互联网宏观拓扑结构中社团特征演化分析及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在网络对人类社会具有重大影响力的今天,面向互联网的研究一直是学术界的热点问题之一。社团结构是许多实际复杂网络的一个重要特征。了解网络的社团结构有助于人们更深入地认识网络的拓扑性质,对于研究网络的形成和演化也非常重要;寻找和分析社团有助于更好地了解网络的结构;对具有社团结构的复杂网络建模有利于分析社团结构对网络性质和动态特性的影响。因此,对复杂网络的社团结构进行分析和建模是当今一个非常具有挑战性和前景性的研究领域。
     本文基于CAIDA (The Cooperative Association for Internet Data Analysis)提供的6000余万条海量样本数据,深入研究了互联网宏观拓扑结构,对互联网宏观拓扑结构中的社团特征进行了深入的分析,并在社会网络的一个典型实例——学生网中进行了应用研究,主要工作如下。
     结合目前研究工作的现状,在分别介绍了不同类别拓扑分析技术的主要研究内容与成果之后,分析了互联网的拓扑结构模型,并对各类模型进行了定性比较;详细统计了AS (Autonomous System,自治系统)级Internet拓扑的多种宏观特征,进一步分析了网络连通性与幂律特征,对网络的代表性拓扑特征值进行时序分析,并统计了节点的生存周期,分析了其时效规律,并分析了维持网络连通性及幂律性的主要因素。
     定义了社团及社团结构,首次提出并建立了由模块度、节点度、聚集系数、跳数分布、介数分布、富人俱乐部连通特性、社团规模分布等多项指标组成的网络社团特征评价体系。
     采用模块度分裂曲线对规则网络、随机网络、小世界网络、无尺度网络等几种常见网络的社团特性进行了深入的分析。总结出社团结构是网络的基本特征,深入分析了模块度指标受到网络稀疏程度的影响,并探讨了社团结构与复杂网络特征之间的关系。
     基于模块度指标,对互联网宏观拓扑结构的社团特征进行了详细的分析和研究,分析结果显示,互联网拓扑的模块度在0.40左右,这表明互联网拓扑也是具有社团结构的网络。
     通过对互联网宏观拓扑的社团结构成因分析发现,处于同一个社团内的AS大多属于相同或者邻近的国家,揭示了地理因素是互联网的社团结构形成的一个重要原因。对互联网国家级拓扑的社团分析显示,互联网国家级拓扑的几个主要社团正好对应到世界的几个主要大洲,进一步说明了地理因素对互联网结构的影响。
     综合度优先和社团规模优先的选择机制,提出了一类基于地理演化的具有社团结构的互联网拓扑演化模型——CGeoPFP模型,并应用网络社团特征评价指标对CGeoPFP模型生成的社团进行了演化分析。相关研究结果表明,利用该模型生成的网络,社团规模的累积分布和节点度分布等都满足幂律特征。
     相关研究表明,多数社会网络表现出社团结构。作为社会网络的一个重要的部分,大学生群体是一个非常重要的社会网络单元,对大学生社会网络的研究,对于新时期高素质创新型人才的培养、大学生综合素质的养成、大学生思想政治工作的顺利开展等都是十分必要的。本文构建了一个社会网络的典型实例——学生网,建立了学生网络拓扑模型,提出了一类自适应遗传模拟退火算法对模型进行优化,分析了学生网增长的分形特征,研究了学生网增长态势。最后利用社团特征评价指标对学生网的社团特征进行了分析。
Nowadays internet has become one of hottest research spots for a long time since to some extent it has a significant influence on human behavior in modern society.
     As the community structure is an important feature in the practical complex network system, thus understanding the community structure is helpful to understand the network topology property better. And it is also valuable to study the formulation and evolvement of the network. As searching and analyzing the community structure is helpful for good acquaintance of network structure, and modeling the complex network with community structure is beneficial to analyze the effect of community structure on network properties and dynamic performance, therefore, analyzing and modeling of the complex network's community structure is a challenging and prospective area.
     In this thesis, internet macro topology structure and its community property are analyzed, based on a massive amount of data nearly 60 million provided by CAIDA(The Cooperative Association for Internet Data Analysis). The results are furthermore implemented on a typical student network. The tasks are as follows.
