全干式超声骨强度测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨质疏松症是一种常见的退行性疾病。随着我国人口的快速老龄化,骨质疏松和由此引发的骨折成为危害公众健康的一个重要问题。骨强度的定量检测评估是防治骨质疏松症的先决条件和有效手段,双能x射线、定量CT等方法可实现骨密度的精确测量,但仪器昂贵、操作复杂且具有辐射性,难以满足大规模筛查、普查和长期动态跟踪测评的需求。定量超声骨强度检测方法具有测量准确、无辐射、成本低和操作简便的优点,尤其适合基层社区和家庭日常健康检测的需求。针对这种情况,开展了全干式耦合的超声骨强度测量方法的研究,具体内容包括:
     1、一种全干式超声骨强度测量方法的建立
     基于超声波在骨骼中传播的理论模型和目前广泛应用的定量超声检测骨强度的原理及方法,建立了一种具有自主知识产权的全干式超声骨强度测量方法。该方法研制了柔软而富有弹性的全干式耦合器,对各种不同形状跟骨有较好的适应性,全干式耦合器的使用使测试安全性、操作方便性、使用寿命和跟骨宽度测量精度均有所提高;采用高精度力敏传感器实时检测跟骨夹紧力,保证每次测量夹紧程度的一致性;使用双向导轨、换档装置等实现跟骨的精确定位;利用电子技术实现了超声波信号的激发、接收、信号调理、A/D转换、存储和上传上位机;采用五点三次平滑算法实现超声波信号的有效软件去噪;采用快速傅立叶变换和最小二乘法线性拟合实现宽带超声衰减(BUA)的获取;采用阈值加极值的判别方法提取超声波传播时间特征点,进而获取超声传播速度(SOS)。
     2、环境温度对全干式超声骨强度测量结果的影响规律研究,并建立消除温度影响的方法
     通过实验详细分析了环境温度对全干式耦合的超声骨强度测量精度的影响规律,认识了全干式超声骨强度测量中消除温度影响的必要性。进而提出一种基于PWM闭环控制产生恒温热风的方法,该方法产生的恒温热风保证了超声传输通道温度的恒定,减小了环境温度对超声骨强度测量精度的影响,该方法的有效性通过实验得到了初步验证。
     3、全干式耦合的超声骨强度测量平台的重复性和有效性研究
     重复性评估:采用两个直接测量参数(BUA和SOS)的变异系数均方根百分比(CVRMS%)来评价重复性,分别选择了11人和18人进行了短期和长期的重复性实验,SOS,BUA的短期CVRMS%分别为0.30,4.24;中期CVRMSS%分别为0.39,4.33,达到了国外同类设备的水平。有效性评估:与DEXA设备(GE Lunar Prodigy; GE, USA)的30人相关性实验表明,跟骨骨强度指数与腰椎骨密度相关系数r=0.793(p<0.01);与韩国超声骨强度设备(SONOST-3000)的15人相关性实验表明,自制测量平台所测跟骨骨强度指数与韩国仪器所测骨质指数的相关系数r=0.860(p<0.01),这些结果表明自主研制的全干式超声骨强度测量平台具有较好的有效性。
     4、初步建立了适合中国人群的成年人骨强度评价标准
     基于分层抽样方法从合肥、深圳、南京抽样采集500名成年人的骨强度测量数据。利用数理统计方法和曲线回归分析初步建立成年人的骨强度评价标准,包括男、女性骨强度随年龄变化的趋势曲线,男、女性平均骨强度峰值,男、女性性骨强度的标准差等信息。并运用Bland-Altman法对初步建立的成年人骨强度评价标准进行了评估,结果表明根据该评价标准作出的评价结果与DEXA的评价结果有较好的一致性。
     5、全干式超声骨强度仪的应用研究
     应用一:根据日常运动量的大小,将30名青年志愿者分为运动组和不运动组,采用t检验对两组骨强度均值进行分析,结果表明运动组的骨强度峰值显著高于不运动组,说明运动对于提高骨强度峰值有着重要的作用。应用二:采用Bland-Altman法对20人的左、右脚跟骨强度进行一致性分析,结果表明左、右脚跟骨的骨强度值无显著差别,用单只脚跟骨强度可以反映骨质状况。
     全干式超声骨强度测量方法具有高精度、低成本、操作简便等特点,在青少年骨骼生长发育评估、中老年人群骨质疏松症预防、骨折风险评估等方面拥有广阔应用前景。
Osteoporosis is a common degenerative disease. The increasing amount of elderly people in our country results in the high possibility of more osteoporosis and bone fractures, which becomes a significant problem in public health. The quantitative assessment of bone strength is the prerequisite and effective method of osteoporosis predicting, for example, DEXA and QCT, which can measure bone density accurately. Howerer, they can not satisfy the demand of the mass screening and long-term dynamic tracking measurement due to their high expense, complex operation and X-ray exposure. The method of quantitative ultrasound bone strength detection is especially suitable for bone status assessment in community and family as it is non-ionizing, inexpensive and simple to use. In view of this situation, the method of dry ultrasonic bone strength measurement was studied, the contents of the study are as follows:
     1、Establish the method of dry ultrasonic bone strength measurement
