复杂网络建模及其动力学性质的若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂网络近年来受到来自科学与工程各个领域研究者越来越多的关注,成为近年来研究的一个热点。本论文将统计方法、非线性系统理论、控制理论以及矩阵理论等理论和方法应用到复杂网络的研究中,对复杂网络的动力学性质和加权复杂网络的建模两个方面进行了研究。这两方面的研究无论在理论上还是在实际应用中都具有重要意义。通过对复杂网络动力学性质的研究,一方面可以使我们更好地了解和解释现实世界中复杂网络所呈现出来的各种动力学现象,如稳定、同步、振荡等;另一方面我们可以将对复杂网络动力学性质研究的理论成果应用到具体问题当中去,如可以设计出具有更好特性的实际网络或使网络处于对我们有利的状态,使得网络理论可以为我们所用。另外,现实世界中很多网络都是各个连接间具有不同权值的加权网络,过去比较多研究的无权网络模型只是对复杂网络的一种近似简化描述,加权网络模型则能够对实际复杂网络的动力学演化特性提供更加真实的细致和全面的描述。因此,对加权网络建模研究的重要意义是显而易见的。
     本文的主要主要内容和创新之处可概述如下:
     1.关于时延小世界网络的局部稳定性及分岔的研究。
     由于信号传输速度有限,以及节点间竞争和通道拥塞等因素,在复杂网络中通常存在时延。我们研究了一个带有时延的小世界网络模型的局部稳定性和Hopf分岔。并用中心流形定理和正规型理论确定了分岔周期解的稳定性和分岔方向。对小世界网络的分岔现象研究的意义在于:一方面,由于Hopf分岔和振荡现象密切相关,对小世界网络Hopf分岔的研究可以使我们更好地解释现实世界中的许多小世界网络,如Internet、电网、生物神经网络中发生的对参数敏感的现象;另一方面,若能深入地了解小世界网络中的分岔现象及其规律,则通过利用比较成熟的分岔控制理论和方法,我们就可将现实世界中的小世界网络控制到所期望的有利的状态中去。
Recently, complex networks attract more and more attentions from various fields of science and engineering. In this dissertation, we apply statistical method, nonlinear system theory, control theory and matrix theory to the research of complex networks, and we study the dynamic properties of complex networks, as well as the modeling of weighted complex networks. These studies are very important both in theory and in practical applications. By studying the dynamic properties of complex networks, on the one hand, we can understand and explain the dynamic properties presented in real-world networks, such as stability, synchronization and oscillation phenimena; and on the other hand, we can apply these theoretical results to some practical applications, for example, we can apply these results to the design of real networks to achieve good performance or to the control of real networks to achieve some desirable network behaviors that benefit the networks. In addition, many real-world networks are weighted networks with different weights in different connections. The unweighted network models studied in many existing literatures are simplified modeling of real networks, while weighted network models can provide more realistic and comprehensive descriptions of real networks. So, the importance of the modelling of weighted networks is clearly self-evident.The main contents and originalities in this paper can be summarized as follows: 1. Local stability and Hopf bifurcation in a delayed small-world network modelDue to limited transmitting speed, competition and congestions, usually there are time delays in complex networks. We study the local stability and Hopf bifurcation of a delayed small-world network model. We determine the stability of the bifurcating periodic solutions and directions of Hopf bifurcation by applying the center manifold theorem and the normal form theory. The studies of Hopf bifurcation in small-world networks are quite important. On the one hand, the bifurcations, which involve emergence of oscillatory behaviors, may provide an explanation for the parameter sensitivity observed in practice in many realistic small-world networks such as the
    Internet, the electrical power grids, and the biological neural networks; and on the other hand, if we understand more about the bifurcation behaviors of small-world networks, we can apply the existing effective bifurcation control method to achieve some desirable system behaviors that benefit the networks.2. Synchronization of complex networksThe synchronization has attracted increasing attentions due to its importance both in theory and in practical applications. In this dissertation we study the synchronization problems of delayed small-world networks of phase oscillators and coupled maps. And we study the synchronization of a general delayed complex network model by using Lyapunov-krasovskii functions and linear matrix inequalities (LMIs). We derive some easy-verified synchronization criteria. Further, we study the chaotic phase synchronization in small-world networks.3. On-off intermittency in small-world network of chaotic mapsWe study how the small-world topology would affect on-off intermittency of small-world networks of chaotic maps. When the globally coupled chaotic maps are synchronous, we fix the coupling coefficient. We find that by decreasing the connection probability gradually, when the probability slightly less than a critical value, the synchronous chaos is no longer stable and on-off intermittency appears. By further decreasing the probability, the intermittent dynamics will eventually be replaced by fully developed asynchronous chaos.4. Study on a neural network model with weighted small-world connections There are many biological neural networks that present small-world connections.But in most existing literatures, the authors studied neural network models with regular topologies. Note also that in most of the existing small-world network models no special weights in the connections were taken into account. However, this kind of simplified network models cannot well characterize biological neural networks, in which there are different weights in different synaptic connections. Here, we present a neural network model with small-world topology and with random weight values in different connections, and further investigate the stability of this model by using the Lyapunov function method and statistical method. We derive explicit relationship between the stability of small-world neural networks and the values of the network connection probability p and the number of neurons N.