     Based on current research, after introducing main content and results of different sorts of topology analysis techniques respectively, the internet topology structure model is analyzed, and a qualitative comparison on various models is carried out. Then the detailed statistics of various internet topology properties on AS(Autonomous System) class is indicated. After that a further analysis on network connectivity property and power-law distribution property is given. The timing analysis of network representative topology eigenvalue is also made, followed by the statistics of node life cycle and analysis of its aging law. The main factors of maintaining the network connectivity and power-law are finally listed.
     Definition of community and its structure are specified. Then the evaluation system of the network community property is proposed for the first time, consist of modularity, node degree, clustering coefficient, hop distribution, betweenness distribution, rich-club connection property, community scale distribution, etc.
     A deep analysis on some common network community ordinary properties including regular network, random network, small-world network and scale-free network, etc, is made by modularity splitting curve, and by which a conclusion is drawn that the community is one of the basic properties of network. It is also suggested that the modularity is effected by the density of network, and then a deep analysis on the relationship of community structure and complex network is presented.
     On the basis of modularity index, by analysis and study of the internet maro topology structure's community property, it can be concluded that the modularity of the internet topology is centered around 0.40, which indicates that the internet topology is also a sort of network with community structure.
     By analyzing the cause of the formulation of the internet macro topology's community structure, it shows that Autonomous System from one community mostly belong to the same country or adjacent countries, which reveals that geographical factor is a key influencing factor in internet community structure formulation. The results of analysis on the country-level topology community structure shows us that the main country-level communities internet topology just correspond to the main continents, which again is the evidence of aforementioned geographical influencing theory.
     By comprehensive use of degree first selection mechanism and community scale first selection mechanism, a sort of internet topology evolvement model—CGeoPFP model, which has community structure and is built on geographical evolvement theory, is proposed. Then by applying network community property evaluation index, the evolvement analysis of the community generated from CGeoPFP model is given. Its study results shows that if the network generated from this model, its community scale's cumulative distribution and node degree distribution both satisfy power-law property
     Relevant studies show that most community networks have community structure. University student as an important part of society network, is also a vital society network cell. The study of university student society network is significant to cultivation of high-quality innovative talents in new era, formulation of university student's comprehensive quality, and development of the ideological and political education. This thesis presents a typical example in the society network-----student network. A student network topology model is built up, and a genetic algorithm and simulated annealing algorithm is utilized for model optimization, by which the student network growth's fractal characteristics and posture are analyzed. Finally, by utilizing community property evaluation index, the community property of student network is analyzed.
引文
1. Barabasi A L, Albert R. Emergence of scaling in random networks[J], Science,1999,286: 509-512.
    2. Williams R J, Martinez N D. Simple rules yield complex food webs[J], Nature,2000,404: 180-183.
    3. Hartwell L H. Hopfield, From molecular to modular cell biology[J], Nature,1999,402: C47-C52.
    4. Bhalla U S. Emergent properties of networks of biological signaling pathways[J], Science, 1999,283:381-387.
    5. Watts D J, Strogatz S H. Collective dynamics of'small-world' networks[J], Nature,1998, 393:440-442.
    6. Albert R, Jeong H, Barabasi A L. Diameter of the world-wide web[J], Nature,1999,401: 130-131.
    7. Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology[J], ACM SIGCOMM ComputerCommunication Review,1999,29(4):251-262.
    8. Newman. The structure of scientific collaboration networks[A], Proc. Natl Acad. Sci. USA[C],2001:404-409.
    9. Wasserman S, Faust K. Social Network Analysis[M], Cambridge:Cambridge University Press,1994.
    10. Stogatz S H. Exploring complex networks[J], Nature,2001,410:268-276.
    11. Marchiori M, Latora V. Harmony in the small-world[J], Physica,2000,285(A):539-546.
    12. Girvan M, Newman M E J. Community structure in social and biological networks[A], Proc. Natl. Acad. Sci[C], USA 99,2002:7821-7826.
