advanced Intelligent Mechatronic Proceedings, 8-12, July, Comco, Italy, 2001
    [70] Hans P. Hildre et al., Mekatronikk metodikk, Trondheim, Norwegian University of Science and Technology, 1996
    [71] N. P. Suh, “The principle of design”, New York: Oxford University Press, 1990
    [72] R. Isermann, “Modeling and design methodology for mechatronic systems”, IEEE/ASME transactions on Mechatronics, Vol. 1, No. 1, 1996, p. 15-28
    [73] K. Youcef-Toumi, “Modeling, design and control integration: a necessary step in mechatronics”, IEEE/ASME transactions on Mechatronics, Vol. 1, No. 1, 1996, p. 29-38
    [74] 林峰,分层实体制造工艺原理和系统开发研究,博士学位论文,清华大学,1997
    [75] 张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向.计算机集成制造系统,2003,9(8)
    [77] Klir, J. & Valach, M., “Cybernetic Modelling”, Iliffe Books, London, 1967.
    [78] Chestnut, H., “Systems Engineering Methods”, John Wiley, New York, 1967.
    [79] Hall, A.D., “A Methodology for Systems Engineering”, Van Nostrand, Princeton, 1962.
    [80] Hubka, V., “Theorie der Konstruktionsprozesse”, Springer, Berlin, 1974.
    [81] Pahl, G. & Beitz, W., “Engineering Design – A Systematic Approach”, The Design Council, Springer-Verlag, Berlin, 1988.
    [82] Olesen, J., “Concurrent Development in Manufacturing – Based on dispositional mechanisms”, dissertation, Institute for Engineering Design, Technical University of Denmark, 1992.
    [83] Ersoy, M., “Wirkfl?che und Wirkraum, Ausgangselemente zum ermitteln der Gestalt beim Rechnergestützten Konstruieren”, dissertation, Braunschweig 1974.
    [84] Mortensen, N.H., “Design Modelling in a Designer’s Workbench – Contribution to a Design Language”, dissertation, Department of Control and Engineering Design, Technical University of Denmark, 1999.
    [85] Jensen, T. Aa., “Functional Modelling in a Design Support System – Contribution to a Designer’s Workbench”, Department of Control and Engineering Design, Technical University of Denmark, 1999.
    [86] Hansen, C.T., “Towards a tool for computer supported structuring of products”, Proceedings of the 11th International Conference on Engineering Design in Tampere, Vol. 2, pp. 71-76, Tampere University of Technology, 1997.
    [87] Andreasen, M.M., “The Theory of Domains”, Report from a Workshop on Understanding Function and Function-to-Form Evolution, pp. 21-47, CUED/C-EDC/TR 12, 1992.
    [88] Svendsen, K.-H., “Discrete optimization of composite machine systems – a contribution to a designer’s workbench”, dissertation, Institute of Engineering Design, Technical University of Denmark, 1994.
    [89] Svendsen, K.-H. & Hansen, C.T., “Decompositon of mechanical systems and breakdown of specifications”, Proceeding of the International Conference on Engineering Design (ICED’93),The Hague, Heurista, Zürich.
    [90] Hansen, C.T., “An Approach to Simultaneous Synthesis and Optimization of Composite Mechanical Systems”, Journal of Engineering Design, Vol. 6, No. 3, pp. 249-266, 1994.
    [91] Roozenburg, N.F.M. & Eekels, J., ”Product Design: Fundamentals and Methods”, John Wiley & Sons, Chichester, 1994.
    [92] Cross, N. & Roozenburg, N.F.M., ”Modelling the Design Process in Engineering and In Architecture”, Journal of Engineering Design, Vol. 3, No. 4, 1992.
    [93] Cross, N., ”Engineering Design Methods, Strategies for Product Design”, Third edition, John Wiley & Sons, Chichester, 2000.
    [94] Andreasen, M.M., Hansen, C.T. & Mortensen, N.H., “The Structuring of Products and Product Programmes”, Proceedings of the 2nd WDK Workshop on Product Structuring, pp. 15 - 43, Delft University of Technology, 1994.
