分层小区系统的无线资源管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分层小区系统无线资源管理技术的研究是小区无线通信系统研究的关键和热点领域。无线小区移动通信网所能获得的无线资源是有限的,要支持广泛的业务、提高业务的服务质量以及通信系统的性能有赖于对无线资源的合理利用。而且,无线资源管理技术所涉及的领域也是非常广泛的,包含了无线资源分配、呼叫接纳控制、小区层选、小区切换、负荷控制、功率控制和容量分析等领域。
    论文在第二章提出了一种分层小区系统的多业务呼叫接纳控制策略,建立了由宏小区层、微小区层和皮小区层构成的多码CDMA系统分层小区模型,更符合实际情形以及未来发展趋势。多业务呼叫接纳控制策略兼顾移动性和小区信道利用率,减少了呼叫的切换频度,降低了系统的信令开销。
    继之而来的第三章研究分层小区系统的一个特有问题即小区层选。该章提出了一种分层小区系统的自适应控制择层策略,利用一个自适应门限和两个辅助门限进行小区层与层之间的选择。门限的确定有赖于小区信道利用率和一个基于几何参数的移动方向可变的微小区移动模型;同时,通过利用各“历史”小区归一化逗留时间之间的相关性,对下一个小区内的归一化逗留时间进行预测。
    第四章“分层小区切换技术”是论文的一个重点,包含三个部分。
    第一部分提出了GSM下的双向层间切换模型以及基于呼叫业务代价函数和业务质量(QoS)的信道分配算法。研究了宽带和窄带两类业务的呼叫阻塞和切换失败性能。
    第二部分提出了带“返回”机制的逻辑分层模型。该模型物理上由宏小区层和微小区层构成,逻辑上则包含宽带呼叫业务层、窄带呼叫业务层和溢出呼叫业务层。在此基础上,作者对由于层间切换带来的宽带切换呼叫QoS下降以及“返回”机制引入的系统额外负载进行了定量分析。仿真表明“返回”机制对于呼叫性能的改善是有益的。
    
    
    第三部分提出了适用于CDMA系统的残余容损比(RCLR)软切换判决准则,利用最大RCLR确定呼叫软切换时的目的小区。接着,应用此判决准则研究了分层小区系统的层内软切换和层间溢出特性;并与最小路径损耗(MPOL)判决准则下的性能进行了比较,得出了RCLR准则改善了呼叫中断和溢出性能的结论。
    众所周知,任何一个小区通信系统都离不开功率控制。于是,第五章通过提出改进的分布式功率控制算法(IDPC)的原型算法,再采用分布式的方法来实现这种原型算法,从而得到改进的分布式功率控制算法。本章还对不同的分布式功率控制算法做了理论分析以及仿真比较,最终得出了IDPC具有很快的收敛速度和优越的中断性能的结论。
    作者顺理成章地在第六章中对CDMA系统的上行链路容量进行了分析。不同的是,通过将阴影和距离看成两个作用于传播信号的相关过程,计算了传播损耗因子的概率密度函数,从而得到上行链路干扰的统计特征,作者的分析更接近实际情形。在此基础上,作者分析了呼叫中断概率及其切诺夫上界,理论分析和仿真是吻合的。
    作为作者的另一部分工作,尽管与前面的内容不尽一致,但作者还是决定将它作为论文的一部分写出来,以供有兴趣的研究人员参考。第七章“一种适用于非城市区域的卫星移动信道统计模型”提出了一种适用于非城市区域的卫星移动信道统计模型—莱斯-K模型,采用K-分布描述由于遮蔽引起的接收信号包络的缓慢变化,莱斯分布描述包含直视信号分量在内的多径快衰落,得到了接收信号包络的概率分布和误比特率。此外,作者利用矩方法对莱斯- K模型参数进行了估计,并在微扰法的基础上评价了模型统计参数估计性能。最后,利用实测数据对模型进行了验证,取得了良好的结论。
    作者论文中阐述的内容不仅仅针对第三代无线移动通信系统,其中也包含第二代无线移动通信系统的部分内容,更多的内容具有普遍的应用参考价值,可以延伸到未来的无线移动通信系统中去。
As a key technology, the wireless spectral resource management of hierarchical cellular systems (HCSs) has been a hot spot area and many researches centering on it have been done. Wide service supports and high Quality of Service (QoS) depend on the efficient allocation and utilization of spectrum resource due to limited affordable spectral resources. Furthermore, the technology of wireless spectral resource management includes many sub-areas such as allocation of spectrum, wireless admission control strategy, layer-selection of HCSs, handoff technology, load balancing, power control and capacity analysis and so on.