    13. Everitt B S. Cluster Analysis(3rd edn), London:Edward Arnold,1993.
    14. Newman M E J. Fast algorithm for detecting community structure in networks[J], Phys. Rev. E,2004,69:066133.
    15. Spirin V, Mirny L A. Protein complexes and functional modules in molecular networks[A], Proc. Natl Acad. Sci. [C], USA 100,2003:12123-12128.
    16. Newman M E J, Girvan M. Finding and evaluating community structure in networks[J], Phys. Rev.,2004, E69:026113.
    17. Wilkinson D M, Huberman B A. A Method for Finding Communities of Related Genes[J], Natl Acad Sci,2004,101(S1):5241-5248.
    18. Newman M E J. Mixing patterns in networks[J], Phys.Rev.,2003, E67:026126.
    19. Imre Derenyi,Gergely Palla. Clique Percolation in Random Networks[J], Phy. Rev. Lett. PRL,2005,94:160202.
    20. Milo R. Network Motifs:Simple Building Blocks of Complex Network[J],Science,2002, 298:824.
    21. Shen-Orr S, Milo R, Mangan S, et al. Network motifs in the transcriptional regulation network of Escherichia coli[J], Nature,2002, Genet.31:64.
    22. Everett M G, Borgatti S P. Analyzing clique overlap[J], Connections,1998,21:49-61.
    23. Shiffrin R M, Borner K. Mapping knowledge domains[J], Natl. Acad. Sci.,2004,101: 5183-5185.
    24. Classifying class and finding community in UML metamodel network[J], LECT NOTES ARTIF INT,2005,3584:690-695.
    25.汪小帆,李祥,陈关荣.复杂网络理论与应用[M],2006:清华大学出版社.
    26.姜誉,方滨兴,胡铭曾等.大型ISP网络拓扑多点测量及其特征分析实例[J],软件学报,2005.16(5):846-856.
    27. Cohen R, Keren E, Daniel B A, et al. Resilience of the Internet to Random Breakdowns[J], Physical Review Letters,2000,85(21):4626.
    28. Cohen R, Keren E, Daniel B A, et al. Breakdown of the Internet under Intentional Attack[J], Physical Review Letters,2001.86(16):3682.
    29. Eriksen K A, Simonsen I, Maslov S, et al. Modularity and Extreme Edges of the Internet[J], Physical Review Letters,2003,90(14):148701-148704.
    30.张宇,张宏莉,方滨兴.Internet拓扑建模综述[J],软件学报,2004.15(8):1220-1226.
    31. Mahadevan P, Krioukov D, Fomenkov M, et al. The internet AS-level topology:three data sources and one definitive metric[J], ACM SIGCOMM Computer Communication Review, 2006,36(1):17-26.
    31.刘岩,韩良秀,杨骏.TCP流自相似性与网络性能关系的研究[J],小型微型计算机系统,2004,25(4):550-554.
    32.周晋,路海明,李衍达.用small world设计无组织P2P系统的路由算法[J],软件学报,2004,25(6):915-923.
    33. Gkantsidis C, Mihail M,Zegura E. Spectral analysis of Internet topologies[A], In: INFOCOM[C],2003.
    34. Albert A, Jeong H, Barabasia L. Diameter of the world wide web[J], Nature,1999,401: 130-131.
    35.魏进武,邬江兴,陈庶樵.网络流量的联合多重分形模型及特性分析[J],电子学报,2004,32(9):1459-1463.
    36.王林,戴冠中.Internet拓扑中连接率的研究[J],复杂系统与复杂性科学,2004,1(2):9-15.
    37. Krioukov D, Yang K X. Compact routing on internet-like graphs[A], In:Proc IEEE INFOCOM[C],2004:208-219.
    38. Miller N, Steenkiste P. Collecting network status information for nework-aware applications [A], In:Proc IEEE INFORCOM[C],2000:641-650.
    39. Radoslavov P, Govindan R, Estrin D. Topology-informed Internet replica placement[J], Computer Communications,2002,25(4):384-392.
    40. Subramanian L, Agarwal S, Rexford J, et al. Characterizing the Internet hierarchy from multiple vantage points [A], In:Proc IEEE INFOCOM[C],2002:618-627.
    41. Staniford S, Paxson V, Weaver N. How to own the Internet in your spare time [A], In: Proc the 11th USENIX Security Symposium[C],2002:149-167.
