水平井压裂喷砂器结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷砂器是水平井分层压裂管柱的重要组成部分。在水平井压裂施工中,随着施工排量的增加,喷砂器冲刷磨损严重,封隔器难以坐封,难以满足压裂的作业要求。
     本文针对含砂压裂液对水平井压裂喷砂器冲刷磨损问题,基于Euler-Euler方法,以雷诺应力模型为湍流模型,应用控制体积法及SIMPLE算法,利用CFD软件FLUENT对喷砂器的内部流场进行了数值模拟。得到了喷砂器内流体的轴向速度、切向速度、压力云图、砂比云图分布规律。
     利用二维激光多普勒测速仪对喷砂器内部速度场进行了测定实验。结果表明,数值模拟和实验测得数据整体趋势是一致的。验证了数值计算方法的正确性。
     应用数值模拟方法对喷砂器进行结构优化,主要对喷嘴和喷砂口位置进行结构优化研究。采用入口缩径角度30°,出口扩径角度30°的喷嘴结构性能好一些。调整喷砂孔的尺寸、位置和数目,分别进行数值模拟,通过分析计算结果,对比各方案的可行性。提出了十孔不等径喷砂器结构,其避免了大涡流的发生,无论从流态,速度和耐磨性方面都优于原结构。
     本文工作为进一步研究水平井压裂喷砂器的结构特性及结构优化设计提供了一定的理论和经验。
Sand blast is an important component part of the horizontal well fracturing string. In the fracturing of horizontal wells, with the construction of displ increases, the sand blast wears seriously, packer is difficult to set down, it is difficult to meet the operational requirements for fracturing.
     In view of the question that the sand fracturing fluid impacts and wears the fracturing sand blast for horizontal wells, Numerical simulation was carried out by using CFD software FLUENT with Euler-Euler method. The simulation of interior flow field of the sand blast is performed by means of Reynolds stress turbulent model, control volume method and SIMPLE arithmetic method. The rules of axial velocity, tangential velocity,pressure distribution cloud,proppant concentration cloud of sand blast inside fluid are gained.
     It carries out the experiment on testing internal flow field of sand blast with two-dimensional laser Doppler velocimetry. The results show that the overall trend between the numerical simulation and experimental measured data is consistent. It verifies the numerical method.
     Using numerical simulation method of blasting to optimize the structure of sand blast,the main structural optimization location for the nozzle and the sand blasting mouth. the use of the entrance reducing angle of 30°,the exports expanding angle of 30°is better structural performance. Adjusting the size, location and number to carry on numerical simulation respectively, by analyzing the calculated results, compared to the feasibility of the scheme. Proposing the structure of a ten-hole-non-diameter sand blast to avoid the occurrence of a large eddy current, no matter of flow, velocity and wear resistance are superior to the original structure.
     This work provides theoretical base and experiences for further research of the structure characteristics and structural optimization design of the the horizontal well fractured sand blast.
引文
[1]肖国华.不动管柱分层酸化压裂工艺管柱研究[J].石油机械,2004,(02) :30 ~33.
    [2]郎学军,李兴应,刘通义,等.双封隔器分层压裂工艺技术研究与应用[J].钻采工艺,2004,27(03):45 ~47.
    [3]王彦兴,兰中孝,张晓君.套损井压裂管柱的研制[J].石油矿场机械,2006,35(06):90~92.
    [4]ALLEN C, BALL A.A review of the performance of engineer-ing materials under prevalent tribological and wear situations in South Africa industries[J].Tribo Inter,1996(29):105~116.
    [5]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程报,2003,21(2):307~312.
    [6]陈冠国,褚秀萍.关于冲蚀磨损问题[J].河北理工学院学报,1997,19(4):27~32.
    [7]刘家俊,李诗卓,周平安,等.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993.172~193.
    [8] I.Finnie,G.R.S tevick,J.R.Ridgely.The influence of impingement angle on the erosion of ductile metals by angular abrasive particles[J].Wear,1992(152):91~98.
    [9] I.Finnie.Some observations on the erosion of ductile metals [J].Wear,1972(19):81~90.
    [10] M.Hutchings.A model for the erosion of metals by spherical particles at normal incidence [J].Wear,1981(70):269~281.
    [11] G.Sundararajan, P.G.Shewmon. A new model for the erosion of metals at normal incidence[J].Wear,1983(84):237~258.
    [12] S.Jahamnir.The mechanics of subsurface damage in solid particle erosion[J].Wear, 1981(61):309~324.
    [13] R . M . B ranch , Impact dynamics with applications to solid particle erosion[J].International Journal of Impact Engineering,1988(7):37~53.
    [14] G.Sundararajan,P.G.Shewmon.A new model for the erosion of metals at normal incidence[J].Wear,1983(84):237~258.