     In chapter 2, such three layers as macro-cell layer, micro-cell layer and picro-cell layer construct a cellular model of a multi-code CDMA-based HCS, which synthesizes the two types of HCS structures and is more fit to the real conditions. On this basis, with channel utilities and mobility characteristics considered, a novel multi-services call admission control strategy is submitted. It is validated to be superior to the fixed threshold call admission control strategy commonly used and decreases the signaling loads and the handoff frequency.
     An adaptive layer-selection strategy of HCSs will be discussed in chapter 3, in which an adaptive threshold derived from channel utility and two auxiliary thresholds from the micro-cell mobility model based on geometric parameters are introduced. Meanwhile, we estimate the normalized cell dwell time of a mobile unit in the forth-coming cell by means of the correlative between the normalized cell dwell times in this cell and the other past cells. This method developed ways of estimating the cell dwell time of a mobile unit.
     Chapter 4 describes the handoff technology of HCSs and is divided into three parts.
     The first part concerns about the handoffs in TDMA/FDMA-base
    
    communication systems. In this part, we study a bi-directional inter-layer handoff strategy in which wide- and narrow- band services are mapped into different cellular layers. Moreover, a channel allocation algorithm based on cost function and QoS are submitted.
     The second part presents both a logically layered model based on hierarchical cells and its modified model with "repacking" mechanism permitted. Three logical layers are mapped into two physical layers constructing a HCS. The performance of new calls and handoff calls are analyzed. The QoS degradation of wide-band handoff calls due to inter-layer handoffs between cellular layers and the extra system overloads from the "repacking" mechanism are presented in details respectively.
     In the third part, we define a new concept of residual capacity-to-loss ratio (RCLR). Based on it, a novel soft handoff criterion (RCLR criterion) of CDMA wireless cellular systems is presented. Compared to minimum path of loss (MPOL) criterion commonly used in systems, RCLR criterion considers not only POL of calls but also load balances in cells. Furthermore, RCLR criterion is applied in a hierarchical cellular structure and performances of the intra-layer soft handoff and inter-layer overflow are studied under both criterions respectively. Finally, a comprehensive conclusion that RCLR criterion reduces both the outage and overflow probability and it shows a better performance compared to MPOL criterion.
     Obviously, any cellular communication system cannot work without a certain power control procedure. Thus, in chapter 5 we firstly propose the prototype algorithm of an improved distributed power control (IDPC). In this algorithm, the mobile units adjust their transmitter powers according to not only their power levels at last iterative step but also the largest eigenvalue and the second smallest one of the link gain matrix at current time instant. As for this prototype algorithm, link gains for all mobile units must be measured and large burden may be brought in at base stations.
