基于SOGFCMAC模糊神经网络的太阳能帆板振动主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景为空间挠性结构的智能自主控制。本文以一套模拟卫星太阳能帆板的环氧树柔性悬臂板系统为研究对象,利用压电智能结构对柔性板存在的弯曲和扭转振动进行主动控制,并进行了相关的理论和实验研究。首先通过能量耗散准则确定出驱动器的数量下限,并根据柔性板尺寸和压电片尺寸确定出驱动压电片的布片数量。然后利用nastran模态分析软件分析了柔性悬臂板的前几阶弯曲和扭转模态振型及应变分布。把驱动和振动能量积分和最小作为系统评价函数,使用粒子群算法寻找最优贴片位置。得到的结果与使用nastran进行的模态应变分析结果进行比较基本一致。由此确定了用于弯曲和扭转振动控制的传感器及驱动器的布置数量和位置,建立了柔性板弯曲模态和扭转模态相互独立的控制通道。引入SOGFCMAC模糊神经网络算法,设计了基于这种算法的模糊神经网络控制器。采用上述研究结果建立了基于计算机的柔性板振动主动控制实验系统。实验结果表明所设计的系统可以较好地控制柔性板前几阶弯曲和扭转振动模态,证明了压电传感器和驱动器布置的合理性以及所用控制方法的有效性。
Piezoelectric smart material is used to suppress the vibration of a flexible cantilevered epoxy plate which is used to simulate a satellite’s solar plate. The least number of the actuators is determined employing energy dissipation rule. Taking the size of the piezoelectric patches and the dimension of the plate into consideration, the number of the actuators is derived. By analyzing the vibration mode shape and strains of the first several modals with Nastran, the strain distribution maps are acquired. Then, by minimizing the energy function of vibration and control which is used as the evaluation function, the optimum location is deduced by the Particle Swarm Optimization (PSO) method. The results of the two methods are basically in accordance. Consequently, two independent control channels for the vibration control of the two-dimension flexible plate are realized through proper arrangement of the piezoelectric elements. Based on the SOGFCMAC fuzzy neural network algorithm, a controller is designed. Then, active vibration control system for the flexible plate based on SOGFCMAC is established. Experiments of vibration control are carried out, the results show that the designed system can control well the vibration of the bending and torsion mode of the cantilever plate, and that the arrangement of piezoelectric sensors and actuators is reasonable and the control methods are effective.
引文
[1]陶宝祺,等编著.智能材料结构.北京:国防工业出版社,1997.4.
    [2]顾仲权,马扣根,等编著.振动主动控制.北京:国防工业出版社,1997.6.
    [3] Bailey T., Hubbard J.E. Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam. J. of Guidance, Vol.8, No.5, 1985:605-611.
    [4] Burke S.E., Hubbard J.E. Active Vibration Control of a Simply Supported Beam Using a Spatially Distributed Actuator. IEEE Control System Magzine, vol.7, No.4, 1987:25-30.
    [5] C.K.Lee. Piezoelectric Laminates: Theory and Experiment for Distributed Sensors and Actuators Intelligent Structural Systems. Kluwer Academic Publishers, 1992:75-168.
    [6] Fuller C.R., Elliott S.J.,Nelson P.A. Active Control of Vibration.San Diego, CA92101:Academic Press,1996
    [7]殷学纲.点式压电智能柔性板振动主动控制的建模与仿真.噪声与振动控制,No.5, 1999,:16-20.
    [8]古渊等.压电减振机敏柔性板上的布片位置优化研究.压电与声光,Vol.21, No.1, 1999: 32-36.
    [9]邱志成,张洪华.压电智能挠性悬臂板主动振动控制试验研究.控制工程, No.1, 2003:11~19.
    [10]邱志成.挠性板振动抑制的敏感器与驱动器优化配置.宇航学报,No.4, 2002: 30-36.
    [11]邱志成.压电智能挠性板的主动振动控制研究.压电与声光, Vol.24, No.6, 2002: 497-501.
    [12]董卓敏.大型柔性结构振动主动控制的实验研究.实验力学, Vol.18, No.1, 2003:86-93.
    [13] Crawley P., Adamas R.D. The location of defects in structures from measurements of natural frequencies. J of stain analysis, No.49, 1979: 49-57.
    [14] Forward R.L, Swigert C.J. Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast. J. of Sapcecraft and Rockets, Vol.18, No.1, 1981: 5-17.
    [15] Crawley E F, Luis J. Use of piezoelectric actuator as elements of intelligent structures. AIAA Journal, Vol.25, No.10, 1987:1375-1385.
    [16] Ha S. K., Keilers C. and Chang F. K. Finite element analysis of composit structurescontaining distributed piezoelectric sensors and actustor. AIAA Journal, Vol.30, No.3, 1992: 772-780.
    [17] Lee C. K., Chiang W. W. Piezoelectric modal sensor/actuator pairs of critical active damping vibration control. J. of Acoustics Society of America, Vol.90, No.1, 1991: 374-384.
    [18] SANTOSH DEVASIA,TESFAY MERESSI,BRAD PADEN. Piezoelectric Actuator Design for Vibration Suppression: Placement and Sizing. Joumal of Guidance Control and Dynamics, Vol.16, No.5, 1993: 859-864.
    [19]孙东昌.压电智能梁振动控制中致动片优化布置与实验.中国空间科学技术, Vol.12, No.6, 1999: 46-52.
    [20] Wodek K Gawronski. Dynamics and Control of Structures. A Modal Approach, Springer-Verlag New York Inc., 1998.
    [21]李勇.振动抑制智能结构中智能材料配置和反馈增益的同时优化.航天控制, No.1, 2001: 6-11.
    [22] Lee C. K., Moon F C. Modal Sensors/Actuators. Journal of Applied Mechanics, No.57, 1990: 434-441.
    [23]隋春平,颜云辉,赵明扬.压电智能结构中驱动器布片方式和数目的确定.机械设计与制造, No.6, 2004: 19-20.
    [24]顾荣荣,童忠钫,程耀东.挠性结构主动减振中传感器和激振器的优化布置.振动与冲击, Vol.3, No.14, 1995: 12-18.
    [25] Balas M.J. Towards Adaptive Control of Large Structure in Space, in Application of Adaptive Control. Academic Press Inc., 1998: 313-344.
    [26]张微敬,欧进萍.智能控制算法及其在结构振动控制中的应用[J].世界地震工程, Vol.18, No.2, 2002: 32-38.
    [27] McCulloch W S, Pitts W. A logical calculus of the ideal imminent in nervous activity. Bulletin of mathematical biophysics, No.5, 1943: 115-133.
    [28] Bani-Hani K, Ghaboussi J. Nonlinear structural control using neural networks. Journal of engineering mechanics, Vol.124, No.3, 1998: 319-3273.
    [29] Widrow B, Lehr M A. Thirty years of adaptive neural networks: perception, madaline, and backpropagation. Proc, IEEE, Vol.78, No.9, 1990: 1415-1441.
    [30] He Chao, Xu Lixin, etc.New Structural Self-Organizing Fuzzy CMAC with Basis Functions. Journal of Beijing Institute of Technology, Vol.10, No.3, 2001: 299-305.
    [31]袁华.智能压电柔性板多输入多输出振动主动控制研究.硕士学位论文,南京航空航天大学, 2005.3.
    [32] Kwaku O.P.A., Kerin C.C. The Application of Multi-Channel Design Methods for Vibration Control an Active Structure. Smart Mater. Structure, No.3, 1994: 329-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700