引文
[1] D.J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton University Press, Princeton, NJ, 1999.
    [2] D.J. Watts, Six Degrees; The Science of a Connected Age, Norton, New York, 2003.
    [3] A.-L. Barabasi, Linked: The New Science of Networks, Perseus, Cambridge, 2002.
    [4] M. Buchanan, Nexus: Small Worlds and the Ground Breaking Science of Networks, Norton, New York, 2002.
    [5] S.H. Strogatz, SYNC: The Emerging Science of Spontaneous Order. New York: Hyperion, 2003.
    [6] S.H. Strogatz, Exploring complex networks, Nature, Vol. 410, pp. 268-276, 2001.
    [7] R. Albert, A.L. Barabasi, Statistical mechanics of complex networks, Reviews of Modem Physics, Vol. 74, pp. 47-97, 2002.
    [8] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of networks, Advances in Physics, Vol. 51, pp. 1079-1187, 2002.
    [9] X.F. Wang, Complex networks: Topology, dynamics and synchronization, Int. J. Bifurcation and Chaos, Vol. 12, pp. 885-916, 2002.
    [10] M.E.J. Newman, The structure and function of complex networks, SIAM Review, Vol. 45, pp. 167-256, 2003.
    [11] X.F. Wang, G. Chen, Complex networks: small-world, scale-free and beyond, IEEE Circuits and Systems Magazine, First Quarter, pp. 6-20, 2003.
    [12] N.D. Martinez, Artifacts or attributes? Effects of resolution on the Little Rock Lake food web, Ecological Monographs, Vol. 61, pp.367-392, 1991.
    [13] P. Erdos, A. Renyi, On random graphs, Publicationes Mathematicae, Vol. 6, pp. 290-297, 1959.
    [14] P. Erdos, A. Renyi, On the evolution of random graphs, Pub. Math. Inst. Hung. Acad. Sci., Vol. 5, pp. 17-6, 1960.
    [15] P. Erdos, A. Renyi, On the strength of connectedness of a random graph, Acta Math. Sci. Hungary, Vol. 12, pp. 261-267, 1961.
    [16] S. Milgram, The small world problem, Psychology Today, Vol. 2, pp.60-67, 1967.
    [17] A.-L. Barabasi et.al, Scale-free networks: Structure and properties, Report PPT, available online: http://www.nd.edu/~networks/.
    [18] D.J. Watts, S.H. Strogatz, Collective dynamics of "small-world" networks, Nature, Vol.393, pp.440-442, 1998.
    [19] M.E.J. Newman, D.J. Watts, Scaling and percolation in the small-world network model, Phys. Rev. E, Vol.60, pp.7332-7342, 1999.
    [20] M. Barthelemy, L.A.N. Amaral, Small-world networks: Evidence for a crossover picture, Phys. Rev. Lett., Vol. 82, pp. 3180-3183, 1999.
    [21] M. Barthelemy, L.A.N. Amaral, Erratum: Small-world networks: Evidence for a crossover picture, Phys. Rev. Lett., Vol. 82, p. 5180, 1999.
    [22] A. Barrat, M. Weigt, On the properties of small-world network models, Eur. Phy. J. B, Vol. 13, pp. 547-560, 2000.
    [23] H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Lethality and centrality in protein networks, Nature, Vol. 411, pp. 41-42, 2001.
    [24] A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Science, Vol. 286, pp. 509-512, 1999.
    [25] A.-L. Barabasi, R. Albert, H. Jeong, Mean-field theory for scale-free networks, Physica A, Vol. 272, pp. 173-187, 1999.
    [26] L.A.N. Amaral, A. Scala, A. barthelemy, H.E. Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci. USA, Vol. 97, pp.11149-11152, 2000.
    [27] R. de Castro, J.W. Grossman, Famous trails to Paul Erdos, Mathematical Intelligencer, Vol. 21, pp.51-63, 1999.