    
    
     Therefore, we developed the prototype algorithm further in a distributed way and lead to the IDPC algorithm. Besides, in IDPC both the
引文
[1] Andrey M. Veiterbi and Andrew J.Viterbi, Erlang capacity of a power controlled CDMA system. IEEE. Journal on Selected Areas in Communications. August 1993, Vol. 11, No. 6: 892-899
    [2] A. O. Fapojuwo. Radio capacity of direct sequence code division multiple access mobile radio systems. Porc. Inst. Elect. Eng., Oct. 1993, Vol.140: 402-408
    [3] M. Frullone, G. Riva, P. Grazioso, and M. Missiroli. Comparisions of multiple access schemes for personal communication systems in a mixed cellular environment. IEEE Trans. Veh. Technol., Feb. 1994, Vol. 43: 99-109
    [4] W. Lavery and D. Everitt. Analysis of the uplink teletraffic behavior in CDMA cellular systems. in Proc. IEEE Veh. Technol. Conf., Stockholm, Sweden, June 1994: 868-872
    [5] J. S. Evans and D. Everitt. On the teletraffic capacity of CDMA cellular networks. IEEE Trans. Veh. Technol., Jan. 1999, Vol 48: 153-165
    [6] D. Everitt. Analytic traffic models of CDMA cellular networks. in Proc. Int. Teletraffic congress, Antibes Juan-les-Pins, France, June 1994: 349-356
    [7] D. Everitt. Traffic engineering of the radio interface for cellular mobile networks. Proc. IEEE, Sept. 1994, Vol. 82: 1371-1382
    [8] D. Everitt. Variability of traffic performance in CDMA cellular networks. in Proc. Int. Workshop Multi-Dimensional Mobile Communications, Niigata, Japan, Nov. 1994
    [9] D. Mitra and J. A. Morrison. Erlang capacity and uniform approximation for shared unbuffered resources. IEEE/ACM Trans. Networking, Dec. 1994 Vol. 2: 558-570
    [10] Jamie S. Evans and David Everitt. Effective bandwidth-based admission control for multiservice CDMA cellular networks. IEEE Trans. Veh. Technol., Jan. 1999, Vol. 48, No. 1: 36-45
    
    
    [11] Nikos Dimitriou, Georgios Sfikas, Rahim Tafazolli. Call admission policies for UMTS. VTC-2000: 1420-1424
    [12] Zhao Liu, and Magda El Zarki. SIR-based call admission control for DS-CDMA cellular systems. IEEE J. Select. Areas Commun., May 1994, Vol. 12, No. 4,: 638-644
    [13] Kuenyoung Kim, Youngnam Han. A call admission control with thresholds for multi-rate traffic in CDMA systems. VTC-2000: 830-834
    [14] S. Nanda. Teletraffic models for urban and suburban microcells: Cell sizes and handoff rates. IEEE Trans. Veh. Technol., Nov. 1993, Vol. 42
    [15] S. Chia and R. J. Warburton. Handover criteria for city microcellular radio systems. in Proc. IEEE Veh. Tech. Conf., VTC-90
    [16] I. C. Symington. Handover control in microcellular systems. in Proc. IEEE Veh. Tech. Conf. VTC-89
    [17] JOLLY W M, WARFIELD R E. Modelling and analysis of layered cellular mobile networks, Teletraffic and datatraffic in a period of change. IEEE ITC'91, 1991, Vol. 13: 161-166
    [18] Unitel, Idle mode cell reselection for microcells. in ETSI GSM2, Ronneby, Sweden, Sept.1991
    [19] M. Benveniste. Cell selection in two-tier microcellular/macrocellular systems. in Proc. IEEE GLOBECOM, Nov. 1995
    [20] M. Benveniste. Methods for increasing two tier macrocell/microcell subscriber capacity in a cellular system. US patent No.5,345,499, Sept. 1994
    [21] Yeung K L, Sanjiv N. Channel management in microcell/macrocell cellular radio systems. IEEE Trans. Vehicular Tech., Nov. 1996, Vol. 45, No. 4: 601-612