     The method of dry ultrasonic bone strength with independent intellectual property rights was established based on the theory model of ultrasonic propagation and the principle of quantitative ultrasonic bone strength assessment. A soft and elastic dry coupler was developed, which can compensate the different shape of feet, improve the security of measurement, convenience of operation, the service life and the measurement precision of heel width. A force sensor with high precision was employed to detect the clamping force of heel, which can ensure the consistency of each positioning. Meanwihle, a bidirectional guide rail and shifting device was used for accurate positioning. The electronic technology was applied to realize the ultrasonic signal excitation, receiving, signal conditioning, A/D conversion, storage and uploading PC. Five point three smoothing algorithm was used for ultrasonic signal denoising. Fast Fourier transform and the method of least square fitting were employed to obtain broadband ultrasound attenuation (BUA). The method of threshold and extereme point discrimination were applied to get the feature point of reveiving ultrasound, and then obtain the ultrasound speed (SOS).
     2、The study of the influence of temperature on dry ultrasonic bone strength measuremnt, and establish the method of eliminating the influence of temperature
     First, the influence rule of temperature on dry ultrasonic bone strength measuremnt was studied through the experiments. Then, a method of producing warm-air with constant temperature based on PWM loop control was proposed, which can ensure the temperature of ultrasonic transmission channel constant, reduce the influence of temperature on ultrasonic bone strength measurement. Finally, the validity of the method was proved.
     3、The study of reproducibility and effectiveness of dry ultrasonic bone strength measurement
     The reproducibility was evaluated by the CVRMS%of two parameters (BUA and SOS), which is defined as root-mean square average of coefficient of variation. Eleven people were recruited for short-term measurement, and eighteen for medium-term. The short-term CVRMS%were0.30for SOS and4.24for BUA, and the medium-term CVRMS%were0.39for SOS and4.33for BUA. We found that the platform of our dry ultrasonic bone strength measurement achieved the level of the similar device from abroad. The effectiveness was evaluated by correlation analysis between our platform and DEXA device (GE Lunar Prodigy; GE, USA), ultrasonic bone strength device (SONOST-3000). The Pearson correlation between STI of our system and BMD of DEXA was0.793(p<0.01). The Pearson correlation between STI of our system and QUI of SONOST-3000was0.860(p<0.01). The results of correlation analysis showed that the platform of our dry ultrasonic bone strength measurement was effective for bone assessment.
     4、Preliminary build the evaluation standard of bone strength for adult Chinese people
     The STIs of500adults were collected from Hefei, Shenzhen and Nanjing based on the method of stratified sampling. Then the methods of mathematical statistics and regression analysis were utilized to build the elementary evaluation standard of bone strength for adult Chinese people, including the curves of men's and women's STI with age, the averages of men's and women's STI, the standard deviations of men's and women's STI. With the method of Bland-Altman, the elementary evaluation standard was estimated; the result showed that it was consistent with the method of DEXA.