    [28] J.W. Grossman, P.D.F. Ion, On a portion of the well-known collaboration graph, Congressus Numerantium, Vol.108, pp. 129-131, 1995.
    [29] M.E.J. Newman, Scientific collaboration networks: I. Network construction and fundamental results, Phys. Rev. E, Vol. 64, 016131, 2001.
    [30] M.E.J. Newman, Scientific collaboration networks: II Shortest paths, weighted networks, and centrality, Phys. Rev. E, Vol. 64, 016132, 2001.
    [31] M.E.J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, Vol. 98, pp. 404-409, 2001.
    [32] W. Aiello, F. Chung, L. Lu, A random graph model for massive graphs, Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp.171-180, 2000.
    [33] W. Aiello, F. Chung, L. Lu, Random evolution of massive graphs, in J. Abello, P. M. Pardalos, and M. G. C. Resende (eds.), Handbook of Massive Data Sets, pp. 97-122, Kluwer, Dordrecht, 2002
    [34] H. Ebel, L.-I. Mielsch, S. Bomholdt, Scale-free topology of e-mail networks, Phys. Rev. E, Vol. 66, 035103,2002.
    [35] M. E. J. Newman, S. Forrest, J. Balthrop, Email networks and the spread of computer viruses, Phys. Rev. E, Vol. 66, 035101, 2002.
    [36] R. Albert, H. Jeong, A.-L. Barabasi, Diameter of the world-wide web, Nature, Vol. 401, 130—131,1999.
    [37] A.-L. Barabasi, R. Albert, H. Jeong, Scale-free characteristics of random networks: The topology of the World Wide Web, Physica A, Vol. 281, 9—77, 2000.
    [38] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Graph structure in the web, Computer Networks, Vol. 33, 309—320, 2000.
    [39] S. Redner, How popular is your paper? An empirical study of the citation distribution, Eur. Phys. J. B, Vol. 4, 131—134, 1998.
    [40] S. N. Dorogovtsev, J. F. F. Mendes, Language as an evolving word web, Proc. R. Soc. London B, Vol. 268, 2603—2606, 2001.
    [41] R. Ferrer i Cancho, R.V. Sole, The small world of human language, Proc. R. Soc. London B, Vol. 268, 2261—2265, 2001.
    [42] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, A.-L. Barabasi, The large-scale organization of metabolic networks, Nature, Vol. 407, 651—654, 2000.
    [43] M. Huxham, S. Beaney, D. Raffaelli, Do parasites reduce the chances of triangulation in a real food web?, Oiko, Vol. 76, 284—300, 1996.
    [44] J. G. White, E. Southgate, J.N. Thompson, S. Brenner, The structure of the nervous system of the nematode C. elegans, Phil. Trans. R. Soc. London, Vol. 314, 1—340, 1986.
    [45] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker, W. Willinger, The origin of power laws in Internet topologies revisited, Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE Computer Society, 2002.
    [46] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the Internet topology, Computer Communications Review, Vol. 29, 251—262, 1999.
    [47] M.E.J. Newman, Mixing patterns in networks, Phys. Rev. E, Vol. 67,026126, 2003.
    [48] S. Valverde, R.F. Cancho, R.V. Sole, Scale-free networks from optimal design, Europhys. Lett., Vol. 60, 512—517, 2002.
    [49] R. Ferrer i Cancho, C. Janssen, R.V. Sole, Topology of technology graphs: Small world patterns in electronic circuits, Phys. Rev. E, Vol. 64, 046119, 2001.
    [50] D. de Lima e Silva, et.al, The complex networks of Brazilian popular music, Physica A, Vol.
     332, pp. 559-565, 2004.
    [51] Z. Kou, C. Zhang, Reply networks of a bulletin board system, Phys. Rev. E, Vol.67, 036117,2003.
    [52] S. Maslov, K. Sneppen, Specificity and stability in topology of protein networks, Science, Vol. 296,910—913,2002.
    [53] R. Pastor-Satorras, A. Vazquez, A. Vespignani, Dynamical and correlation properties of the Internet, Phys. Rev. Lett., Vol. 87, 258701,2001.
    [54] A. Vazquez, R. Pastor-Satorras, A. Vespignani, Large-scale topological and dynamical properties of the Internet, Phys. Rev. E, Vol. 65, 066130, 2002.
    [55] M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett., Vol. 89, 208701, 2002.
    [56] J. Scott, Social Network Analysis: A Handbook, Sage Publications, London, 2nd ed. 2000.
    [57] S. Wasserman, K. Faust, Social Network Analysis, Cambridge University Press, Cambridge, 1994.
    [58] J. Moody, Race, school integration, and friendship segregation in America, Am. J. Sociol., Vol. 107,679—716,2001.