    [22] C. W. Sung and W. S. Wong. User speed estimation and dynamic channel allocation in hierarchical cellular system. in Proc. IEEE Veh. Tech. Conf., VTC-94
    [23] Shum K W, Chi W S. Fuzzy layer selection method in hierarchical cellular systems. IEEE Trans. Vehicular Tech., Nov. 1999, Vol. 48, No. 6: 1840-1849
    
    
    [24] Young-uk Chung, Dong-Jun Lee, Byung-Cheol Shin and Dong-Ho Cho. A new macrocell/microcell selection method in multitier cellular system. VTC-99: 1016-1020
    [25] A radio system proposal for widespread low-power tetherless communications. IEEE Trans.Commun., Feb.1991, Vol. 39, No.2: 324-335
    [26] European Telecommun. Standards Inst., Common air interface specification to be used for the interworking between cordless telephone apparatus in the frequency band 864.1MHz, including public access services ,I-ETS 300 131:1990, June 1991
    [27] European Telecommun. Standards Inst., Digital European cordless telephone common interface. Version 05.03, May 1991
    [28] Yin-Bing Lin etc. Queueing priority channel assignment strategies for PCS hand-off and initial access. IEEE Tran.Vehicular technology, August 1994, Vol. 43, No. 3: 705-712
    [29] J.Restrepo and G.Maral, "Coverage concepts for satellite constellations providing communications services to fixed and mobile users." Space Commun., 1995, Vol. 13, No.2: 145-157
    [30] K.Johannsen. Mobile P-service satellite system comparison. Int. J.Satell.Commun., 1995, Vol. 13, No. 6: 453-471
    [31] F.Dosiere, T.Zein, and G.Maral. A model for the handover traffic in low earth-orbiting(LEO) satellite networks for personal communications. Int. J.Satell.Commun., 1993, Vol. 11, No. 6: 145-149
    [32] S.Rappaport. The multiple-call hand-off problem in high-capacity cellular communications systems. IEEE Trans.Vehicular technology, 1991, Vol. 40, No. 3: 546-557
    [33] Gerard Maral etc. Performance analysis for a guaranteed handover service in an LEO constellation with a 'satellite-fixed cell' system. IEEE Trans.Vehicular technology, Nov. 1991, Vol. 47, No. 4: 1200-1214
    [34] A.S.Acampora and M.Naghshineh. An architecture and methodology for mobile-executed handoff in cellular ATM networks. IEEE J. Select. Areas
    
    Commun., Oct. 1994, Vol. 12, No.
    [35] A.S.Acampora and M.Naghshineh. Control and quality-of-service provisioning in high-speed microcellular networks. IEEE Personal Communications, Second Quarter 1994
    [36] A.J.Viterbi, A.M.Viterbi, K.S.Gilhousen, and E.Zehavi. Soft handoff extends CDMA cell coverage and increase reverse link capacity. IEEE J. Select. Areas Commun., Oct., 1994, Vol. 12: 1281-1288
    [37] Duk Kyung Kim, Dan Keun Sung. Characterization of soft handoff in CDMA systems. IEEE Trans. Veh. Technol., May 1999, Vol. 48, No. 4: 1195-1201
    [38] Sami A. El_Dolil, Wai_Choong Wong, and Raymond Steele, Teletraffic performance of highway microcells with overlay macrocell. IEEE. Journal on Selected Areas in Communications, Jan. 1989, Vol. 7, No. 1: 71-78
    [39] Yamaguchi, H.Kobayashi, T.Mizuno. Integration of micro and macro cellular networks for future land mobile communications. Proc. IEEE Int. Conf. On Universal Personal Communications ICUPC'93: 737-742
    [40] R.Beraldi, S.Marano, C.Mastroianni. A reversible hierarchical scheme for microcellular systems with overlaying macrocells.