     5、Application research of the system of dry ultrasonic bone strength assessment
     First, t-test was used for analysing the averages of bone strength in both exercise group and non-exercise group, in which the ages of objects ranged from20-30. Then the influence of exercise on peak bone strength was obtained. The results showed that the peak bone strength of exercise group was significantly higher than that of non-exercise group, so that exercise plays an important role in improving peak bone strength. Second, the method of Bland-Altman was used for analysing the consistency of bone strength of left and right heel, in which20people were recruited. The results showed that the bone strength of left and right calcaneus bone were not significantly different. The bone status can be reflected by only one calcaneus bone.
     This study has made some meaningful work in the technology of dry ultrasonic bone strength measurement, which is expected to establish a method of bone assessment with high precision, low cost, convenient operation. It has broad applicaion prospects in assessment of adolescents skeletal growth, prevention of osteoporosis in the elderly people, evaluation of fracture risk, and so on.
引文
文天林,孙天胜,王玲.2010.骨质疏松症的临床表现及诊断[J].人民军医,53(9):664-665.
    中华医学会骨质疏松和骨矿盐疾病分会.2011.原发性骨质疏松症诊治指南(2011年)[J],中华骨质疏松和骨矿盐疾病杂志,4(1):2-16.
    王丹,许虎.2011.LTE系统中FFT的研究与DSP实现[J].电子技术应用,37(10):63-66.
    王东岩,王玲玲,欧阳钢,等.2000.红外灸疗仪穴位治疗对原发性骨质疏松症骨密度的影响[J].国医论坛,15(6):23.
    王杰,倪朝民,陈焱焱,等.2012.热固耦合式超声骨强度仪的可重复性及相关性研究[J].中国康复医学杂志,27(2):125-129.
    中国健康促进基金会骨质疏松防治中国白皮书编委会.2009.骨质疏松症中国白皮书[J],中华健康管理学杂志,3(3):148-154.
    他得安,王威琪,汪源源,等.2007.基于超声背散射信号分析松质骨中的声阻抗[J].中国生物医学工程学报,26:487-492.
    冯若主编.1999.超声手册[M].南京:南京大学出版社.
    他得安,余建国,汪源源,等.2003a.诊断骨质疏松症的超声参量[J].中华超声影像学杂志,12(5):305-307.
    他得安,汪源源,余建国,等.2003b.超声诊断骨质疏松症中松质骨的模型[J].应用声学,23(6):34-38.
    他得安,王威琪,余建国.2005.松质骨中两种纵波的传播特性分析[J].中国生物医学工程学报,24(1):17-20.
    他得安,王威琪,汪源源.2009.超声轴向传播技术评价长骨的研究[J].应用声学,28:161-165.
    田铖,郭化平,李宁,等.2010.基于单片机的液压系统油温自动控制系统研究[J].机械制造,48:30-31.
    任红丽.2010.运动对人体骨密度的影响及其进展研究[J].搏击(体育论坛),2(7):59-63.
    刘广源,邱贵兴,吴志宏.2007.使用NORLAND骨密度仪比较不同人种峰值骨量值[J].中国骨质疏松杂志,13(2):101-104.
    刘忠民,高喆,宋哲明,等.2005.运动对不同年龄女性跟骨骨密度的影响[J].吉林大学学报: 医学版,31(3):452-454.
    刘忠厚.1994.骨质疏松研究与防治[M].北京:化学工业出版社.
    刘洋,叶超群,周军,等.2008.全身振动对绝经后妇女骨量和骨代谢的影响[J].中国康复医学杂志,23(10):875-877.
    乔媛媛,王晓晨,王曼莹.2009.运动-雌激素-骨代谢相关性研究进展[J].吉林体育学院学报,25(4):78-79.
    刘瑾.2010.基于小波分析的超声波信号降噪研究[D]:[硕士].北京:中国石油大学,12-15.
    吴文健.2011.广州社区居民骨质疏松及其骨折认知程度的调查及分析[D]:[硕士].广州:广州中医药大学,12-13.
    杜子芳.2005.抽样技术及其应用[M].北京:清华大学出版社.
    陈卉.2007Bland-Altman分析在临床测量方法一致性评价中的应用[J].中国卫生统计,24(3):308-310.
    陈焱焱,徐玉兵,王杰,等.2011-04-13.全干固态耦合式跟骨超声骨强度指数检测方法:中国,201010579635.3[P].
    杜晓红,梁飞宇,周素彬,等.2010.不同运动方式对中老年人骨密度的影响[J].浙江预防医学,22:16-18.