    42. Zou C C, Towsley D, Gong W B. Email virus propagation modeling and analysis[EB/OL], Technical Report TR-CSE-03-04, University of Massachusetts, Amherst 2003.
    43. Balthrop J, Forrest S, Newman M E J, et al. Technological networks and the spread of computer viruses[J], Science,2004,304:527-529.
    44. Jaim M, Dovrolis C. End-to-end available bandwidth:measurement methodology, dynamics and relation with TCP throughput[J], IEEE ACM Transactions on Networking, 2003,11(4):537-549.
    45. Hu N N, Steenkiste P. Evaluation and characterization of available bandwidth probing techniques[J], IEEE Journal on Selected Areas in Communications,2003,21(6):879-894
    46. Ribeiro V J, Riedi R H, Baraniuk R G Locating available bandwidth bottlenecks[J], IEEE Internet Computing,2004,8(5):34-41.
    47. Alderson D, Willinger W. A contrasting look at self-organization in the Internet and next-generation communication networks[J], IEEE Communications Magazine,2005,43(7): 94-100.
    48. Toward mathematically rigorous next-generation routing protocols for realistic network topologies [EB/OL],2006. http://www.caida.org/projects/nets-nr/.
    49.高汉中.论下一代网络[J],电信科学,2003,19(2):1-7.
    50. Newman M E J, Girvan M. Finding and evaluating community structure in networks[J], Physical Review E,2004,69(2):26113.
    51. Newman M E J. The structure and function of complex networks[J], SIAM Review,2003, 45:167-256.
    52.吴金闪,狄增如.从统计物理学看复杂网络研究[J],物理学进展,2004,24(1):18-46.
    53. Caida. skitter[EB/OL]. http://www.caida.org/tools/measurement/skitter/.
    54. Team Caida Macroscopic Topology Project. CAIDA skitter AS Links Topology[EB/OL]. http://imdc.datcat.org/collection/1-000W-X=CAIDA+skitter+AS+Links+Topology.
    55. The DIMES Project[EB/OL]. http://www.netdimes.org/.
    56. Internet Routing Registry[EB/OL]. http://www.irr.net/.
    57. Zhou S, Zhang G, Zhang G, et al. Towards a Precise and Complete Internet Topology Generator[A], Proceedings 2006 International Conference on Communications, Circuits and Systems[C],2006,3.
    58. Jin Li Guo. The classification and analysis of dynamic networks[J], Chinese Physics, 2007,16(5):1239-7.
    59. Mahadevan P, Krioukov D, Fall K, et al. Systematic topology analysis and generation using degree correlations[A], SIGCOMM[C].2006.
    60.张昕.互联网宏观拓扑分析技术研究[D],沈阳:东北大学,2008.
    61.杨安义,朱华清,王继龙.一种改进的基于SNMP的网络拓扑发现算法及实现[J],计算机应用,2007,27(10):2412-2413.
    62.罗夏朴,郭成城,晏蒲柳.异构IP网络中的拓扑自动搜索算法[J],武汉大学学报(理学版),2001,47(3):364-368.
    63.凌军,曹阳.基于ARP和SNMP的网络拓扑自动发现算法[J],武汉大学学报(理学版),2001,47(1):67-70.
    64.郑海,张国清.物理网络拓扑发现算法的研究[J],计算机研究与发展,2002,39(3):264-268.
    65. Richard J. Mapping the Internet with traceroute[J], BoardWatch Magazine,1996,10(12).
    66. Lakhina A, Byers J W, Crovella M, et al. Sampling biases in IP topology measurements [A], In:Proc. IEEE INFOCOM[C],2003,332-341.
    67. Govindan R, Tangmunatunkit H. Heuristics for Internet Map Discovery[A]. In:Proc.IEEE INFOCOM 2000[C],3:1371-1380.
    68. Chang H, Jamin S, Willinger W. To peer or not to peer:modeling the evolution of the Internet's AS-level topology [A], In:Proc. IEEE INFOCOM[C],2006,25:1-12.
    69. Wang X, Loguinov D. Wealth-based evolution model for the Internet AS-level topology[A], In:Proc IEEE INFOCOM[C],2006:1-11.