    [41] C.-L.I, L.J.Greenstein, and R.D.Gitlin. A microcell/macrocell cellular architecture for low- and high- mobility wireless users. IEEE J. Select. Areas Commun., Aug. 1993, Vol. 11: 885-891
    [42] A.Murase, I.C.Symington, and E.Green. Handover criterion for macro and microcellular systems. in Proc.IEEE Veh. Technol. Conf. VTC'91, May 1991: 524-530
    [43] Stephen S.Rappaport, Lon-Rong Hu. Microcellular communication systems with hierarchical macrocell overlays: traffic performance models and analysis. Proceedings of the IEEE, Sept. 1994, Vol. 82, No. 9
    [44] Stephen S.Rappaport, Lon-Rong Hu. A measurement based priorization scheme for handovers in cellular and microcellular networks. IEEE J. Select. Areas Commun., Oct., 1992
    
    
    [45] ITU-T Version 12.2 of Draft New Recommendation O.1711, Network Functional Model for IMT-2000, May, 1998
    [46] ITU-T Version 11.1 of Draft New Recommendation Q.FIF, Information Flows for IMT-2000, May, 1998
    [47] Kazumasa Ushiki, Mitsunori Fukazawa. A new handover method for next generation mobile communication systems. Globcomm'98: 1118-1123
    [48] D.Hong and S.S.Rappaport. Traffic model and Performance analysis for cellular mobile radio telephony systems with prioritized and non-prioritized handoff procedures. IEEE Trans. Veh. Technol., Aug. 1986, VT-35: 77-92
    [49] G.N.Senarath and D.H.Everitt. Performance of handover priority and queueing systems under different handover request strategies for microcellular mobile communications systems. Proc. IEEE Veh. Technol. Conf., 1995: 897-901
    [50] H.Jiang and S.S.Rappaport. CBWL: a new channel assignment and sharing method for cellular communications systems. IEEE Trans. Veh. Technol., May 1994, Vol.VT-43: 313-322
    [51] Junyi Li, Ness B.Shroff and Edwin K.P.Chong. Channel carrying: a novel handoff scheme for mobile cellular networks.
    [52] M.Ivanovich et al. Performance analysis of circuit allocation schemes for half and full rate connections in GSM. in Proc.IEEE Veh.Technol. Conf., 1996: 502-506
    [53] Yi-Bing Li, Anthony R. Noerpel. The Sub-Rating Channel Assignment Strategy for PCS Hand-Offs. Trans. on Vehicular Technology, Feb. 1996, Vol. 45, No. 1: 122-130
    [54] Molish Ivanovich, Moshe Zukerman etc. Performance between circuit allocation schemes for half- and full-rate connections in GSM. IEEE Trans.on Vechicular Technology, Aug. 1998, Vol. 47, No. 3
    [55] S.Papavassiliou, L.Tassiulas and P.Tandon. Meeting QoS requirements in a cellular network with reuse partitioning. IEEE J. Select. Areas Commun., Oct. 1994, Vol. 12, No. 8
    
    
    [56] S.W.Halpern. Reuse partitioning in cellular system. Proc.IEEE Veh. Technol.Conf., 1983, VTC-83: 322-327
    [57] D.Lucatti, A.Pattavina and V.Trecordi. Bounds and performance of reuse partitioning in cellular networks. Proc. IEEE Globecomm, 1996: 1b.4.1-18.4.8
    [58] J.Zander and M.Frodigh. Capacity allocation and channel assignment in cellular radio systems using reuse partitioning. Electronic Letters, Feb. 1992, Vol. 28, No. 5
    [59] Jingsung Choi, John A Silvester. Performance of A Channel Borrowing Scheme in Multiservice Cellular Networks with Reuse Partitioning. Globcomm'98: 1005-1009