    杨勇.2010.电磁场促进骨髓间充质干细胞成骨分化及初步机制[D]:[博士].武汉:华中科技大学.
    张伟春.2011.我国60岁以上骨质疏松发病率达56%[N/OL].中国科技网,[2011-10-18].http://www.stdaily.com/kjrb/content/2011-10/18/content_357951.htm
    张林,杨锡让.1999.人体骨量变化研究发展[J].体育与科学,20(117):7-22.
    李志香,张春林,谈诚.2007.30Hz全身振动对骨质疏松的影响[J].航天医学与医学工程,20(2):116-119.
    李金林,赵中秋.2006.管理统计学[M].北京:清华大学出版社.
    李洪法.2006.脉冲多普勒血流测量系统的研制[D]:[硕士].吉林:吉林大学.
    李镒冲,李晓松.2007.两种测量方法定量测量结果的一致性评价[J].现代预防医学,34(17):3263-3266.
    李险峰.2007.骨质疏松症的临床表现、检查及诊断[J].新医学,38(1):8-11.
    张薇,曹冰燕,巩纯秀.2008.骨质疏松的危险因素研究[J].中国骨质疏松杂志,14(7):519-520.
    张金冉,田东东,刘伟.2012.老年骨质疏松症的治疗现状[J].吉林医学,33(9):1949-1950.
    庞阡宵.2011.基于C8051的CAN多点实时数据通信系统[J].电子科技,24(11):19-22.
    林华,韩祖斌,孙燕芳,等.2002DEXA和QUS在退行性骨关节病诊治中的应用[J].南京大学学报,38:644-647.
    杭爱明,龚秀芳,康正发.2010.统计学原理[M].上海:上海辞书出版社.308-310.
    苗祖凤,李晓丽.2012.绝经后骨质疏松症的临床表现及治疗[J].中国医药指南,10(6):69-70.
    郑君里,应启珩,杨为理.2000.信号与系统:下册[M].(第二版).北京:高等教育出版社.
    郑驰超,彭虎,李洪旺,等.2007b.基于Golay-Chirp编码信号的松质骨BUA参数测量方法的研究.北京生物医学工程,26(6):561-565.
    郑驰超,彭虎,李洪旺,等.2007a.基于AR模型的松质骨BUA参数测量的研究,中国科学技术大学学报,37(12):1472-1477.
    柏海平,张绍岩,胡小婧.2007.不同年龄段人体骨密度变化与运动的干预[J].中国组织工程研究与临床康复,11:2737-2740.
    姚志明,孙怡宁,陈焱焱,等.2009-04-08.超声骨密度测量分析系统:中国,200810194780.2[P].
    赵婷婷,严碧歌.2009.超声诊断松质骨的研究进展[J].海南医学院学报,15(9):1179-1181.
    高甲子.2009.持续与间歇振动对抗骨质疏松的实验研究[D]:[硕士].吉林:吉林大学,5-9.
    高甲子,宫赫,方娟,等.2011.利用生物力学方法评价振动在骨质疏松康复过程中的作用[J].医用生物力学,26(4):315-320.
    高欢,高炳宏.2007.维生素D受体基因多态性与运动能力研究进展[J].体育科研,28(2):74-76.
    高敏,于盎宁,李洪旺,等.2007.人体跟骨宽带超声衰减参数测量方法的研究[J].生物医学工程研究,26(1):10-13.
    秦朗.2011.运动对骨密度的影响分析[J].现代预防医学,38(10):1886-1889.
    萨建,刘桂芬.2011.定量测量结果的一致性评价及Bland-Altman法的应用[J].中国卫生统计,24(3):409-4123.
    蒋时霖,彭虎,郑驰超等.2010.宽带超声衰减计算与测量系统验证的研究[J].生物医学工程研究,29(2):94-96.
    窦家庆,章秋.2009,骨质疏松症的诊断[J].安徽医学,30(11):1263-1264.
    潘佚.2006.基于C8051F040的CAN总线智能节点的设计[J].现代电子技术,4:49-51.
    Abendschein W, Hyatt GW.1970. Ultrasonic and selected physical properties of bone[J]. Clin Orthopaed Related Res,69:294-301.