    [59] M. Girvan, M. E. J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, Vol. 99, 8271—8276, 2002.
    [60] J.A. Dunne, R.J. Williams, N.D. Martinez, Food-web structure and network theory: The role of connectance and size, Proc. Natl. Acad. Sci. USA, Vol. 99, 12917—12922, 2002.
    [61] N.D. Martinez, Constant connectance in community food webs, American Naturalist, Vol. 139, 1208—1218, 1992.
    [62] H.C. White, S.A. Boorman, R.L. Breiger, Social structure from multiple networks: I. Blockmodels of roles and positions, Am. J. Sociol., Vol. 81, 730-779, 1976.
    [63] G.W. Flake, S.R. Lawrence, C.L. Giles, F.M. Coetzee, Self-organization and identification of Web communities, IEEE Computer, Vol. 35, 66—71, 2002.
    [64] S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, A.N. Samukhin, Spectra of complex networks, Phys. Rev. E, Vol. 68, 046109, 2003.
    [65] K.-I. Goh, B. Kahng, D. Kim, Spectra and eigenvectors of scale-free networks, Phys. Rev. E, Vol.64, 051903, 2001.
    [66] I.J. Farkas, I. Derenyi, A.-L. Barabasi, T. Vicsek, Spectra of "real-world" graphs: Beyond the semicircle law, Phys. Rev. E, Vol. 64, 026704, 2001.
    [67] M.A. de Menezes, C. Moukarzel, T. J.P. Penna, First-order transition in small-world networks, Europhys. Lett., Vol. 50, pp. 574—579, 2000.
    [68] C.F. Moukarzel, Spreading and shortest paths in systems with sparse long-range connections, Phys. Rev. E, 60, pp.6263—6266, 1999.
    [69] M.E.J. Newman, D.J. Watts, Renormalization group analysis of the small-world network model, Phys. Lett. A, 263, pp.341—346, 1999.
    [70] M. Ozana, Incipient spanning cluster on small-world networks, Europhys. Lett., 55, pp.762—766, 2001.
    [71] F. Comellasa, M. Sampels, Deterministic small-world networks, Physica A, Vol. 309, pp. 231-235,2002.
    [72] F. Comellasa, J. Ozona, J.G. Petersb, Deterministic small-world communication networks, Information Processing Letters, Vol. 76, pp.83-90, 2000.
    [73] S.N. Dorogovtsev, J.F.F. Mendes, Scaling behaviour of developing and decaying networks, Europhys. Lett., Vol. 52, pp.33—39, 2000.
    [74] P.L. Krapivsky, S. Redner, Organization of growing random networks, Phys. Rev. E, 63, 066123,2001.
    [75] P.L. Krapivsky, S. Redner, A statistical physics perspective on Web growth, Computer Networks, 39, pp.261—276, 2002.
    [76] P.L. Krapivsky, S. Redner, F. Leyvraz, Connectivity of growing random networks, Phys. Rev. Lett., 85, pp.4629-4632, 2000.
    [77] R. Albert, A.-L. Barabasi, Topology of evolving networks: Local events and universality, Phys. Rev. Lett., 85, pp.5234—5237, 2000.
    [78] G. Caldarelli, A. Capocci, P. De Los Rios, M.A. Munoz, Scale-free networks from varying vertex intrinsic fitness, Phys. Rev. Lett., 89, 258702, 2002.
    [79] G. Ergun, G.J. Rodgers, Growing random networks with fitness, Physica A, Vol.303, pp.261—272, 2002.
    [80] A.-L. Barabasi, E. Ravasz, T. Vicsek, Deterministic scale-free networks, Physica A, Vol.299, pp.559-564, 2001.
    [81] J. Jost, M.P. Joy, Evolving networks with distance preferences, Phys. Rev. E, Vol. 66, 036126, 2002.
    [82] X. Li, G. Chen, A local world evolving network model, Physica A, Vol. 328, pp. 274-286, 2003.
    [83] M.E.J. Newman, Models of the small-world, Journal of Statistical Physics, Vol. 101, pp. 819-841,2000.
    [84] H. Hong, M.Y. Choi, and B.J. Kim, Synchronization on small-world networks, Phys. Rev. E,
     Vol. 65, 026139,2002.
    [85] M. Barahona, and L.M. Pecora, Synchronization in small-world systems, Phys. Rev. Lett,.Vol. 89,054101,2002.
    [86] P. M. Gade, C. K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E, Vol. 62, pp. 6409-6413,2000.
    [87] X.F. Wang, G. Chen, Synchronization in small-world dynamical networks, Int. J. Bifur. Chaos, Vol.12, 187-192,2002.
