非线性动力系统的分岔控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分岔控制作为一个非线性科学中新出现的前沿研究课题,极具挑战性。分岔控制的目的是对给定的非线性动力系统设计一个控制器,用来改变系统的分岔特性,从而去掉系统中有害的动力学行为,使之产生人们所需要的动力学行为。本文在全面分析和总结非线性动力系统分岔控制研究现状的基础上,基于非线性动力学、非线性控制理论、分岔理论等非线性科学的现代分析方法,对非线性微分动力系统分岔控制的基础理论和应用进行了系统和深入的研究,工作具有较大的理论意义和工程应用价值,获得了较为丰硕的研究成果。主要研究内容和结论如下。
     1.利用开环控制的方法,实现了平衡点分岔的控制。推导出一维非线性微分动力系统发生鞍结分岔、跨临界分岔和叉形分岔三种基本平衡点分岔的条件。然后利用开环控制来改变非线性系统的分岔参数,使之获得理想的平衡点分岔方程。通过状态反馈控制器的设计,可实现所希望的任意平衡点分岔,同时去掉所不需要的轨道分支。
     2.设计了线性和非线性反馈控制器,实现了对带有平方和立方非线性项的强迫Duffing动力系统的分岔控制。当系统处于主共振和超谐共振状态时,设计了线性控制器,消除了系统的鞍结分岔;设计了非线性控制器来延迟系统鞍结分岔的出现;设计了线性和非线性项联合作用的控制器,可以适当的调整控制参数,使得系统不发生鞍结分岔,或延迟鞍结分岔的出现;同时,大大降低了系统响应的幅值。对线性控制器、非线性控制器、线性和非线性项联合作用的控制器进行了数值模拟分析,说明了控制器的设计是成功的、有效的。
     3.对二阶非线性常微分参数激励模型进行了动力学分析,设计了速度立方项的状态控制器,对参数激励系统的2倍超谐共振进行了控制。通过对平均方程的频响曲线分析和分岔分析,检验了控制器的效率,系统的响应幅值大大降低,鞍结分岔被消除,系统的动力学行为得到了优化。同时,利用改进的LP法对强非线性含Duffing-van der Pol振子的参数激励系统在1/2阶次谐共振时进行了分岔分析,由奇异性理论和普适开折理论,获得了系统在不同参数情况下的转迁集和分岔图,为今后进一步对系统进行分岔控制研究打下了良好的基础。同时,设计了一个简单的单摆模型,通过适当的外部激励信号的作用,完全可以实现对参数激励系统的分岔控制。这说明线性或非线性控制器在工程实际中是可以设计出来的,是完全可以实现的。
     4.设计了不同的含时间的非线性参数控制器,实现了对非线性动力系统的分
Bifurcation control as an emerging new research field has become more and more challenging. It aims at designing a controller to modify the bifurcation properties of a given nonlinear system, and achieving some desirable dynamical behaviors.Through a complete summary and examination of the history and the actuality of the bifurcation control research, in this paper a systematic investigation into the fundamental theory and application of the bifurcation control is made by using the nonlinear vibration control theory, the nonlinear dynamics theory, the bifurcation theory. The studies have more profound theoretical significances and important engineering application values, which contribute to the development and application of the bifurcation control. The main achievements and conclusions in this dissertation are obtained as follows:1. The strategy for controlling the equilibrium bifurcation is obtained by using the open-loop control approach. The conditions of three elementary static bifurcations as saddle-node, transcritical, and pitchfork types of bifurcations for a one-dimensional ordinary differential equation are formulated. The open loop control is used to adjust the bifurcation parameter in order to obtain a desired equilibrium bifurcation diagram. By adopting the state feedback control strategy, the required bifurcations is obtained and the unwanted branches are eliminated.2. The linear and nonlinear feedback controllers are designed to control the saddle-nodes bifurcation of the forced Duffing system with the quadratic and cubic nonlinearities. In the cases of primary and superharmonic resonances, the linear feedback controller is designed to eliminate saddle-node bifurcations which would occur in the uncontrolled system, while the nonlinear one is designed to delay the occurrence of saddle-node bifurcations. Accordingly, either a linear feedback, or a nonlinear one, or a synthesis of both is adequate for the purpose of bifurcation control. Moreover, an appropriate feedback can also decrease the amplitude of the steady state response. Through the numerical simulations, the results are qualitative agreement with these of the theoretical analysis.