    Agren M, Karellas A, Leahey D, et al.1991. Ultrasound attenuation of the calcaneus:a sensitive and specific discriminator of osteopenia in postmenopausal women[J]. Calcif Tissue Int, 48(4):240-244.
    Altman DG, Bland JM.1983. Measurement in medicine:the analysis of method comparison studies [J]. The Statistician,32,307-317.
    Barkmann R, Laugier P, Moser U, etc.2007. A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur[J]. Bone,40:37-44.
    Biot MA.1956a. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range[J]. J Acoust Soc Am,28:168-178.
    Biot MA.1956b. Theory of propagation of elastic waves in a fluid saturated porous solid, II. High frequency range[J]. J Acoust Soc Am,28:179-191.
    Blake GM, Fogelman I.1997. Technical principles of dual energy X-ray absorptiometry[J]. Semin Nucl Med,27:210-228.
    Breban S, Padilla F, Fujisawa Y., etc.2010. Trabecular and cortical bone separately assessed at radius with a new ultrasound device, in a young adult population with various physical activities[J]. Bone,46:1620-1625.
    Buchanan JL, Gilbert RP.2007. Determination of the parameters of cancellous bone using high frequency acustic measurements [J]. Mathematical and Computer Modelling,45:281-308.
    Carter DR, Hayes WC.1977. Compressive behaviour of bone as a 2-phase porous structure[J]. J Bone Joint Surg,59:954-962.
    Chaffai S, Padilla F, Berger G, and Laugier P.2000. In vitro measurement of the frequency dependent attenuation in cancellous bone between 0.2-2.0 MHz[J]. J Acoust Soc Am,108:1281-1289.
    Chappard C, Berger G, Roux C, et al.1999. Ultrasound measurement on the calcaneus:influence of immersion time and rotation of the foot[J]. Osteo Int,9:318-326.
    Chen YY, Xu YB, Ma ZC, et al.2010. Detection of bone density with ultrasound.2010 Symposium on Security Detection and Information Processing. Procedia Engineering,7: 371-376.
    Chen YY, Xu YB, Zhan LK, et al.2012. Reducing temperature influence on dry quantitative ultrasound bone assessment with constant temperature control. Ultrasonics,52:276-280.
    Damilakis J, Maris TG, Karantanas AH.2007. An update on the assessment of osteoporosis using radiologic techniques[J].Eur Radiol,17:1591-1602.
    Dussik KT and Fritch DJ.1956. Determination of sound attenuation and sound velocity in the structure constituting the joints, and of the ultrasonic field distribution with the joints of living tissues and anatomical preparations, both in normal and pathological conditions.
    Gilbert RP, Xu Y, Zhang SY.2009. Computing porosity of cancellous bone using ultrasonic waves[J]. Mathematical and Computer Modelling,50:421-429.
    Gluer CC, Blake G, Lu Y, et al.1995. Accurate assessment of precision errors:how to measure the reproducibility of bone densitometry techniques[J]. Osteo Int,5:262-270.
    Graafmans WC, Van Lingen A, Ooms ME, et al.1996. Ultrasound measurements in the calcaneus: precision and its relation with bone mineral density of the heel, hip, and lumbar spine[J]. Bone,, 19(2):97-100.
    Grondin J, Grimal Q, Engelke K, Laugier P.2010. Potential of first arriving signal to assess cortical bone geometry at the hip with QUS:a model based study[J]. Ultrasound in Med. & Biol, 36:656-666.
    Hadji P, Hars 0, Wuster C, et al.1999. Stiffness index identifies patients with osteoporotic fractures better than ultrasound velocity or attenuation alone. Maturitas,31:221-226.
    Han S, Rho J, Medige J, and Ziv I.1996. Ultrasound velocity and broadband attenuation over a wide range of bone mineral density[J]. Osteoporosis Int,6:291-296.
    Haney MJ, O'Brien WD.1986. Temperature dependency of ultrasonic propagation properties in biological materials, in:Greenleaf JM (Eds.), Tissue characterization with ultrasound[M], vol 1. Boca Raton, FL:CRC Press, pp.15-55.