    [88] J. Lu, X. Yu, G. Chen, Chaos synchronization of general complex dynamical networks, Physica A, Vol.334, pp.281-302, 2004.
    [89] X. Li, G. Chen, Synchronization and desynchronization of complex dynamical networks- An engineering viewpoint, IEEE Trans. CAS-I, Vol.50, pp.1381-1390, 2003.
    [90] X. F. Wang, G. Chen, Synchronization in scale-free dynamical networks- robustness and fragility, IEEE Trans. CAS-I, Vol. 49, pp.54-62, 2002.
    [91] X. S. Yang, Chaos in small-world networks, Phys. Rev. E, Vol. 63,046206,2001.
    [92] X. S. Yang, Fractals in small-world networks with time-delay, Chaos, Solitons and Fractals, Vol. 13, pp. 215-219, 2002.
    [93] L. de Arcangelis and H.J. Herrmann, Self-organized criticality on small world networks, Physica A, Vol. 308, 545-549, 2002.
    [94] M.G. Cosenza and K. Tucci, Turbulence in small-world networks, Phys. Rev. E, Vol. 63, 036223, 2002.
    [95] Z. Hou and H. Xin, Oscillator death on small-world networks, Phys. Rev. E, Vol. 68, 055103, 2003.
    [96] Z. Gao, B. Hu, G. Hu, Stochastic resonance of small-world networks, Phys. Rev. E, Vol. 65, 016209,2002.
    [97] F. Qi, Z. Hou, H. Xin, Ordering chaos by random shortcuts, 91, 064102, 2003.
    [98] X.F. Wang, G. Chen, Pining control of scale-free dynamical networks, Physica A, Vol. 310, pp. 521-531,2002.
    [99] J.M. Kleinberg, Navigation in a small world, Nature, Vol. 406, p. 845, 2000.
    [100] A.P.S. de Moura, A.E. Motter, C. Grebogi, Searching in small-world networks, Phys. Rev. E, Vol. 68, 036106, 2003.
    [101] L.A. Adamic, R.M. Lukose, A.R. Puniyani, B.A. Huberman, Search in power-law networks, Phys. Rev. E, Vol. 64, 046135, 2001.
    [102] D.J. Watts, P.S. Dodds, M.E.J. Newman, Identity and search in social networks, Science, Vol.
     296, pp. 1302-1305, 2002.
    [103] P.S. Dodds, R. Muhamad, D.J. Watts, An experimental study of search in global social networks, Science, Vol. 301, pp.827-829,2003.
    [104] L. M. Sander, C.P. Warren, I. Sokolov, C. Simon, J. Koopman, Percolation on disordered networks as a model for epidemics, Math. Biosci., Vol. 180, 293—305, 2002.
    [105] M.E.J. Newman, Spread of epidemic disease on networks, Phys. Rev. E, Vol. 66, 016128, 2002.
    [106] R. Pastor-Satorras, A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, Vol. 3, 066117,2001.
    [107] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., Vol. 86, pp.3200—3203, 2001.
    [108] R. Pastor-Satorras, A. Vespignani, Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, Vol. 65, 035108, 2002.
    [109] R. Pastor-Satorras, A. Vespignani, Immunization of complex networks, Phys. Rev. E, Vol. 65, 036104,2002.
    [110] A.L. Lloyd, R.M. May, How viruses spread among computers and people, Science, Vol. 292, pp.1316—1317, 2001.
    [111] R.M. May, R.M. Anderson, The transmission dynamics of human immunodeficiency virus (HIV), Philos. Trans. R. Soc. London B, Vol. 321, pp.565—607, 1988.
    [112] R.M. May, A.L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E, Vol. 64, 066112,2001.
    [113] M. Boguna, R. Pastor-Satorras, Epidemic spreading in correlated complex networks, Phys. Rev. E, Vol. 66,047104,2002.
    [114] M. Boguna, R. Pastor-Satorras, and A. Vespignani, Absence of epidemic threshold in scale-free networks with connectivity correlations, Phys. Rev. Lett., Vol. 90,028701, 2003.
    [115] H. Andersson, Epidemic models and social networks, Math. Scientist, Vol. 24, pp.128—147, 1999.
    [116] N.M. Ferguson, G.P. Garnett, More realistic models of sexually transmitted disease transmission dynamics: Sexual partnership networks, pair models, and moment closure, Sex. Transm. Dis., Vol. 27, pp.600—609, 2000.
    [117] M.J. Keeling, The effects of local spatial structure on epidemiological invasion, Proc. R. Soc. London B, Vol. 266, pp.859—867, 1999.