    3. The theoretical studies reveal that the designed cubic velocity feedback is affective for controlling the superharmonic resonance responses of a parametrically excited system. The amplitude of the response are reduced and the saddle-node bifurcations have are eliminated, which would take place in the resonance responses. By analyzing the bifurcation function associated with the corresponding frequency-response equation and the Jacobi matrix, the gain of the feedback control is determined. A parametrically excited oscillator with strong nonlinearity including van der Pol and Duffing type is studied for static bifurcations. The applicable range of the MLP method is extended to 1/2 subharmonic resonance systems and the bifurcation equation of a strongly nonlinear oscillator which is transformed into a small parameter system is determined by using the multiple scales method. On the basis of the singularity theory, the transition set and the bifurcation diagram in various regions of the parameter plane are analyzed. The parametrically excited pendulum with the linear and nonlinear feedback is found which validates that the controller can be designed in the engineering applications.4. The different nonlinear parametric feedback control including time is used to control the bifurcations in various nonlinear dynamical systems, such as the forced Duffing system, the Duffing-van der Pol system and the parametrically excited system. The designed controllers are testified theoretically to eliminate the saddle-node bifurcation successfully in the case of primary and superharmonic resonances and to reject the steady-state response in the case of subharmonic. The results of the numerical simulations show that the proposed feedback control method is quite effective to achieve the goal of bifurcation control.5. The coupled oscillators are studied, and the control law is obtained in the case of the one-to-one internal resonance. An approximate solution for the nonlinear differential equations is got by using the method of multiple scales. And the bifurcation analysis and the performance of the control strategy are investigated theoretically. By adjusting the control parameter, the high-amplitude periodic and chaotic motions are removed.In this paper, the innovative thinking is that the bifurcation control theory is used to investigate the nonlinear dynamical systems, which enriches the nonlinear dynamics theory and expands the nonlinear control theory. The creative things are as follows: The open-loop control approach is used to control the equilibrium bifurcation. The state feedback is extended to control
引文
[1] 曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安交通大学出版社.2001.
    [2] 高为炳.非线性控制系统的发展.自动化学报.1991,17(5):513-523.
    [3] Rugh D, Nonlinear System Theory, The John Hopkins University Press, Beltimore, 1980.
    [4] 曹建福,韩崇昭.非线性控制系统的频谱理论及应用,控制与决策,1998,3:193-199.
    [5] 谢惠民.绝对稳定性理论及应用.北京:科学出版社.1987.
    [6] Brocket R W, Volterra series and geometric control theory, Automatic, 1976, 12: 167-176.
    [7] Billings S A, Gray J O & Owens D H, Nonlinear system design, Peter Peregrinus Ltd, 1984.
    [8] 方洋旺.非线性控制系统的综合理论研究.西安交通大学.博士论文.1997.
    [9] 陆启韶.分岔与奇异性.上海科技教育出版社.1995.
    [10] 陈予恕.两自由度分段线性振动系统的一种解法.固体力学学报,1982,(2):77-86.
    [11] 陈予恕,金志胜.两自由度分段线性振动系统的亚谐解.应用数学和力学,1986,7(3):206-213.
    [12] 毕勤胜,陈予恕.Duffing系统解的转迁集的解析表达式.力学学报,1997,29(5):573-581.
    [13] 徐鉴,陈予恕.具有非线性阻尼和刚度参数激励的Hopf分岔和混沌运动.非线性动力学学报,1995(增刊):15-20
    [14] Jin J D, Bifurcation Analysis of Double Pendulum with a Follower Force, Journal of Sound and Vibration, 1992, 154(2): 191-204.
    [15] Jin J D, Stability and Chaotic Motions of a Restrained Pipe Conveying Field, Journal of Sound and Vibration, 1997, 208(3): 427-439.
    [16] 金基铎.超音速板颤振问题中的局部分岔.力学与实践,1997,19(2):29-31.
    [17] 唐驾时,尹小波.一类强非线性系统的分叉.力学学报,1996,8(3):23-29.
    [18] 袁小阳,朱均.不平衡转子-滑动轴承系统的分叉.振动工程学报,1996,9(3):266-275.
    [19] Abed E H & Fu J H, Local feedback stabilization and bifurcation control : Part Ⅰ . Hopf bifurcation, Syst. Contr. Lett., 1986, 7: 11-17.
    [20] Abed E H & Fu J H, Local feedback stabilization and bifurcation: Ⅱ. Stationary bifurcation, Syst. Contr. Lett., 1987 8: 467-473.
    [21] Abed E H, Wang H O & Chen R C, Stabilization of period doubling bifurcations and implications for control of chaos, Physica D. 1994 70: 154-164.
    [22] Chen G, Fang J Q, Hong Y & Qin H, Controlling Hopf bifurcations: The Continuous Case, ACTA Physica China. 1999, 8: 416-422.
    [23] Chen G, Fang J Q, Hong Y & Qin H, Controlling Hopf bifurcations: The Discrete Case, Dis. Dyn. Nat. Soc, 2000.
    [24] Chen G, Liu J & Yap K C, Controlling Hopf bifurcations, Proc. Int. Symp. Circ. Syst., (Monterey, CA), 1997, Ⅲ639-642.
    [25] Chen G, Chaos, Bifurcation, and their control, in The Wiley Encyclopedia of Electrical and Electronics Engineering, ed, Webster J, (Wiley. NY), 1999 3: 194-218.
    [26] Chen G, Controlling Chaos and Bifurcations in Engineering Systems, (CRC Press, Boca Raton, FL), 1999.