    Hans D,Schott AM,Chapuy MC,et al.1994. Ultrasound measurements on the oscalcis in a prospective multicenter study [J]. Calcif Tissue Int,55:94-99.
    Hans D, Wu C, Njeh CF, et al.1999. Ultrasound velocity of trabecular cubes reflect s mainly bone density and elasticity[J]. Calcif Tissue Int,64:18-23.
    He YQ, Fan B, Hans D, et al.2000. Assessment of a new quantitative ultrasound calcaneus measurement:precision and discrimination of hip fractures in elderly women compared with dual X-ray absorptiometry[J]. Osteoporos Int,11(4):354-360.
    Hernandez, J. L.Olmos, J. M.de Juan, etc.2011. Heel quantitative ultrasound parameters in subjects with the metabolic syndrome:the Camargo Cohort Study[J]. Maturitas,69:162-167.
    Hosokawa A, Otani T.1997. Ultrasonic wave propagation in bovine cancellous bone[J]. J Acoust Soc Am,101:558-562.
    Hughes ER, Leighton TG, Petley GW, et al.1999. Ultrasonic propagation in cancellous bone:a new stratified model[J]. Ultrasound in Med. & Biol.,25(5):811-821
    Ikeda Y and Dei M.2004. Precision control and seasonal variations in quantitative ultrasound measurement of the calcaneus[J], J Bone Miner Metab,22:588-593.
    Janz KF, Burns TL, Tomer JC, et al.2001. Physical activity and bone measures in young children: the Iowa bone development study[J]. Pediatrics,107(6):1387-1393
    Jin NN, Lin SQ, Zhang Y, Chen FL.2010. Assess the discrimination of Achilles Insight calcaneus quantitative ultrasound device for osteoporosis in Chinese women:Compared with dual energy X-ray absorptiometry measurements [J]. Eur J Radiol,76:265-268.
    Kanis JA, Borgstrom F, De Laet C, et al.2005. Assessment of fracture risk. [J]. Osteoporosis Int, 16 (6):581-589.
    Kaufman JJ, Luo G, Siffert RS.2007. A portable real-time ultrasonic bone densitometer. Ultrasound in Med. & Biol,33(9):1445-1452.
    Kaufman JJ, Luo G, Siffert RS.2008. Ultrasound simulation in bone[J]. IEEE Trans Ultrason Ferroelectr Freq Contr,55:1205-18.
    Kuo, CW, Ho SY, et al.2010. Quantitative ultrasound of the calcaneus in hemodialysis patients[J], Ultrasound Med Biol,36(4):589-594.
    Langton CM, Palmer SB, Porter RW.1984. The measurement of broadband ultrasonic attenuation in cancellous bone [J]. Eng Med,13:89-91.
    Laugier P.2004. An overview of bone sonometry[J]. International Congress Series,1274:23-32.
    Laugier P.2008. Instrumentation for in vivo assessment of bone strength[J]. IEEE Trans Ultrason Ferroelectr Freq Control,55:1179-96.
    Laugier P, Haiat G.2011. Bone quantitative ultrasound [M]. Springer Dordrecht Heidelberg London New York. ISBN 978-94-007-0016-1.
    Lauriks W, Thoen J, Van Asbroek I, et al.1994. Propagation of ultrasonic pulses through trabecular bone[J]. J Phys,4:1255-1258.
    Lees B, Stevenson JC.1993. Preliminary evaluation of a new ultrasound bone densitometer[J]. Calcif Tissue Int,53(3):149-152.
    Litniewski J, Nowicki A, Sawicki A.2000. Detection of bone disease with ultrasound---comparison with bone densitometry[J]. Ultrasonics,38:693-697.
    McKelvie ML, Palmer SB.1991. The interactions of ultrasound with cancellous bone[J]. Phys Med Biol,36:1331-1340.
    Mergler S, Lobker B, Evenhuis HM, et al.2010. Feasibility of quantitative ultrasound measurement of the heel bone in people with intellectual disabilities [J]. Res Dev Disabil,31: 1283-1290.
    Minisola S, Rosso R, Scarda A, et al.1995. Quantitative ultrasound assessment of bone in patients with primary hyperparathyroidism[J]. Calcif Tissue Int,56(6):526-528.