    [118] A. Kleczkowski, B.T. Grenfell, Mean-field-type equations for spread of epidemics: The
     "small world" model, Physica A, Vol.274, pp. pp.355—360, 1999.
    [119] P. Shi, M. Small, Modelling of SARS for Hong Kong, arXiv: q-bio.PE/0312016, 2003.
    [120] M. Small, P. Shi, C.K. Tse, Plausible models for propagation of the SARS virus, arXiv: q-bio.PE/0312029, 2003.
    [121] N. Masuda, N. Konno, K. Aihara, Tansmission of SARS in dynamical small world networks, arXiv: cond-mat/0401598, 2003.
    [122] J.O. Kephart, S.R. White, Directed-graph epidemiological models of computer viruses, Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 343—359, IEEE Computer Society, Los Alamitos, CA, 1991.
    [123] R. Cohen, S. Havlin, D. ben-Avraham, efficient immunization strategies for computer networks and populations, Phys. Rev. Lett., Vol. 91, 247901, 2003.
    [124] Monasson, R., Diffusion, localization and dispersion relations on 'small-world' lattices, Eur. Phys. J. B, Vol.12, pp.555—567, 1999.
    [125] J.H. Kim, Y.J. Ko, Error correcting codes on scale-free networks, arXiv: cond-mat/0401170, 2004.
    [126] C. Li, G. Chen, Local stability and Hopf bifurcation in small-world delayed networks, Chaos, Solitons and Fractals, Vol. 20, pp. 353-361, 2004.
    [127] B. D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
    [128] C. Li, G. Chen, X. Liao, J. Yu, Hopf bifurcation in an Internet congestion control model, Chaos, Solitons and Fractals, Vol. 19, pp.853-862, 2004.
    [129] G. Chen (ed.), Controlling Chaos and Bifurcations in Engineering Systems, CRC Press, Boca Raton, FL, USA, 1999.
    [130] J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1997.
    [131] 李伟固,正规型理论及其应用,科学出版社,北京,2000.
    [132] J. L. Moiola, G. Chen. Hopf Bifurcation Analysis: A Frequency Domain Approach. Singapore: World Scientific, 1996.
    [133] N.D. Hayes, Roots of the transcendental equation associated with a certain differential-difference equation, J. London Math. Soc., vol.25, pp. 226-232, 1950.
    [134] R. Bellman and K.L. Cooke, Differential-Difference Equations, New York: Academic, 1963.
    [135] J.K. Hale, S.M.Verduyn Lunel, Introduction to Functional Differential Equations, New York: Springer-Verlag, 1993.
    [136] X. Li, G. Chen, C. Li, Stability and bifurcation of disease spreading in complex networks, Int. J. System Sci., Accepted.
    [137] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, and C.S. Zhou, The synchronization of chaotic systems, Phys. Rep., Vol. 366, pp.1-101, 2002.
    [138] I.I. Blekman, Synchronization in Science and Technology, Nauka, Moscow, 1981 (inRussian); ASME Press, NewYork, 1988 (inEnglish).
    [139] L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., Vol. 64, pp.821-825, 1990.
    [140] M.G Rosenblum, A.S. Pikovsky, J.Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., Vol. 76, pp. 1804-1807, 1996.
    [141] M.G. Rosenblum, A.S. Pikovsky, J.Kurths, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., Vol. 78, pp. 4193-4196, 1997.
    [142] R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., Vol. 82, pp.3042-3045, 1999.
    [143] H. U. Voss, Anticipating chaotic synchronization, Phys. Rev. E, Vol. 61, pp. 5115-5119, 2000.
    [144] S. Kim, S.H. Park, and C.S. Ryu, Multistability in Coupled Oscillator Systems with Time Delay, Phys. Rev. Lett., Vol. 79, pp.2911-2914, 1997.
    [145] M.Y. Choi, H.J. Kim, D. Kim, and H. Hong, Synchronization in a system of globally coupled oscillators with time delay, Phys. Rev. E, Vol. 61, pp.371-381, 2000.
    [146] M.K.S. Yeung, and S. H. Strogatz, Time delay in the Kuramoto model of coupled oscillators, Phy. Rev. Lett., Vol. 82, pp.648-651, 1999.
    [147] M.G. Earl, S.H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion, Phys. Rev. E, Vol.67, 036204, 2003.
    [148] C.W. Wu, and L.O. Chua, Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. CAS-I, Vol. 42, pp.430-447, 1995.
    [149] H. Minc. Nonegative Matrices, Wiley, New York, 1988.