    [95] Schachinger, P., ”Methods for Early Design Phases – A Product Modelling Perspective”, Thesis, Chalmers University of Technology, 1999.
    [96] Malmqvist, J. Schachinger, P., ”Towards Implementation of the Chromosome Model – Focusing the Design Specification”, Proceedings og the 11th International Conference on Engineering Design in Tampere, Vol.3, pp. 203-212, 1997.
    [97] Liedholm, U., ”On Conceptual Design of Complex Products”, Thesis, Link?ping University, 1999.
    [98] K. Beck, W. Cunningham, A laboratory for object-oriented thinking, OOPSLA ‘1989 conference proceeding, 1-6, New York, ACM press, 1989
    [99] R. Br?k, et al, The Integrated Methodology – at a lance. “SISU Report L–2001-7”, 1997
    [100] Jim Rumbaugh, Object-oriented modeling and design, Englewood Cliffs, NJ: Prentice Hall, 1991
    [101] Hans P. Hildre, et al, Mekatronikk metodikk, Trondheim, NTNU, 1996
    [102] G. Booch, Object-oriented analysis and design with applications, Redwood city, Calif. Benjamin/Cummings Pub. Co., 1994
    [103] Ivar Jacobson, Object-oriented software engineering — A use case driven approach, Addison Wesley, 1995
    [104] ITU-T, “Recommendation Z-120. Message Sequence Charts – MSC.” International Telecommunication Union – Technical Standardization Sector, Geneva 1996
    [105] H. E. Eriksson, M. Penker, UML Toolkit, John Wiley, New York, 1998
    [106]苗中华. 机电系统概念设计技术与应用研究,硕士学位论文,山东大学,2005
    [107]秦自凯.机电产品概念设计方法及其应用的研究.硕士学位论文,2004
    [108]王家金主编.激光加工技术.北京:中国计量出版社,1992
    [109]陈剑虹,朱东波,马雷.光固化快速成型技术中的紫外光源。激光杂志,1999,6(20)
    [110]蓝信矩编著.激光技术.北京:科学出版社,2000
    [111]赵侠.扩束系统在激光加工系统中的重要作用.激光技术,1999,6(23)
    [112]Thomas H. Pang. Advances in Stereolithography Photopolymer Systems. Stereolithography and other RP&M Technologies: from Rapid Prototyping to Rapid Tooling. Paul F. Jocobs: 27-80
    [113]丁俊华等编著.激光原理及应用.北京:清华大学出版社.1987.5
    [114]张伟.快速成型系统设计与工艺控制的原理与应用.清华大学博士学位论文,1997
    [115]J.Burr, A theoretical approach to mechatronic design, Ph.D. Thesis, Institute for Engineering Design, Technical University of Denmark, 1990.
    [116]R.M. Walters, D.A. Bradley, A.P.Dorey, A Conceptual Study for a Microprocessors and Microsystems, 2000(24):51-61.
    [117]G.Brunetti, B.Golob, A feature-based approach towards an integrated product model including conceptual design information, computer-aided design, 2000(32):877-887.
    [118]Coelingh, H.J., T.J.A. de Vries and J.van Amerongen, Automated Conceptual Design of Controllers for Mechateronic System, Lancaster International Workshop on Engineering Design CACD’97, Lancaster, U.K., 1997.
    [119]Q.Li, W.J.Zhang, and L.Chen, Design for Control----A Concurrent Engineering Approach for Mechatronic Systems Design, IEEE/ASME Transactions on Mechatronics, vol.6, No.2, June 2001:161-169.
    [120]French, M.J., Conceptual Design for Engineers (3rd edition.). Spring-Verlag, 1999.
    [121]Sung-Hee Do. Gyung-Jin Park, Application of Design Axioms for Glass-Bulb Design and Software Development for Design Automation, Journal of Mechanical Design, 2001, Vol.123: 322-329.
    [122]Semyon D. Savransky, Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving [M]. Boca Raton, Florida: CRC Press, 2000.
    [123]檀润华,陈鹰,路甬祥. 产生多个方案的键合图法. 机械设计1998, 15(1):14-16.