    [60] K.Alagha, D.Zeghlache, G.Pujolle. VCB: an efficient resource sharing scheme for cellular mobile systems. Fifth International Conference on Telecommunications Systems, Nashville, 1997
    [61] Khaldoun AL AGHA, Andre-Luc BEYLOT. Analysis of the Virtual Channel Borrowing Scheme for Cellular Mobile Systems. Globcomm'98: 1031-1035
    [62] G. J. Foschini and Z. Miljanic. A simple distributed antonomous power control algorithm and its convergence. IEEE Trans. on Veh. Tech., 1993, Vol. 42, No. 4: 641-646
    [63] J. M. Aein. Power balancing in systems employing frequency reuse. COMSAT Tech. Rev., 1973, Vol. 3, No. 2
    [64] Jens Zander. Performance of optimum transmitter power control in cellular radio systems. IEEE Trans. on Veh. Tech., Feb. 1992, Vol. 41, No. 1: 57-62
    [65] Jens Zander. Distributed cochannel interference control in cellular radion systems. IEEE Trans. on Veh. Tech., Aug. 1992, Vol. 41, No. 3: 305-311
    [66] R. W. Nettleton and H. Alavi. Power control for spread spectrum cellular radio systems. in Proc. IEEE Veh. Tech. Conf. VTC-83, 1983: 242-246
    [67] Sudheer A. Grandhi, Rajiv Vijayan, and David J. Goodman. Distributed power control in cellular radio systems. IEEE Trans. on Commun.,
    
    Feb./Mar./Apr. 1994, Vol. 42, No. 2/3/4: 226-228
    [68] S. A. Grandhi, R. Vijayan, D. Goodman, and J. Zander. Centralized power control in cellular radio systems. IEEE Trans. Veh. Technol., Nov. 1993, Vol. 42: 466-468
    [69] S. A. Grandhi and J. Zander. Constrained power control in cellular radio systems. in Proc. IEEE Veh. Technol. Conf. Stockholm, Sweden, June 1994, Vol. VTC-94: 824-828
    [70] W. S. Wong and K. H. Lam. Distributed power balancing with a sparse information link. in Proc. IEEE Veh. Technol. Conf. Stockholm, Sweden, June 1994, Vol. VTC-94: 829-832
    [71] Jyh-Horng Wen, Jeng-Shin Sheu, and Jyh-Liang Chen. An optimum downlink power control method for CDMA cellular mobile systems.
    [72] Chae Y. Lee and Taehoon Park. A parametric power control with fast convergence in cellular radio systems. IEEE Trans. Veh. Technol., May 1998, Vol. 47, No. 2: 440-449
    [73] Klein S. Gilhousen, Irwin M. Jacobs etc.. On the capacity of a cellular CDMA system. IEEE Trans. on Vehicular Technology, May 1991, Vol. 40, No. 2: 303-311
    [74] A.J.Viterbi, A.M.Viterbi, K.S.Gilhousen, and E.Zehavi. Soft handoff extends CDMA cell coverage and increase reverse link capacity. IEEE J. Select. Areas Commun., Oct. 1994, Vol. 12
    [75] Seung Joon Lee, Hyeon Woo Lee, Dan Keun Sung. Capacities of single-code and multicode DS-CDMA systems accommodating multiclass services. IEEE Trans. on Veh. Technol., March 1999, Vol. 48, No. 2: 376-383
    [76] Andrey M. Veiterbi and Andrew J.Viterbi. Erlang capacity of a power controlled CDMA system. IEEE. Journal on Selected Areas in Communications, August 1993, Vol. 11, No. 6: 892-899
    [77] Jamie S. Evans and David Everitt. On the teletraffic capacity of CDMA cellular networks. IEEE Trans. on Veh. Technol., Jan. 1999, Vol. 48, No. 1: 153-165
    
    
    [78] Donald M. Grieco and Donald L. Schilling. The capacity of broadband CDMA overlaying a GSM cellular system. 1994, Vol. VTC-94: 31-35
    [79] Kimmo Hiltunen and Riccardo De Bernardi. WCDMA downlink capacity estimation. VTC-2000: 992-996