    [150] C. Li, H. Xu, X. Liao, J. Yu, Synchronization in small-world oscillator networks with coupling delays, Physica A, Vol.335, No. 3-4, pp.359-364, 2004.
    [151] 扬维明,时空混沌和耦合映射格子,非线性科学丛书,上海科学教育出版社,1994。
    [152] K. Kaneko (Ed.), Theory and Applications of Coupled Map Lattices, John Wiley & Sons, New York, 1993.
    [153] K. Kaneko, Globally coupled chaos violates the law of large numbers but not the central-limit theorem, Phys. Rev. Lett., Vol. 65, pp.1391-1394, 1990.
    [154] P.M. Gade, H. Cerdeira, and R. Ramaswamy, Coupled maps on trees, Phys. Rev. E, Vol.52, pp. 2478-2485, 1995.
    [155] K. Kaneko, Overview of coupled map lattices, Chaos, Vol.2, pp.279-282, 1992.
    [156] A.L. Gelover-Santiago, R. Lima, and G. Matinez-Mekler, Synchronization and cluster periodic solutions in globally coupled maps, Physca A, Vol. 283, pp.131-135, 2000.
    [157] C. Li, S. Li, X. Liao, J. Yu, Synchronization in coupled map lattices with small-world delayed interactions, Physica A, Vol.335, No. 3-4, pp.365-370, 2004.
    [158] K. Konishi, and H. Kokame, Decentralized delayed-feedback control of a one-way coupled ring map lattice, Physica D 127, pp.1-12, 1999.
    [169] S.P. Bhattacharyya, H. Chapellat, and L.H. Keel, Robust Control: The Parametric Approach, Prentice-Hall, NJ, 1995.
    [170] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, Philadelphia: SIAM, 1994.
    [171] Y.M. Moon, P. Park, W.H. Kwon, Y.S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, Vol.74, No. 14, pp.1447-1455, 2001.
    [172] J. Lu, G. Chen, New general complex dynamical network models and their controlled synchronization criteria, preprint, 2003.
    [173] C. Li, G. Chen, Synchronization in general complex dynamical networks with coupling delays, Physica A, Submitted.
    [174] A.S. Pikovsky, M.G. Rosenblum, G.V. Osipov, and J. Kurths, Phase synchronization of chaotic oscillators by external driving, Physica D, Vol.104, 219-238, 1997.
    [175] R.C. Elson et al., Synchronous behavior of two coupled biological neurons, Phys. Rev. Lett., Vol.81, pp.5692-5695, 1998.
    [176] B. Blasius, A. Huppert, and L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems, Nature (London), Vol.399, pp.354-359, 1999.
    [177] E. Allaria, F.T. Arechi, A. Digarbo, and R. Meucci, Synchronization of homoclinic chaos, Phy. Rev. Lett., Vol.86, pp.791-794, 2001.
    [178] E. Larinotsev, Phase synchronization of periodic and chaotic states induced by external optical injection in semiconductor lasers, Int. J. Bifur. Chaos, Vol.10, pp.2441-2446, 2000.
    [179] U. Parlitz, L. Junge, W. Lauterborn, and L. Kocarev, Experimental observation of phase synchronization, Phy. Rev. E, Vol. 54, pp.2115-2117, 1996.
    [180] S. Taherion and Y.-C. Lai, Experimental observation of lag synchronization in coupled
     chaotic systems, Int. J. Bifur. Chaos, Vol.10, pp.2587-2594,2000.
    [181] G.V. Osipov, A.S. Pikovsky, M.G. Rosenblum, and J. Kurths, Phase synchronization effects in a lattice of nonidentical Rossler oscillators, Phys. Rev. E, Vol.55, pp.2353-2361,1997.
    [182] Z. Zheng, G Hu, and B. Hu, Enhancement of phase synchronization through asymmetric couplings, Phys. Rev. E, Vol.62, pp.7501-7504, 2000.
    [183] M. Ding, Intermittency, in Encyclopedia of Nonlinear Science, Edited by Alwyn Scott, Taylor and Francis Publishing, in press.
    [184] Pomeau, P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Communications in Mathematical Physics, Vol. 74, pp. 189-197, 1980.
    [185] A. Pikovsky, A new type of intermittent transition to chaos, J. Phys. A, Vol. 16, pp.109-112, 1984.
    [186] H. Fujisaka, T. Yamada, A new intermittency in coupled dynamical systems, Prog. Theor. Phys., Vol. 74, pp. 918-921, 1985.
    [187] N. Platt, E.A. Spiegel, C. Tresser, On-off intermittency: a mechanism for bursting, Phys. Rev. Lett., Vol.70, pp.279-282, 1993.