    [124]查建中,唐晓君,陆一平.布局及布置设计问题求解自动化的理论与方法综述.计算机辅助设计与图形学学报2002, 14(8):705-712.
    [125]Wang Yuxin, Yan Hongshen. Computerized rules-based regeneration method for conceptual design of mechanisms, Mechanism and Machine Theory, 2002, 37(9):833-849.
    [126]Wang Yuxin, Wang lijun. Automatic conceptual design of mechanical devices based on reasoning the design rules, 2002 ASME 国际机械工程学会年会,加拿大蒙特利耳,2002年9 月.
    [127]姜杉王玉新李乃华. 符号方案三维实体化的自动化方法计算机辅助设计与图形学学报, 2002, 14(10): 962-966.
    [128]王德伦张德珍马雅丽. 机械运动方案设计的状态空间方法. 机械工程学报2003, 39(3):
    [129]MA Yali, WANG Delun, ZHANG Dezhen. A New Approach to Conceptual Design for Series Mechanical System by State Space. Proceedings of the 11th World Congress in Mechanism and Machine Science. August 18~21, 2003, Tianjin, China.China Machinery Press, edited by Tian Huang.
    [130]邹慧君, 顾明敏. 机械系统方案设计专家系统初探 (一)知识库管理系统的建立[ ].机械设计, 1996
    [131]R.M.Walters, D.A. Bradley, A.P.Dorey A Conceptual Study for a computer-based tool to support electronics design in a mechatronic environment, Microprocessers and Microsystems 2000 24 51-61.
    [132]F.Kallmeyer, J.Gausemeier. 机电一体化系统原理解模型的建立. 工程设计2001, 3 : 112-118.
    [133]LI Ruiqin, Zou Huijun. Study on Dynamic Simulation of Transverse Needle Mechanism. 系统仿真学报,2004 2 .
    [134] Stephen T. Hung, Michael J. Gabel A Open System Interconnection Model for Mechatronics IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings 8-12 July 2001, Como, Italy: 440-445.
    [135]M.Zanella, T.Koch, F.Scharfeld, University of Paderborn, Development and Structuring of Mechatronic System, Exemplified by the Modular Vehicle X-mobile, 2001 IEEE/ASMEInternational Conference on Advanced Intelligent Mechatronics Proceedings 8-12 July 2001 Como, Italy,vol.2:1059-1064.
    [136]Michael J. Scott. Quantifying Certainty in Design Decisions: Examining AHP [J]. ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Montreal, Canada, September 29-October 2, 2002.
    [137]Yuan Mao Huang, Hsin-Ni Ho. An Evaluation Method for Inconsistency of the AHP Judgment Matrix [J]. ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Montreal, Canada, September 29-October 2, 2002.
    [138]Staccy,M., Sharp, H., Petre, M., Rzevski, G., and Buckland, R., A Representation Schema to Support Conceptual Design of Mechatronic Systems. Artificial Intelligence in Design, 1996.
    [139]Wood, K.L., and Greer, J.L., Function-Based Synthesis Methods in Engineering Design, Formal Engineering Design Synthesis, Antonsson, E.K., and Cagan, J. eds., Cambridge University Press, New York: 1760-228.
    [140]Shimmoura, Y., Takeda, H., Yoshioka, M., Tomiyama, T., Umeda, Y., and Tanigawa, S., Functional Evaluation Based on Functional Content, 1996, Proc. ASME Design Engineering Technical Conference and Computers in Engineering Conference, 96-DETC: DTM-1412, Aug. 18-22, Irvine, California.
    [141]Karnopp, D., Margolis, D., and Rosenberg, R., System Dynamics- Modelling and Simulation of Mechatronic Systems, John Wiley & Sons Inc., New York, 2000.
    [142]Diaz-Calderon, A., Paredis, J., J., and Khosla, P.K., 1999, Combining Information Technology Components and Symbolic Equation Manipulation in Modeling and Simulation of Mechatronic Systems, Proc. IEEE International Symposium on Computer Aided Control System Design, 1999: 144-150.
    [143]H.J. Herpel, M. Held, M.Glesner, A Design Methodology for the Conceptual Design of Application Specific Digital Processors in Mechatronic Systems, IEEE/ASME Transactions on Mechatronics. 1996, 1(1): 1-4.