    [80] Amer Chatovich and Bijan Jabbari. Effect of non-uniform traffic load on Erlang capacity of CDMA. VTC-99: 816-820
    [81] J. S. Wu, J. K. Chung, M. T. Sze. Analysis of uplink and downlink capacities for two-tier cellular system. IEE Proc. Commun., Dec. 1997, Vol. 144, No. 6: 405-411
    [82] Duk Kyung Kim and Dan Keun Sung. Capacity estimation for a multicode CDMA system with SIR-based power control. IEEE Trans. on Veh. Technol., May 2001, Vol. 50, No. 3: 701-710
    [83] C.Loo. A statistical model for land mobile satellite link. IEEE Trans.on Vechicular Technology, Aug. 1985, Vol. VT-34: 122-127
    [84] E.Lutz, D.Cygan, M.Dippold et al.. The land mobile satellite communication channel-recording, statistics and channel model. IEEE Trans. on Vechicular Technology. May 1991, Vol. 40: 375-385
    [85] H.Suzuki. A statistical model for urban radio propagation. IEEE Trans. Commun., July 1977, Vol. COM-25: 673-680
    [86] Giovanni E.Corazza, Francesco Vatalaro. A statistical model for land mobile satellite channels and its application to nongeostationary orbit systems. IEEE Trans.on Vechicular Technology. Aug. 1994, Vol. 43, no. 3: 738-741
    [87] G.L.Turin et al.. A statistical model of urban multipath propagation. IEEE Trans.on Vechicular Technology. Feb. 1972, Vol. VT-21, No. 1: 1-9
    [88] F.Hansen, F.I.Meno. Mobile fading-Rayleigh and lognormal superimposed. IEEE Trans. on Vechicular Technology. Nov. 1977, Vol. VT-26, No. 4: 332-335
    [89] R.C.French. The effect of fading and shadowing on channel reuse in mobile radio. IEEE Trans.on Vechicular Technology. Aug. 1979, Vol.VT-28, No. 3: 171-181
    [90]T.Aulin. A modified model for the fading signal at a mobile radio channel.
    
    IEEE Trans.on Vechicular Technology. Aug. 1979, Vol.VT-28, No. 3: 182-203
    [91] J.Zander. A stochastic mocelof the urban UHF radio channel. IEEE Trans.on Vechicular Technology. Nov. 1981, Vol. VT-30, No. 4: 145-155
    [92] G.C.Hess. Land-mobile satellite excess path loss measurements. IEEE Trans.on Vechicular Technology. May. 1980, Vol. VT-29: 290-297
    [93] C.Loo. Measurements and models of a land mobile satellite channel and their applications to MSK signals. IEEE Trans.on Vechicular Technology. Aug. 1987, Vol. VT-35:114-121
    [94] D.C.Cox, R.P.Leck. Correlation bandwidth and delay spread multipath propagation statistics for 910 MHz urban mobile radio channels. IEEE Trans. Commun., Nov. 1975, Vol.COM-23: 1271-1280
    [95] Yoshio Karasawa, Kazuhiro Kimura and Kenichi Minamisono. Analysis of availability improvement in LMSS by means of satellite diversity based on three-state propagation channel model. IEEE Trans.on Vechicular Technology. Nov. 1997, Vol.46, No. 4: 1047-1056
    [96] Michel Daoud Yacoub. On higher order statistics of the Nakagami-m distribution. IEEE Trans.on Vechicular Technology. May 1999, Vol. 48, No. 3: 790-793
    [97] Jung-Shyr Wu, Jen-Kung Chung, and Yu-Chuan Yang. Performance study for a micro-cell hot spot embedded in CDMA macro-cell systems. IEEE Trans. on Vehicular Technology, January 1999, Vol. 48, No. 1: 47-59
    [98] Chih-Lin I and Richard D. Gitlin. Multi-code CDMA wireless personal communications networks. IEEE Vehicular Technology Conference, 1995, VTC-95: 1060-1063