    [15] S.M.Wiederhorn,B.R.Lawn.Strength degradation of glass impacted with sharp particles:I,Annealed Surfaces[J].Journal of the American ceramic society,1979(62):66~69.
    [16]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):22~25.
    [17] BITTER J G.A study of erosion phenomena [J].Wear,1983(6):5~21.
    [18] LEVY A V.The erosion of structure alloys,ceramets and in situ oxide scales on steels[J].Wear,1988(127):31~52.
    [19]邵荷生,曲敬信.摩擦与磨损[M].北京:煤炭工业出版社,1992.
    [20] TILLY G P.A two stage mechanism of ductile erosion [J].Wear,1973(23):87~96.
    [21]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社.1987.
    [22]潘牧,罗志平.材料的冲蚀问题[J].材料科学与工程,1999.3(17):92~96.
    [23] RogersM,Hutchings IM.Coatings and surface treatments for protection a-gainst low-velocity erosion-corrosion in fluidized beds[J].Wear,1995,186~187:238~246.
    [24] Bryan Poulaon.Complexities in predicting erosion corrosion[J].Wear,1999,233~235:497~504.
    [25]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002,12.
    [26]李勇.基于固液两相紊流理论的近岸悬移质泥沙运动数值研究[D].清华大学,2007.
    [27] Gidaspow D . Multiphase Flow and Fluidization Continuumand Kinetic Theiry Descriptions[M].New York: Academic Press,1994.
    [28] Ishii,M.,Mishima K.Two-fluid model and hydrodynamic constitutive relations.Nuclear Engineering and Design[J].1984,82(2-3):107~126.
    [29] Soo,S.L.Multiphase fluid dynamics[M].Hong Kong:Science Press.1990.
    [30]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.
    [31]倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用[M].北京:科学出版社,991.
    [32]刘小兵,张礼达.含沙水流对水轮机导叶部件磨损的数值模拟[J].水电发电学报,1995(4):56~66.
    [33]傅旭东,王光谦.低浓度固液两相流理论分析与管流数值计算[J].中国科学E辑,2001,31(6):556~565.
    [34]刘诚,沈永明,刘晓平.方管内固液两相流时均运动特性的数值研究[J].泥沙研究,2007,(04):11~16.
    [35] ounis,Ahmadi Goodarz,Mclaughlin John B.Brownian particle deposition in a directly simulated turbulent channel flow[J].Physies of Fluids A Fluld Dynamics,1993,5(6): 1427~1432.
    [36] MdaughlinJB . Aerosol Particle Deposition in Numerieally Simulated Channels Flow[J].Phy.Fluids,1989,Al(7):1211~1224.
    [37] Squires KD,Eaton J K.Particle Response and Turbulence Modification in Isotropic Turbulence[J].phy.Fluids,1990,A2(7):1291~1203.
    [38]高波.旋流泵内部液固两相流场的计算及PDPA实验研究[D].江苏大学,2007.
    [39]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52(01):1~9.
    [40]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004,1~4.
    [41]韩占忠,王敬.FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社,2004,1~199.
    [42] Fluent Inc.,FLUENT User’s Guide.Fluent Inc.,2003.
    [43] P.Bradshaw,T.Cebeci,J.H.Whitelaw,Engineering Calculation Methods for Turbulent Flow.Academic Press London,1981.
    [44] Fluent Inc.,GAMBIT Modeling Guide.Fluent Inc.,2003.
    [45]路明,孙西欢等.湍流数值模拟方法及其特点分析[J].河北建筑科技学院学报,2006,6(23):45~51.
    [46] Chou P Y.On velocity correlations and the solution of equation of turbulent fluctuation.Quarterly Applied Mathematics.1985,3:38.
    [47]高应才.数学物理方程及其数值解法[M],北京:高等教育出版社,1993:166~194.
    [48]陆金甫,关治.偏微分方程数值解法[M],北京:清华大学出版社,1987:74~96.
    [49]吴淑红,刘翔鄂.水平段井筒管流的简化模型[J].石油勘探与开发,1999,26(4):64~65.
    [50]马金花,金生.圆柱体绕流的数值模拟[J].山东建筑工程学院学报,2001,16(2):45~47.
    [51]周光坰,严宗毅.流体力学[M].高等教育出版社,2002,55~60.
    [52]李之光.相似与模化(理论及应用)[M].北京:国防工业出版社,1982.
    [53]沈熊.激光多普勒流动测量技术[M].北京:清华大学出版社,2004,33~35.
    [54] O.Pironneau,B.M. Analysis of the K-Epsilon Turbulence Model.Chichester,England,Wiley,1994.
    [55]薛胜雄.高压水射流技术与应用[M].北京:机械工业出版社,1998.
    [56]李宝玉,郭楚文,林柏泉.用于安全切割的磨料水射流喷嘴设计理论和方法.煤炭学报[J].2005,30(2):254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700