    [144]Hussein, Bassam A Systems Approach for Modeling Mechatronics System, CIRP Annals Manufacturing Technology, 1998, 47(1): 431-436.
    [145]Yuan Mao Huang, Chung-Cheng Liao. On Evaluation Method during Conceptual Design 2000 ASME IDETC/CIE Design Theory and Methodology Conference. September 10-13 2000. Baltimore, Maryland, USA.
    [146]Michael D., Elizabeth A. A Multi-sensor Integration Architecture for Industrial Grading Tasks, Mechatronics, 2000(10): 19-51.
    [147]Chan V.H., Bradley C., Vickers G.W., Multi-sensor approach to automating co-ordinate measuring machine-based reverse engineering, Computers in Industry Mar 2001(3): 105-115.
    [148]华尔天等. 面向创新设计的机电产品满意度体系与测量方法研究. 中国机械工程2003,14(8)
    [149]邓家噙,韩晓建,曾硝. 产品概念设计理论方法与技术. 北京机械工业出版社,2002.
    [150]陈建国,潘云鹤.基于空间探索的创造性设计方法的研究.计算机辅助设计与图形学学报,2000,12(6): 441-445.
    [151]黄纯颖.机械创新设计. 北京高等教育出版社.2000.7.
    [152]曲继方,安子军,曲志刚.机构创新原理. 北京:科学出版社,2001.
    [153]岳建鹏,尹文生,王启富. 基于虚拟零件的自顶向下并行装配设计.华中理工大学学报,2000,5:13-15.
    [154]吴永明,冯培恩,潘双夏,陈定方. 一个支持top-down 设计的产品建模系统. 计算机辅助设计与图形学学报,1999,1:49-52.
    [155]王小同,范立础.智能设计系统的IDS 模型. 模式识别与人工智能,1996.2.
    [156]吴慧中,陈定方,万耀青著. 机械设计专家系统研究与实践. 北京:中国铁道出版社,1994.
    [157]宋玉银,蔡复之,张伯鹏,叶蓓华,魏而巍,梁木养.概念设计与结构设计的信息集成技术研究.清华大学学报(自然科学版),1998,38(2),51-54.
    [158]吴群波,王知行等An EXPLOITATION OF THE EXPERT SYSTEM OF MECHANICAL DESIGN BASED ON VIRTUAL REALITY. CJME.1999.2.
    [159]吴斌, 沈精虎. 概念产品设计模型的研究与实现[J]. 机械工程学报, 2002, 38(3): 50-53.
    [160]机电一体化应用实例编委会. 机电一体化应用实例[M]. 机械工业出版社1994.
    [161]赵松年,张奇鹏. 机电一体化机械系统设计[M]. 机械工业出版社1996.
    [162]赵松年. 现代机械创新产品分析与设计. 北京机械工业出版社,2000.
    [163]Andreasen, M.M., PhD Thesis, Syntesemetoder p? systemgrundlag, in Lunds Tekniska H?gskola. 1980.
    [164]Kolodner, J., Case-Based Reasoning. 1993: Morgan Kaufmann.
    [165]Malmqvist, J., Computer-Aided Conceptual Design of Energy-Transforming Technical Systems Based on Technical Systems Theory and Bond Graphs. in CACD '94. 1994.
    [166]Michelena, N.K.S., Physical Synthesis in Case-Based Design. Design Theory and Methodology -DTM ‘94, 1994. DE-Vol. 68.
    [167]Karnopp, D.C., Margolis, D.L. and Rosenberg, R.C., System Dynamics: A Unified Approach. 2nd ed. ed. 1990, Chichester: Wiley.
    [168]Roode, B.de, Object Oriented Modeling of Production Machines. Computer Aided Conceptual Design. 1997.
    [169]Walters, R., PhD Thesis, The High Level Design of Electronic Systems, 1996, Lancaster University: Lancaster.
    [170] http://www.jsc.nasa.gov/~clips/CLIPS.html, CLIPS web-site.
    [171]钟诗胜.工程方案设计中的模糊理论与技术.哈尔滨:哈尔滨工业大学出版社,2000.