    [188] C. Jeffries, J. Perez, Observation of a Pomeau-Manneville intermittent route to chaos in a nonlinear oscillator, Phys. Rev. A, Vol.26, pp.2117-2122, 1982.
    [189] H. Herzel, P. Plath, P. Svensson, Experimental evidence of homoclinic chaos and type-II intermittency during the oxidation of methanol, Physica D, Vol. 48, pp.340-352, 1991.
    [190] M. Dubois, A. Rubio, P. Berge, Experimental evidence of intermittencies associated with a subharmonic bifurcation, Phys. Rev. lett, Vol. 51, pp. 1446-1449, 1983.
    [191] P.W. Hammer, N. Platt, S.M. Hammel et.al, Experimental observation of on-off intermittency, Phys. Rev. Lett, Vol. 73, pp. 1095-1098, 1994.
    [192] J.F. Heagy, N. Platt, and S.M. Hammel, Characterization of on-off intermittency, Phys. Rev. E, Vol. 49, pp. 1140-1150, 1994.
    [193] H.L. Yang, E.J. Ding, On-off intermittency in random map lattices, Phys. Rev. E, Vol. 50, pp.3295-3298, 1994.
    [194] Y.Y. Hun, D.C. Kim, K. Kwak, T.K. Lim, W. Jung, On-off intermittency in a quasiperiodic driven nonlinear oscillator, Phys. Lett. A, Vol. 247, pp.70-74, 1998.
    [195] A. Krawiechi, R.A. Kosinski, On-Off Intermittency in Small Neural Networks with Time-Dependent Synaptic Noise, Int. J. Bifur. Chaos, Vol. 9, pp.97-105, 1999.
    [196] F. Xie, G. Hu, and Z. Qu, On-off intermittency in a coupled-map lattice system, Phys. Rev. E, Vol. 52, pp. 1265-1268, 1995.
    [197] M. Ding and W. Yang, Stability of synchronous chaos and on-off intermittency in coupled map lattice, Phys. Rev. E, Vol. 56, pp.4009-4016, 1997.
    [198] C. Li, G. Chen, On-off intermittency in small-world networks of chaotic maps, Phys. Rev. E, Submitted.
    [199] T.B. Achacoso, and W.S. Yamamoto, AY's Neuroamnatomy of C. Elegans for Coumputation, CRC Press, Boca Raton Florida, 1992.
    [200] L.F. Lago-Fernandez, R. Huerta, F. Corbacho, and J.A. Siguenza, Fast Response and Temporal Coherent Oscillations in Small-World Networks, Phys. Rev. Lett., Vol.84, pp.2758-2761,2000.
    [201] C. Aguirre, R. Huerta, F. Corbacho, and P. Pascual, Analysis of Biologically Inspired Small-World Networks, Lecture Notes in Computer Science, Vol.2415, pp.27-32,2002.
    [202] C. Li, G. Chen, Stability of a neural network model with small-world connections, Phys. Rev. E, Vol.68, 052901,2003.
    [203] M. Joy, On the global convergence of a class of functional differential equations with applications in neural network theory, J. Math. Anal. Appl., Vol.232, pp.61-81, 1999.
    [204] X. Liao, G. Chen, and E.N. Sanchez, LMI-based approach for asymptotically stability analysis of delayed neural networks, IEEE Trans. CAS-I, Vol.49, pp. 1033-1039, 2002.
    [205] S.H. Yook, H. Jeong, A.L. Barabasi, and Y. Tu, Weighted evolving networks, Phys. Rev. Lett., Vol.86, pp.5835-5838, 2001.
    [206] W. Aiello, F. Chung, and L. Lu, Random evolution in massive graphs, in Handbook on Massive Data Sets, (Eds. James Abello et al.), Kluwer Academic Publishers, pp.97-122, 2002.
    [207] D. Zheng, S. Trimper, B. Zheng, and P.M. Hui, Weighted scale-free networks with stochastic weight assignments, Phys. Rev. E, Vol.67,040102,2003.
    [208] C. Li, G. Chen, Network connection strengths: Another power-law?, arXiv: cond-mat/0311333, 2003.
    [209] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, The architecture of complex weighted networks, arXiv: cond-mat/0311416,2003.
    [210] G. Caldarelli, F. Coccetti, P. De Los Rios, Preferential exchange: Strengthening connections in complex networks, arXiv: cond-mat/0312236, 2003.
    [211] A. Barrat, M. Barthelemy, A. Vespignani, Weighted evolving networks: Coupling topology and weighted dynamics, arXiv: cond-mat/0401057,2004.
    [212] C. Li, G. Chen, A comprehensive weighted evolving network model, submitted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700