    [27] Chen X, Gu G, Martin P & Zhou K, Bifurcation control with output feedback and its applications to rotating stall control, Automatic, 1998, 34: 437-443.
    [28] Gu G, Sparks A G & Banda S S, Bifurcation based nonlinear feedback control for rotating stall in axial flow compressors, Int. J. Cont,, 1997, 6: 1241-1257.
    [29] Yabuno H, Bifurcation control of parametrically excited Duffing system by a combined linear-plus-nonlinear feedback control, Nonlin. Dyn., 1997, 12: 263-274.
    [30] Kang W, Gu G, Sparks A & Banda S, Bifurcation test functions and surge control for axial flow compressors, Automatic, 1999, 35: 229-239.
    [31] Gu G, Chen X, Sparks A G '& Banda S S, Bifurcation stabilization with local output feedback, SIAM. J. Contr. Optim, 1999,. 37: 934-956.
    [32] Wang H O & Abed E H, Bifurcation control of a chaotic system, Automatic, 1995,31: 1213-1226.
    [33] Abed. E H & Wang H O, "Feedback control of bifurcation and chaos in dynamical systems", in Nonlinear Dynamics and Stochastic Mechanics, eds, Kliemann W & Sri Namachchivaya N, (CRC Press, Boca Raton, FL), 1995, 153-173.
    [34] Abed E H, Wang H O & Tesi A, "Control of bifurcation and chaos", in the Control Handbook. Eds, Levine W S, (CRC Press, Boca Raton, FL), 1995, 951-966.
    [35] Chen D, Wang H O & Chen G, Anti-control of Hopf bifurcation through washout filters, Proc. 37th IEEE Conf. Decision and Control, (Tampa, FL), 1998. 16-18: 3040-3045.
    [36] Wang H O, Chen D & Bushnell L G, Control of bifurcations and chaos in heart
     rhythms, Proc. 36th IEEE Conf. Decision Control, (San Diego, CA), 1997, 395-400.
    [37] Wang H O, Chen D & Chen G, Bifurcation control of pathological heart rhythms, Proc. IEEE Conf. Contr. Appl., Italy, 1998, 858-862.
    [38] Moiola J L & Chen G, Hopf bifurcation Analysis: A Frequency Domain Approach, (World Scientific, Singapore), 1996.
    [39] Berns D W, Moiiola J L & Chen G, Feedback control of limit cycle amplitudes from a frequency domain approach, Automatica, 1998, 34: 1567-1573.
    [40] Berns D W, Moiiola J L & Chen G, Predicting period-doubling bifurcations and multiple oscillations in nonlinear time-delayed feedback systems." IEEE Trans. Circuits Syst. I, 1998 45: 759-763.
    [41] Moiola J L, Berns D W & Chen G, Feedback control of limit cycle amplitudes, Proc. IEEE Conf. Decision and Contr., (San Diego, CA), 1997, 1479-1485.
    [42] Moiola J L & Chen G, Controlling the multiplicity of limit cycles, Proc. IEEE Conf. Decision and Contr., 1998, 3052-3057.
    [43] Basso M, Evangelisti A, Genesio R & Tesi A. On bifurcation control in time delay feedback systems, Int. J. Bifurcation and Chaos, 1998, 8: 713-721.
    [44] Moiola J L, Desages A C & Romagnoli J A, Degenerate Hopf Bifurcations via feedback system theory—higher-order harmonic balance, Chem. Eng. Sci. 1991, 46: 1475-1490.
    [45] Genesio R, Tesi A, Wang H O & Abed E H, Control of period doubling bifurcations using harmonic balance, Proc. Conf. Decis. Contr, San Antonio, 1993, TX: 492-497.
    [46] Mees A I & Chua L O, The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems, IEEE Trans. Circuits Syst., 1979, 26: 235-254.
    [47] Moiola J L, Colantonio M C & Donate P D, Analysis of static and dynamic bifurcation from a feedback systems perspective, Dyn. Stab. Syst. 1997, 12: 293-317.
    [48] Moiola J L, Berns D W & Chen G, Controlling degenerate Hopf bifurcations, Latin American Appl. Res., 1999, 29: 213-220.
    [49] Kang W, Bifurcation and normal form of nonlinear control systems, Parts Ⅰ and Ⅱ. SIAM J. Contr. Optim, 1998, 36: 193-232.
    [50] Chen G, Moiola J L, & Wang H O, Bifurcation control: theories, methods, and applications, Int. J. of Bifurcation and Chaos, 2000, 10: 511-548.
    [51] Chen G & Dong X, From Chaos to Order: Perspectives, Methodologies, and Application, Singapore: World Scientific Series on Nonlinear Science, 1998.
     Series A, 24.
    [52] Chen G & Moiola J L, An overview of bifurcation, chaos and nonlinear dynamics in control systems, J. Franklin Institute, 1994, 331B: 819-858.