    [172]徐明,胡守仁.基于事例推理的检索模型研究.计算机科学,1993(4).
    [173]舒宜强.面向对象的方案设计专家系统的理论方法开发工具及工程应用.华中理工大学博士学位论文,1992.
    [174]Stefan Dierneder, Karl M_rwald, Rudolf Scheidl. A Computer Aided Conceptual Design Method for Mechatronic Systems in Process Oriented Heavy Machinery. The 6th UK Mechatronics Forum International Conference, 1998.
    [175]Santiago V. Lombeyda, William C. Regli. Conceptual Design for Mechatronic Assemblies. (http://gicl.mcs.drexel.edu).
    [176]U. Honekamp, R. Stolpe, R. Naumann, J. Lückel, Structuring Approach for Complex Mechatronic Systems, 30th ISATA Conference on Mechatronics, Florence, Italy, June16-19,1997.
    [177]Matthias Wolf. A Graphical Object-Oriented Modelling Environment for the Design of Mechatronic Systems (http:// mlap.uni-paderborn.de).
    [178]Job van Amerongen. The Role of Control in Mechatronics. Control 98 Conference UK 1-4 September 1998.
    [179]Nicola Tomatis, Roberto Brega, Kai Arras. A Complex Mechatronic System: from Design to Application. 2001IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceeding 8-12, July 2001.
    [180]Hannu livonen and Asko Riitahuhta. Cased-based Reasoning in Conceptual Design (http://ruuvi.tut.fi/research/sci-publ.html).
    [181] Michael K. Hales, Ronald C. Rosenberg. Structured Modelling of Mechatronic Components Using Multiport Templates. Proceedings ASME IMECE 2000. DSC-vol.69-2,787-794.
    [182]S.L. Tung, S.L. Tang. A Comparison of the Saaty’s AHP and Modified AHP for right and left eigenvector inconsistency. European Journal of Operational Research 106(1998):123-128.
    [183]Rothfuss et al. Systems Engineering in the Design of Mechatronic Systems. Int. J. of Vehicle Design, Vol 28, Nos. 1/2/3, 2002:18-36.
    [184]Van Amerongen et al. Computer Support for Mechatronic Control System Design. Robotics and Autonomous systems no 30, 2000:249-260.
    [185]Saaty, T.L., Multicriteria decision Making: The Analytic Hierarchy Process, RES pub., Pittsburgh, Original Version published by McGraw-Hill, 1980.
    [186]Saaty, T.L., Fundamentals of Decision Making and Priority Theory, RWS Publications, Pittsburgh. 2000.
    [187]Harker, P.T., Derivatives of the Perron Root of a Positive Reciprocal Matrix: With Application to the Analytic Hierarchy Process. Applied Mathematics and Computation, 1987, 22: 217-232.
    [188]DeTurck, D.M., The Approach to Consistency in the Analytic Hierarchy Process. Mathematical Modelling, 1987(9): 345-352.
    [189]Chiou S.J., Kota. S. Automated conceptual design of mechanisms, Mechanism and Machine Theory. 1999, (34): 467-495.
    [190]Joskowicz L., Neville D., A representation language for mechanical behavior. Artificial Intelligence in Engineering, 1996, 10: 109-116.
    [191]Wynne Hsu, Irene m.Y. Woon, Current research in the conceptual design of mechanical products. Computer-Aided Design, 1998, (5): 377-389.
    [192]Zadeh L.A., Fuzzy Sets, Information and Control, 1965(8): 338-353.
    [193]Wang J., A Fuzzy Outranking Method for Conceptual Design Evaluation. International Journal of Production Research, 1997, 35(4): 995-1010.
    [194]Green G., Modeling Concept Design Evaluation, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1997, (11): 211-217.
    [195]Lyenger G., Lee C.L., Kota S., Towards an Objective Evaluation of Alternate Designs, Transactions of the ASME Journal of Mechanical Design, 1994, (116):487-492.
    [196]Wang Qiong Chen Jinxian. Two-level evaluation for classification. Journal of Zhejiang University SCIENCE, 2002, V3(3):311-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700