    [99] Zhao Liu, Mark J. Karol, Magda El Zarki, Kai Y. Eng. A demand-assignment access control for multi-code DS-CDMA wireless packet (ATM) networks. IEEE Vehicular Technology Conference, 1996, VTC-96: 713-721
    [100] Seung Joon Lee, Hyeon Woo Lee, Dan Keun Sung. Capacities of single-code and multicode DS-CDMA systems accommodating multiclass
    
    services. IEEE Trans. on Vehicular Technology, March 1999, Vol. 48, No. 2: 376-383
    [101] A. Baier and U.-C.Fiebig. Design study for a CDMA-based third generation mobile radio systems. IEEE Journal on Selected Areas in Communications, May 1994, Vol. 12: 733-743
    [102] DAEHYOUNG H, STEPHEN S R. Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Trans. Vehicular Tech., Aug. 1986, Vol. VT-35, No. 3: 77-92
    [103] ROCH A G. Channel occupancy time distribution in a cellular radio system. IEEE Trans. Vehicular Tech., Aug. 1987, Vol. VT-35, No. 3: 89-99
    [104] P. J.Goodman, G.P.Pollini, and K.S.Meier-Hellstern. Network control for wireless communition. IEEE Commu.Mag., Dec. 1992
    [105] W.C.Y.Lee. Smaller cells for greater performance. IEEE Commum. Mag., Nov. 1991: 19-23
    [106] In-Soo Yoon, Byeong Gi Lee. A Distributed Dynamic Call Admission Control that Supports Mobility of Wireless Multimedia Users. ICC'99: 1-5
    [107] Fotini-Niovi Pavlidou. Two-Dimensionnal Traffic Models for Cellular Mobile Systems. Trans. on commun., Feb. 1994, Vol.42, No.2/3/4:1505-1511
    [108] D. Bertsekas and R. Gallager. Data Networks, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1992: 166-168
    [109] W. Tschirks. Effects of transmission power control on the cochannel interference in cellular radio networks. Electrotechnik und Informationstechnik. 1989, Vol. 106, No.5
    [110] T. Fujii and M. Sakamoto. Reduction of cochannel interference in cellular systems by intra-zone channel reassignment and adaptive transmitter power control. Proc. IEEE Veh. Tech. Conf., 1988, VTC-88: 668-672
    [111] T. Vagatsu, T. Tsuruhara, and M. Sakamoto. Transmitter power control for cellular land mobile radio. Proc. IEEE Globecom 1983: 1430-1434
    [112] Tsern-Huei Lee, Jen-Cheng Lin, and Yu T. Su. Downlink power control
    
    algorithms for cellular radio systems. IEEE Trans. on Veh. Tech., Feb. 1995, Vol. 44, No. 1: 89-94
    [113] Saswati Sarkar and Kumar N. Sivarajan. Hypergraph models for cellular mobile communication systems. IEEE Trans. on Veh. Tech., May 1998, Vol. 47, No. 2: 460-471
    [114] Yongjun Xie and Yuguang Fang, "A general statistical channel model for mobile satellite systems," IEEE Trans. on Veh. Technol., vol. 49, No. 3, pp. 744-752, MAY 2000.
    [115] E Jakeman. On the statistics of K-distributed noise. J.Phys.A:Math.Gen.. 1980, Vol. 13: 31-48
    [116] E Jakeman, J.E.McWhirter, and P.N.Pusey. Enhanced fluctuations in radiation scattered by moving random phase screen. J. Opt. Socl. Am.. 1976, Vol. 66: 1175-1182
    [117] J.G.Proakis. Digital Communications. New York: McGraw Hill, 1983
    [118] Chae Y. Lee, Taehoon Park, "A parametric power control with fast convergence in cellular radio systems", IEEE Trans. on Veh. Tech., vol. 47, no. 2, pp. 440-449, May 1998
    [119] F. R. Gantmacher, The Theory of Matrices. New York: Chelsea, 1974, vol. 2, ch. VIII.
    [120] CDMA扩频通信原理,A.J.维特比著,李世鹤等译,人民邮电出版社。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700