    Moilanen P., Nicholson P. H., Kilappa V., et al.2007. Assessment of the cortical bone thickness using ultrasonic guided waves:modelling and in vitro study[J]. Ultrasound Med Biol,33: 254-262.
    Morris R, Mazess RB, Trempe J, et al.1997. Stiffness compensates for temperature variation in ultrasound densitometry[J], Proceedings of the 19th Annual Meeting of the American Society of Bone & Mineral Research, Sept. pp.10-14.
    Nguyen VH, Naili S, Sansalone V.2010. Simulation of ultrasonic wave propagation in anisotropic cancellous bone immersed in fluid[J]. Wave Motion,47:117-129.
    Njeh CF, Hans D, Li J,et al.2000. Comparison of Six Calcaneal Quantitative Ultrasound Devices: Precision and Hip Fracture Discrimination[J]. Osteoporos Int,11:1051-1062.
    National Bureau of Statistics of China.2007. Tabulation on 20007 Population Census of China[J], China Statistics Press. (Vol 1), Sep.
    Poet JL, Serabian IT, Camboulives H, et al.1994. Broadband ultrasound attenuation of the os calcis:preliminary study[J]. Clin Rheumatol,13(2):234-238.
    Riekkinen O, Hakulinen MA, Timonen M, et al.2006. Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies[J], Ultrasound in Med. & Biol,7:1073-1083.
    Schafer BE, Berthold LD, Stracke H, et al.2011. Identifying elderly women with osteoporosis by spinal dual X-ray absorptiometry, calcaneal quantitative ultrasound and spinal quantitative computed tomography:a comparative study[J]. Ultrasound in Med. & Biol,37(1):26-36.
    Schoenberg M.1984. Wave propagation in alternating solid and fluid layers [J], Wave Motion, 6:303-320.
    Schott AM, Hans D, Sornay-Rendu E, et al.1993. Ultrasound measurements on os calcis: precision and age-related changes in a normal female population[J]. Osteoporos Int, 3(5):249-254.
    Stewart A and Reid DM.1993. Precision of Quantitative Ultrasound:Comparison of Three Commercial Scanners[J]. Bone,27(1):139-143.
    Strelitzki R, Evans JA, Clarke AJ.1997. The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material[J]. Osteoporos Int,7(4):370-375.
    Strelitzki R and Evans JA.1998. Diffraction and interface losses in broadband ultrasound attenuation measurements of the calcaneus[J], Physiol Meas,19:197-204.
    Ta D, Wang W, Wang Y, et al.2009. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone[J]. Ultrasound Med Biol,35:641-652.
    Taha W, Chin D, Silverberg Al, et al.2001. Reduced spinal bone mineral density in adolescents of an Ultra-Orthodox Jewish community in Brooklyn[J]. Pediatrics,107(5):E79
    Tavakoli MB, Evans JA.1991. Dependence of the velocity and attenuat ion of ultrasound in bone on the mineral content[J]. Phys Med Biol,36:1529-1537.
    Trimpou, P., I. Bosaeus, et al.2011. High correlation between quantitative ultrasound and DXA during 7 years of follow-up[J], Eur J Radiol,73(2):360-364.
    Trebacz H, Natali A.1999. Ult rasound velocity and at t enuat ion in cancellous bone samples from lumbar vert ebra and calcaneus[J]. Ost eoporos Int,9:99-105.
    Williams JL.1992. Ultrasonic wave propagation in cancellous and cortical bone:predictions of some experimental results by Biot's theory[J]. J Acoust Soc Am,92:1106-1112.
    Wear KA.2000a. Measurements of phase velocity and group velocity in human calcaneus[J], Ultrasound Med Biol,26:641-646.
    Wear KA.2000b. Temperature dependence of ultrasonic attenuation in human calcaneus[J]. Ultrasound Med Biol,26:469-472.
    Wear KA.2001. Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz[J]. IEEE Trans Ultrason Ferroelectr Freq Control,48(2):602-608.
    Zhang W, Chang LW, Wang SR, et al.2009. Effect of ultraviolet irradiation dose and style on 25-hydroxyvitamin D and bone metabolism in growing rats[J]. J Clinical Rehabilitative Tissue Engineering Research,13(46):9192-9195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700