    70. Oliveira R V, Zhang B, Zhang L. Observing the evolution of internet as topology[J], In: Proc ACM SIGCOMM,2007,37(4):313-324.
    71. Vazquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of the Internet[J], Physical Review E,2002,65(6):66130.
    72. Pastor S R, Vazquez A, Vespignani A. Dynamical and correlation properties of the Internet[J], Physical Review Letters,2001,87(25):258701.
    73. Albert R, Baraba A L. Statistical mechanics of complex networks[J], Reviews of Modern Physics,2002,74(1):47-97.
    74. Chalmers R C, Almeroth K C. On the topology of multicast trees[J], IEEE ACM Transactions on Networking,2003,11(1):153-165.
    75. Doyle J C, Alderson D L, Li L, et al. The "robust yet fragile" nature of the Internet[J], PNAS,2005,102(41):14497-14502.
    76. Reuven C, Keren E, Daniel B A, et al. Resilience of the Internet to random breakdowns[J], Physical Review Letters,2000,85(21):4626.
    77. Reuven C, Keren E, Daniel B A, et al. Breakdown of the Internet under intentional attack[J], Physical Review Letters,2001,86(16):3682.
    78. Chen Q, Chang H, Govindan R, et al. The origin of power laws in Internet topologies revisited [A], In:Proc IEEE INFOCOM[C],2002:608-617.
    79. Chang H, Willinger W. Difficulties measuring the Internet's AS-Level ecosystem [A], In: Proc 40th Annual Conference on Information Sciences and Systems[C],2006:1479-1483.
    80. Strogatz S H. Exploring complex networks[J], Nature,2001,410:268-276.
    81. Zachary W W. An information flow model for conflict and fission in small groups[J], Journal of Anthropological Research,1997,33:452-473.
    82. Cancho R F, Sole R V. The small-world of human language[J], Proceedings of the Royal Society of London,2001,268(B):2261-2266.
    83. Newman M E J. Scientific collaboration networks[J], Phys. Rev. E,2001,64:016132.
    84. Jcong H, Mason S P, Oltbai Z N, et al. Lethality and centrality in protein networks[J], Nature,2001,411:41-42.
    85. Flake G W, Lawrence S R, Giles C L, et al. Self-organization and identification of web communities[J], IEEE computer,2002,35:66-71.
    86. Adamic A L, Adar E. Friends and neighbors on the web[J], Social Networks,2003,25: 211-230.
    87. Shen-Orr S, Milo R, Mangan S, et al. Network motifs in the transcriptional regulation network of Escherichia coli[J], Nature Genetics,2002,31:64.
    88. Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs:simple building blocks of complex networds[J], Science,2002,298:824.
    89. Holme P, Huss M, Jeong H. Subnetwork hierarchies of biochemical pathways[J], Bioinformation,2003,19:532-538.
    90. Gleiser P, Danon L. Community structure in jazz[J], Advances in Complex Systems,2003, 6:565-573.
    91.杜海峰,李树茁,Marcus W F, et al.小世界网络与无标度网络的社区结构研究[J],物理学报,2007,56(12):6887-6893.
    92.杨波.复杂社会网络的结构测度与模型研究[D],上海:上海交通大学,2007.
    93.莫春玲.复杂网络中聚集方法及社团结构的研究[D],武汉:武汉理工大学,2007.
    94.王莉菲.AS级Internet宏观拓扑特征演化分析及核数建模[D],沈阳:东北大学,2007.
    95. Choi J H, Yoo C. One-way delay estimation and its application[J], Computer Communications,2005,28(7):819-828.
    96. Gurewitz O, Cidon I, Sidi M. One-way delay estimation using network-wide measurements[J], IEEE ACM Transactions on Networking,2006,14(S1):2710-2724.
    97. Alexander C, Matt M, Vidiadhar M, et al. End-to-end available bandwidth as a random autocorrelated QoS-relevant time-series[J], Computer Networks,2008,52(6):1220-1237.
    98. Strauss J, Katabi D, Kaashoek F. A measurement study of available bandwidth estimation tools [A], In:Proc the 3rd ACM SIGCOMM Conference on Internet Measurement[C],2003: 39-44.