    [53] Chen G, Chaos: Control and Anti-control, IEEE Circuits and Systems Society Newsletter, March 1998. 1-5.
    [54] Tesi A, Abed E H, Genesio R & Wang H O, Harmonic balance analysis of period-doubling bifurcation with implications for control of nonlinear dynamics, Automatica, 1996,32: 1255-1271.
    [55] Kang W & Krener A J, Extended quadratic controller normal form and dynamic feedback linearization of nonlinear systems, SIAM J. Contr. Optim., 1992, 30: 1319-1337.
    [56] Kang W, Bifurcation control via state feedback for systems with a single uncontrollable model, SIAM J. Contr. Optim., 2000, 38: 234-256.
    [57] Alvarez J & Curiel L E, bifurcations and chaos in a linear control system with saturated input, Int. J. bifurcation and chaos, 1997, 7: 1811-1822.
    [58] Brandt M E & Chen G, Feedback control of a quadratic map model of cardiac chaos, Int. J. Bifurcation and Chaos, 1996, 6: 715-723.
    [59] Cui F, Chew C H, Xu J & Cai Y, Bifurcation and chaos in the Duffing Oscillator with a PID controller, Nonlin. Dynam., 1997, 12: 251-262.
    [60] Lowenberg M H & Richardson T S, Derivation of non-linear control strategies via numerical continuation, Proc AIAA Atmospheric Flight Mechanics Conference, 1999, AIAA-99-4111, 359-369.
    [61] Moore F K & Greitzer E M, A theory of post-stall transients in axial compressors: Part I development of the equations, ASME J. Engr. Gas Turbines and Power,1986, 108: 68-76.
    [62] Streit D A, Krousgrill C M & Bajaj A K, Combination parametric resonance leading to periodic ang chaotic response in two-degree-of-freedom systems with quadratic nonlinearities, J. Sound & Vib., 1988, 124: 470-480.
    [63] Wang X F & Chen G, Chaotification via arbitrarily small feedback controls: theory, method, and application, Int. J. of Bifur. Chaos, 2000, 10: 549-570.
    [64] Calandririni G, Paolini E, Moiola J L & Chen G, Controlling limit cycles and bifurcation, in Controlling Chaos and Bifurcatons in Engineering Systems, ed. Chen G, (CRC Press, Boca Raton, FL), 1999, 200-227.
    [65] Bleich M E & Socolar J E S, Stability of periodic orbits controlled by time-delayed feedback, Phys. Lett., 1996, A210: 87-94.
    [66] Ji J C and Leung A Y T, Bifurcation control of a parametrically excited Duffing system, Nonlinear Dynamics 2002 27: 411-417.
    [67] Wang X F, Chen G & Yu X H, Anti-control of continuous-time systems by time-delay feedback, Chaos, 2000, 10: 771-779.
    [68] Vieira M de S & Lichtenberg A J, Controlling chaos using nonlinear feedback with delay, Phy. Rev., 1996, E54: 1200-1207.
    [69] Pyragas K, Control of chaos via extended delay feedback, Phys. Lett., 1995, A206: 323-330.
    [70] Kittel A, Parisi J & Pyragas K, Delayed feedback control of chaos by self-adapted delay time, Phys. Lett., 1995, A198: 433-436.
    [71] Chen G, Liu J, Nicholas B & Ranganathan S M, Bifurcation dynamics in discrete-time delayed\feedback control systems, Int. J. Bifurcation and Chao, 1999, 9: 287-293.
    [72] Konishi K, Ishii M & Kokame H, Stabilizing unstable periodic points of one-dimensional nonlinear systems using delayed-feedback signals, Phys. Rev., 1996, E54: 3455-3460.
    [73] Marcels I M Y & Bitmead R R, Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization, Automatic, 1986, 22:641-665.
    [74] Mareels I M Y & Bitmead R R, Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization Ⅱ—analysis, Automatic, 1988, 24: 485-497.
    [75] Praly L & Pomet J B, Periodic solutions in adaptive systems: The regular case, Proc. IFAC 10th Triennual World Congress, 1987, 10: 40-44.
    [76] Pyragas K, Continuous control of chaos by self-controlling feedback, Phys. Lett., 1992, A170: 421-428.
    [77] Pyragas K & Tamasevicius A, Experimental control of chaos by delayed self-controlling feedback, Phys. Lett., 1993, A180: 99-102.
    [78] Ydstie B E & Golden G C, Bifurcation and complex dynamics in adaptive control systems, Proc. IEEE Conf. Decision Contr, Athens, 1986, 2232-2236.
    [79] Ydstie B E & Golden M P, Chaos and strange attractors in adaptive control systems, Proc. IFAC World Congress, 1987, 10: 127-132.
    [80] Ydstie B E & Golden M P, Chaotic dynamics in adaptive systems, Proc. IFAC Workshop on Robust Adaptive Control, Newcastle, 1998, 14-19.
    [81] Dibernardo M, An Adaptive Approach to the Control and Synchronization of Continuous- Time Chaotic Systems, Int. J. of Bifurcations and Chaos, 1996, 6: 557-568.
    [82] Wang H O & Abed E H, Robust control of period doubling bifurcations and implications for control of chaos, Proc. 33rd IEEE Conf. Decision and Control, Orlando, 1994, 3287-3292.
    [83] 乔宇,王洪礼,竺致文,沈菲.电力系统的分岔控制研究.力学学报.2002. 34:195-198.
    [84] 罗晓曙,陈关荣等.状态反馈和参数调整控制离散非线性系统的倍周期分岔和混沌.物理学报.2003,52:790-794.
    [85] Alhumaizi K & Elnashaie S E H, Effect of control loop configuration on the bifurcation behaviour and gasoline yield of industrial fluid catalytic cracking (FCC) units, Math. Comp. Modelling, 1997, 25: 37-56.
    [86] Liaw D C & Abed E H, Control of compressor stall inception—A bifurcation theoretic approach, Automatic, 1996, 32: 109-115.
    [87] Wang H O, Adomaitis R A & Abed E H, Active control of rotating stall in axial-flow compressors, Proc. 1994 Am. Control Conf., (Baltimore, MD), 1994, 2317-2321.
    [88] Chen H, Bifurcation and stability of constrained rotational mechanical systems, in Flexible Mechanism, Dynamics, Robot Trajectorie, eds, Derby S, McCarthy M & Pisano A, (ASME, NY), 1990,169-176.
    [89] Hackl K, Yang C Y & Cheng A H D, Stability, bifurcation and chaos of non-linear structures with control. Part Ⅰ. Autonomous case, Int. J. Nonlin. Mech. 1993, 28: 441-454.
    [90] Ono E, Hosoe S, Tuan H D & Doi S, Bifurcation in vehicle dynamics and robust front wheel steering control, IEEE Trans. Contr. Syst. Technol., 1998, 6: 412-420.
    [91] Richards G A, Yip M J, Robey E & Cowell, Combustion oscillation control by cyclic fuelinjection, J. Eng. Gas Turbines and Power Electronics, 1997, 10: 340-343.
    [92] Senjyu T & Uzeato K, stability analysis and suppression control of rotor oscillation for stepping motors by Lyapunov direct method, IEEE Trans. Power Electron., 1995, 10: 333-339.
    [93] Chang F J, Twu S H & Chang S, Global bifurcation and chaos from automatic gain control loops, IEEE Trans. Circuits Syst., 1993, 40: 403-411.
    [94] Abed E H, Wang H O, Alexander J C, Hamdan A M A & Lee H C, Dynamical bifurcations in a power system model exhibiting voltage collapse, Int. J. Bifurcation and Chaos, 1993, 3: 1169-1176.
    [95] Day I J, Active suppression of rotating stall and surge in axial compressors, ASME J. Turbomachinery, 1993, 115: 40-47.
    [96] Doedel E J & Wang X J, AUTO94: Software for continuation and bifurcation problems in ordinary differential equations, Center for Research on Parallel Computing, California Institute of Technology, (Pasadena, CA), 1995.
    [97] Wang H O, Abed E H & Hamdan M A, Bifurcations, chaos, and crises in voltage collapse of a model power system, IEEE Trans. Circuits Syst. 1994, 41: 294-302.
    [98] Goman M G & Khramtsovsky A V, Application of continuation and bifurcation methods to the design of control systems, Phil. Trans. R. Soc. Lond., 1998, A356: 2277-2295.
    [99] Moroz I M, Baigent S A, Clayton F M & Lever K V, Bifurcation analysis of the control of an adaptive equalizer, Proc. R. Soc. London Series A-Math. & Phys. Science, 1992, 537: 501-515.
    [100]Srivastava K N & Srivastava S C, Application of Hopf bifurcation theory for determining critical value of a generator control or load parameter, Int. J. Electrical Power Energy Syst., 1995, 17: 347-354.
    [101]Ueta T, Kawakami H & Morita I, A study of the pendulum equation with a periodic impulse force bifurcation and chaos, IEICE Trans. Fundam. Electr. Commun. Comput. Sci. 1995, E78A, 1269-1275.
    [102]Volkov AN & Zagashvili U V, A method of synthesis for automatic control systems with maximum degree of stability and given oscillation index, J. Comput. Syst. Sci. Int., 1997, 36: 29-34.
    [103]Littleboy D M & Smith P R, Using bifurcation methods to aid nonlinear dynamic inversion control law design, J. Guidance Contr. Dyn., 1998, 21: 632-638.
    [104] Gibson L P, Nichols N K & Littleboy D M, Bifurcation analysis of eigenstruture assignment control in a simple nonlinear aircraft model, J. Guidance Contr. Dyn., 1998,21: 792-798.
    [105]Guckkenheimer J & Holmes P, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 1993, 42 (Springer-Verlag), fourth printing.
    [106]Pinsky M A & Essary B, Analysis and control of bifurcation phenomena in aircraft flight, J. Guidance Contr. Dyn., 1994, 17: 591-598.