    99. Akella A, Chawla S, Kannan A, et al. On the scaling of congestion in the Internet graph[J], ACM SIGCOMM Computer Communications Review,2004,34(3):43-56.
    100. Presti F L, Duffield N G, Horowitz J. Multicast-based inference of network-internal delay distributions [J], IEEE ACM Transactions on Networking,2002,10(6):761-775.
    101. Salamatian S, Fdida S. A framework for interpreting measurement over internet[J], Applications, Technologies, Architectures,and Protocols for Computer Communication,2003: 87-94.
    102.江帆,徐明伟,崔勇等.本地QoS状态的分布式实时测量方案[J],清华大学学报(自然科学版),2007,47(1):96-99.
    103.刘惠山,徐明伟,徐恪等.因特网路由协议研究综述[J],电信科学,2003,19(10):28-32.
    104. McGregor T, Braun H W, Brown J. The NLANR Network analysis infrastructure[J], IEEE Communications Magazine,2000,38(5):122-128.
    105. Paxson V. End-to-End routing behavior in the Internet[J], IEEE ACM Transactions on Networking,1997,5(5):601-615.
    106.牛燕华,任新华,毕经平.Internet网络测量方式综述[J],计算机应用与软件,2006,23(07):11-13.
    107. CAIDA. [EB/OL]http://www.caida.org.
    108. Seshan S, Stemm M, Katz R H. SPAND:shared passive network performance discovery [A], In:Proc USENIX Symposium on Internet Technologies and Systems[C],1997:135-146.
    109. Wang F, Gao L X. On inferring and characterizing Internet routing policies [A], In:Porc 3rd ACM SIGCOMM Conference on Internet Measurement[C],2003:15-26.
    110. Cheswick B, Burch H, Branigan S. Mapping and visualizing the Internet [A], In:Porc 2000 USENIX Annual Technical Conference[C],2000:1-12.
    111. Spring N, Dontcheva M, Rodrig M, et al. How to resolve IP aliasea [D], Technical Report, Department of Computer Science and Engineering, the University of Washington, 2004:1-13.
    112. CAIDA iffinder. [EB/OL]http://www.caida.org/tools/iffinder/.
    113. Huston G. Analyzing the Internet BGP routing table[J], The Internet Protocol Journal, 2001,4(1):2-15.
    114. Gao L X. On inferring autonomous system relationships in the Internet [A], In:Proc 2000 IEEE Global Telecommunications Conference[C],2000:387-396.
    115. Teixeira R, Resford J. A measurement framework for pin-pointing routing changes [A], In:Proc 2004 ACM SIGCOMM Workshop on Network Troubleshooting[C],2004:313-318.
    116. Hyun Y, Broido A, Claffy K C. Tracertoute and BGP AS path incongruities [EB/OL], CAIDA Technical Report,2003:1-14.
    117. Battista G D, Erlebach T, Hall A, Patrignani M, Pizzonia M, Schank T. Computing the types of the relationships between autonomous systems[J], IEEE ACM Transactions on Networking,2007,15(2):267-280.
    118. Xu K, Duan Z H, Zhang Z L, et al. On properties of Internet exchange points and their impact on AS topology and relationship [A], In:Proc 3rd International IFIP-TC6 Networking Conference[C],2004:284-295.
    119. Dimitropoulos X A, Krioukov D V, Huffaker B, et al. Inferring AS relationships:dead end or lively beginning [A], In:Proc 4th Workshop on Efficient and Experimental Algorithms[C],2005.
    120.徐野.Internet路由级宏观拓结构的TL模型[D],沈阳:东北大学,2006.
    121. Waxman B M. Routing of multipoint connections[J], IEEE Journal on Selected Areas in Communications,1988,6(9):1617~1622.
    122. Jared Winick, Sugih Jamin. Inet-3.0:Internet topology generator[EB/OL], Technical Report, CSE-TR-456-02, Ann Arbor:University of Michigan,2002.