    [107]Glendinning P, Stability, instability and chaos: an introduction to the theory of nonlinear differential equations, (Cambridge University Press), 1994.
    [108]Krstic M, Protz J M, Paduano J D & Kokotovic P V, Backstepping designs for jet engine stall and surge control, Proc. 34th IEEE Conf. Decision and Contr., 1995, 3049-3055.
    [109]Baillieul J, Dahlgren S & Lehman B, Nonlinear Control design for systems with bifurcations with applications to stabilization and control of compressors, in Proc. IEEE Conf. Decision and Control, 1995: 3063-3067.
    [110]Behnken R L, D'Andrea R & Murray R M, Control of rotating stall in a low-speed axial flow compressor using pulsed air injection: Modelling.
     simulating and experimental validation, in Proc. IEEE Conf. Decision and Control, (New Orleans, LA), 1995.
    [111] Belta C, Gu G, Sparks A & Banda S, Rotating stall and surge control for axial flow compressors, Proc. IFAC'99, Beijing, China. 1999.
    [112] Badmus O O, Chowdhury S, Eveker K M, Nett C N & Rivera C J, A simplied approach for control of rotating stall , Part2: Experimental results, Paper No. AIAA-93-2234, 29th Joint Propulsion Conference and Exhibit, (Monterey, CA), 1993.
    [113] Lee H C & Abed E H, Washout filters in the bifurcation control of high alpha flight dynamics, Proc. Ame. Control Conf., 1991, 206-211.
    [114] Lowenberg M H, Bifurcation analysis of multiple-attractor flight dynamics, Phil. Trans. R. Soc. London A, 1998, 356: 2297-2319.
    [115] Liaw D C & Abed E H, Analysis and control of rotating stall." Proc. NOLCOS'92: Nonlinear Control System Design Symp.—IFAC, Bordeaux, France, 1992, pp. 88-93.
    [116] McCaughan F E, Application of bifurcation theory to axial flow compressor instability, ASME J. Turbomachinery, 1989, 111: 426-433.
    [117] Wang H O, Adomaitis R A & Abed E H, Active stabilization of rotating stall in axial-flow gas compressors, Proc. IEEE Conf. Aero. Contr. Syst., (Westlake Village, CA), 1993, 498-502.
    [118] Ananthkrishnan N & Sudhakar K, Characterization of periodic motions in aircraft lateral dynamics, J. Guidance Contr. Dyn., 1996, 19: 680-685.
    [119] Brandt M E & Chen G, Bifurcation control of two nonlinear models of cardiac activity, IEEE Circuits Syst Ⅰ, 1997, 44:1031-1034.
    [120] Chen D, Wang H O & Chin W, Suppression cardiac alternans: Analysis and control of a border-collision bifurcation in a cardiac condition model, Proc. IEEE. Int. Symp. Circ. Syst., (Monterey, CA), 1998, Ⅲ: 635-638.
    [121] Invernizzi S & Treu G, Quantitative analysis of the Hopf bifurcation in the Goodwin n-dimensional metabolic control system, J. Math. Biol., 1991, 29: 733-742.
    [122] Shiau L J & Hassard B, Degenerate Hopf bifurcation and isolated periodic solutions of the Hodgkin Huxley model with varying sodium ion concentration, J. Theoret. Bio., 1991, 148: 157-173.
    [123] Zhou F & Nossek J A, Bifurcation and chaos in cellular neural networks, IEEE Trans. Circ. Syst. Ⅰ, 40: 843-848.
    [124] Iida S K, Ogawara K & Furusawa S, A study on bifurcation control using pattern recognition of thermal convection, JSME. Int. J. Series B—Fluid and Thermal Eng., 1996, 39: 762-767.
    [125] Reznik D & Scholl E, Oscillation modes, transient chaos and its control in modulation doped semiconductor double-heterostructure, Zeitschrift fur Physik B-Condensed Matter, 1993, 91:309-316.
    [126] Hassard B & Jiang K, Degenerate Hopf bifurcation an isolas of periodic solution in an enzyme catalyzed reaction model, J. Math. Anal. Appl., 1993, 177: 170-189.
    [127] Hill D J, Hiskens I A & Yang Y, Robust, adaptive or nonlinear control for modern power systems, Proc. 32nd IEEE Conf. Decision and Control. (San Antonio, TX), 1993.
    [128] Venkatasubramanian V & Ji W, Coexistence of four dierent attractors in a fundamental power system model, IEEE Trans. Circuits Syst. Ⅰ., 1999, 46: 405 -409.
    [129] Tan C W, Varghese M, Varaiya P & Wu F F, Bifurcation, chaos, and voltage collapse in power systems, Proc. IEEE 1995, 83: 1484-1496.
    [130] Nayfeh A H, Harb A M & Chin C M, Bifurcations in a power system mode, Int. J. of Bifur. and chaos, 1996, 6:497-512.
    [131] Wang H O & Abed E H, Control of nonlinear phenomena at the inception of voltage collapse, Proc. Am. Contr. Conf, (San Francisco, CA), 1993, 2071-2075.
    [132] Malmgren B A, Winter A & Chen D L, EI Nino southen oscillation and north Atlantic oscillation control of climate in Puerto Rico, J. of Climate, 1998, 11: 2713-2717.
    [133] Abed E H, Bifurcation-theoretic issues in the control of voltage collapse, in Proc. IMA Workshop on Systems and Control Theory for Power Systems, eds. Chow J H, Kokotovic P V & Thommas R J, (Springer, NY), 1995, 1-21.
    [134] Bleich M E & Socolar J E S, Controlling spatiotemporal dynamics with time-delayed feedback, Phys. Rev., 1997, E54: 17-20.
    [135] Brandt M E, Shih H T & Chen G, Linear time-delay feedback control of a pathological rhythm in a cardiac conduction model, Phy. Rev. E., 1997, 56: 1334-1337.
    [136] Cam U & Kuntman H, A new CCII-based sinusoidal oscillator providing fully independent control of oscillation condition and frequency, Microelectron. J., 1998, 29: 913-919.
    [137] Chen D, Wang H O, Howle L E, Gustafson M R & Meressi T, Amplitude control of bifurcations and application to Rayleigh-Benard convection, Proc. 37th IEEE Conf Dec. and Contr., Tampa, Florida, 1998, 1951-1956.
    [138] Goldon G C & Ydstie B E, Bifurcation in model reference adaptive control systems, Syst. Cont. Lett., 1988, 11: 413-430.
    [139] Just W, Bernard T, Ostheimer M, Reibold E & Benner H, Mechanism of time-delayed feedback control, Phys. Rev. Lett., 1997, 78: 203-206.
    [ 140] Laufenberg M J, Pai M A & Padiyar K R, Hppf bifurcation control in power systems with static var compensator, Int. J. Elect, Power & Energy Syst., 1997, 19: 339-347.
    [141]Lowenberg M H, Development of control schedules to modify spin behaviour, Proc. AIAA Atmospheric Flight Mechanics Conference, 1998, AIAA-98-4267, 286-296.
    [142] Modi A & Ananthkrishan N, Multiple attractors in inertia-coupled velocity vector roll manoeuvres of airplanes, Journal of Aircraft, 1998, 35: 659-661.
    [143]Mohamed A M & Emad F P, Nonlinear oscillations in magnetic bearing systems, IEEE Trans. Auto. Cont., 1993, 38: 1242-1245.
    [144]Paduano J D, Epstein A H, Valavani L, Longley J P, Greitzer E M & Guenette G R, Active control of rotating stall in a low-speed axial compressor, J. Turbomachinery, 1993, 115: 48-56.
    [145] Sanchez N E & Nayfeh A H, Nonlinear rolling motions of ships in longitudinal waves, Shipbuilding Progress, 1979, 37: 247-272.
    [146]Sinha N K & Ananthkrishan N, Level flight trim and stability analysis using continuation methods, Proc AIAA Atmospheric Flight Mechanics Conference, 2000, AIAA-2000-4112, 485-495.
    [147]Stoten D P & Benchoubane H, Empirical studies of an MRAC algorithm with minimal control synthesis, International Journal of Control, 1990, 51: 823-849.
    [148]Stoten D P & Benchoubane H, Robustness of a minimal control synthesis algorithm, International Journal of Control 1990, 51: 851-861.
    [149]Stoten D P& Bernardo M, An Application of the Minimal Control Synthesis Algorithm to the Control and Synchronization of Chaos, International Journal of Control, 1996,6: 925-938.
    [150] Sun J, Amellal F, Glass L & Billette J, Alternans and period-doubling bifurcations in atrioventricular nodal conduction, J. Theor. Biol, 1995, 173: 79-91.
    [151]Tse C K, Flip bifurcation and chaos in three-state boost switching regulators, IEEE Trans. Circuits Syst., 1994, 41, 16-23.
    [152]Thomsen J J, Chaotic dynamics of the partially follower-loaded elastic double pendulum, J. Sound Vibr, 1995, 188, 385-405.
    [153]Vakakis A F, Burdick J W & Caughey T K, An 'interesting' strange attractor in the dynamics of a hopping robot, Int. J. Robot Res., 1991, 10: 606-618.
    [154] Weibel S & Baillieul J, Oscillatory control of bifurcations in rotating chains, Proc. Amer. Contr. Conf., (Albuquerque, NM), 1997, 2317-2318.
    [155] Zhou Z & Whiteman C, Motions of a double pendulum, Nonlin. Anal. Th. Meth. Appl., 1996, 26: 1177-1191.
    [156] Meehan P A & and Asokanthan S F, Control of Chaotic motion in a spinning spacecraft with a circumferential notational damper, Nonlinear Dynamics, 1998, 17: 269-284.