    123. Chen G, Fan Z P, Li X. Modeling the complex Internet topology[M], Berlin: Springer-Verlag,2005.
    124. Caida. Macroscopic Topology AS Adjacencies [EB/OL],2006, http://www.caida.org/tools/measurement/skitter/as_adjacencies.xml
    125. Mahadevan P, Krioukov D, Fomenkov M, et al. The internet AS-level topology:three data sources and one definitive metric[J], ACM SIGCOMM Computer Communication Review,2006.36(1):17-26.
    126. Rene Wilhelm Henk Uijterwaal. ASN Missing In Action,ripe-353 [EB/OL],2005, http://www.ripe.net/ripe/docs/ripe-353.html
    127. Caida. skitter Destination Lists [EB/OL],2006, http://www.caida.org/analysis/topology/macroscopic/list.xml
    128. Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of Growing Networks with Preferential Linking[J], Physical Review Letters,2000.85(21):4633-4636.
    129. Krapivsky P L, Redner S. Statistical physics perspective of Web growth[J], Computer Networks,2002.39(3):261-276.
    130. Reka Albert Albert-Laszlo Barabasi. Emergence of Scaling in Random Networks[J], Science,1999.286:509-512.
    131. Shavitt Y, Shir E. DIMES:Let the Internet measure itself[J], SIGCOMM Computer Communication Review,2005,35(5):71-74.
    132. Masahiro S. Analyzing network bandwidths of ISP topologies having power-law degree distributions [D]. Osaka:Osaka University,2007.
    133. Zhu P D, Zhao J J, Wen Y, et al. On the Power-Law of the Internet and the Hierarchy of BGP Convergence[J], Lecture Notes in Computer Science,2007,4494:470-481.
    134. Siganos G, Faloutsos M, Faloutsos P, et al. Power laws and the AS-level Internet topology[J], IEEE ACM Trans, on Networking,2003,11(4):514-524.
    135.袁韶谦.Internet拓扑的社团特性分析及建模[D],沈阳:东北大学,2008.
    136. Newman M E J, Girvan M. Finding and evaluating community structure in networks[J], Physical Review E,2004.69(2):26113.
    137. Zachary W. An information flow model for conflict and fission in small groups[J], Journal of Anthropological Research,1977(33):452-473.
    138 Barabasi, A L. Jeong H, Neda Z. Evolution of the social network of scientific collaborations[J], Physica A,2002,311,590-614.
    139 Barabasi A L, Albert R. Emergence of scaling in random networks[J], Science,1999,286: 509-512.
    140. Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J], Nature,1998. 393:440-442.
    141. Barabasi A L, Eric Bonabeau. Scale free networks[J]. Scientific American,2003.50-59.
    142.解邹.复杂网络的社团结构建模与分析[D],上海:上海交通大学,2007.
    143.任敬喜.基于复杂网络的社区系统管理[D],青岛:青岛大学,2007.
    144.徐野,赵海,苏积威等.学生网的生长态势及其分形特征分析[J],复杂系统与复杂性科学,2005,2(4):60-66.
    145. KRACKHARDT DAVID. The strength of strong Ties:the 1mPortance of Philos in organization[M], Boston:Harvard Business school Press,1992.
    146. KRACKHARDT DAVID, JEFFREY R HANSON. Informal Networks:the ComPany Behind the Chart[J], Harvard Business Review,1993:104-111.
    147. YANG Z J, XU Z R. Forecast of the Population Growth in the Country of HEILONGJIANG by the Forecast Method of Dynamic Logistic[J], Journal of Agriculture University of HEILONGJIANG. 1997,9(2):23~28.
    148. WU S L. Forecast of development of China Numerical Library by Logistic Model[J], Journal of Information,2004.
    149. Zhang H. Two New Population Growth Equation[J], Journal of Bimathematics, 1995,10(4):78~82.
    150. Yin C Q, Yin H. Artificial Intelligence and Expert System[J], China Water Publication, 2002:291~295.
    151.黄润生.混沌及其应用[M],武汉:武汉大学出版社,2000.
    152. Kenneth J. Falconer. Fractal Geometry-Mathematical Foundations and Applications[M]. Northeastern University Press,1991.
    153.张琪昌,王洪礼,竺致文.分岔与混沌[M],天津:天津大学出版社,2005.
    154. Algorithms for graph drawing. http://www.leda-tutorial.org/en/unofficial/ch05s03s08.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700