    [157] Zavondney L D, Nayfeh A H & Sanchen N E, The response of a single-degree-of-freedom system with Quadratic and cubic non-linearities to a principle parametric resonance, Journal of Sound and Vibration, 1989, 129: 417-442.
    [158] Aboarayan A M, Nayfeh A H & Mook D T, Nonlinear response of a parametrically excited buckled beam, Nonlinear Dynamics, 1993, 4: 499-525.
    [159] 季进臣,陈予恕,参激屈曲梁的倍周期分岔和混沌运动的实验研究.实验力学.1997.12:248-259.
    [160] Bogoliubov N N & Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations, New York: Gordon and Breach, 1981.
    [161] Hsu C S, Some simple exact periodic responses for a nonlinear system under parametric excitation, ASMEJ Appl. Mech., 1974, 41: 1135-1137.
    [162] Nayfeh A H, Introduction to Perturbation Techniques, New York: Wiley-Interscience, 1979.
    [163] Sethna P R & Bajaj A K, Bifurcations in dynamical systems with internal resonances, ASMEJ Appl. Mech., 1978, 45: 895-902.
    [164] Guckenheimer J & Holmes P J, Nonlinear oscillations, Dynamical systems and bifurcations of vector fields, New York: Springer-Verlag, 1983.
    [165] 陈予恕,非线性振动系统的分岔与混沌理论,北京:高等教育出版社,1993.
    [166] Zavodney L D & Nayfeh A H, The response of a single-degree-of freedom system with quadratic and cubic nonlinearities to a fundamental parametric resonance, J Sound and Vibr., 1988, 120: 63-93.
    [167] Zavodney L D, Nayfeh A H & Sanchez N E, Bifurcation and chaos in parametrically excited single-degree-of-freedom system, Nonlinear Dynamics, 1990, 1: 1~21.
    [168] Yano S, Parametric excitation in self-exciting vibration system (3rd report, the influence of resonance of cubic non-linearity). Bulletin of the JSME, 1984, 27: 1264-1271.
    [169] Kotera T & Yana S, Periodic solution and the stability in a non-linear parametric excitation system, Bulletin of the JSME, 1985, 28: 1473-1480.
    [170] Yana S & Kotera T, Parametric excitation with an asymmetric characteristic in a self- exciting system (1st report, behaviors of region of resonance of order 1/2). Bulletin of the JSME, 1986, 29: 902-907.
    [171] Yana S, Parametric excitation in the self-excited vibration system dry frication (1st report, parametric resonate). Bulletin of the JSME, 1984, 27:255-262
    [172] 张伟.非线性振动、分岔及混沌.天津:天津大学出版社,1992.
    [173] 唐驾时,尹小波.具有参数激励下的广义van der pol型强非线性振子的分岔.非线性振动学报,1995,2S(增刊):53-60.
    [174] Lu Q S & To C W S, Principal resonance of a nonlinear system with two, frequency parametric and self- excitation, Nonlinear Dynamics, 1991, 2: 419~444.
    [175] Najaj A K, Resonance parametric perturbation of the Hopf bifurcation, Journal of Math Anal Appl, 1986, 115: 214~224.
    [176] 陈予恕,Langford w F,非线性马休方程的亚谐分岔解及欧拉动弯曲问题.力学学报.1988,22:522-532.
    [177] Najaj A K, Bifurcations in a parametrically excited nonlinear oscillator, Int J. Non-linear Mechanics, 1987, 22: 47-59.
    [178] Sri Namaclachivaya N & Ariaratnam S T, periodically perturbed Hopf bifurcation, SISM J Appl. Math., 1987, 47: 15-39.
    [179] 陈予恕,吴建国,金志胜.曲轴非线性参数扭振问题的分岔理论.振动工程学报,1987,1:26-24.
    [180] 陈予恕,叶敏,詹凯军.非线性Mathieu方程1/2亚谐分岔解的实验研究,应用力学学报,1990,7(4):11-16.
    [181] Chen Y S & Xu J, Universal classification of bifurcation solution to a primary parametric resonance in van der Pol-Duffing-Mathieu's system, Science in China (Series A), 1996, 39(4): 405~417.
    [182] Tso W K & Asmis K, Multiple parametric resonance in a nonlinear two-degree-of-freedom system, Int J Mech. Des., 1974, 9: 269-277.
    [183] Tezak E G, Mook D T & Nayfeh A H, Nonlinear analysis of the lateral response of columns to periodic loads, J Mech. Design, 1978, 100: 651-659.
    [184] Nayfeh A H, Response of two-degree-of-freedom to multi-frequency parametric excitations, J. Sound Vib., 1983, 88: 1-10.
    [185] Nayfeh A H, The response of two-degree-of-freedom systems with quadratic nonlinearities to a parametric excitation, J. Sound Vib., 1983, 88: 547-557.
    [186] Nayfeh A H & Zavodney L D, Response of two-degree-of-freedom systems with quadratic nonlinearities to a combination parametric excitation, J. Sound Vib., 1986. 107: 329-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700