小型MRC天然气液化装置板翅换热器动态特性仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在天然气液化装置设计过程中,对换热设备的选用大都依据流程静态计算得出的参数,而未对其动态性能及变工况的适应能力进行定量分析和评定。鉴于设备的实际运行工况并不能完全遵循设计工况,为更好地控制设备的运行,需要可靠的数学模型来预测其动态特性。本文以采用混合制冷剂液化流程的小型天然气液化装置中板翅式换热器为研究对象,对其建立动态数学模型并进行仿真研究,以达到预先判断设备的运行和控制性能的目的。
     首先,建立了天然气及混合制冷剂热物性计算模型。通过对多组分混合物的相平衡计算,确定不同压力、温度、成分下天然气及混合制冷剂的组成含量及相态。在此基础上,计算天然气及混合制冷剂的热力学参数及迁移性质参数,为动态建模工作提供物性计算支持,重点解决了工质在低温环境下热物性变化剧烈给模型计算精度带来的问题。
     随后,基于气液两相流理论及气液相平衡理论,建立了多股流、多组分、有相变情况下板翅式换热器的动态数学模型。利用质量方程、动量方程、能量方程、相平衡方程描述换热器内流体传热及流动过程。对时间项采用隐式格式、空间项采用二阶迎风格式离散上述控制方程并求解。根据模块化建模思想,采用C语言S函数将模型建立在Simulink仿真环境中。利用MATLAB软件提供的GUI功能,开发了板翅式换热器动态特性模拟软件。
     最后,利用上述模拟软件研究板翅式换热器的静、动态特性。通过对单台换热器降温过程的模拟,得出了在已知入口条件及换热器初始条件下,各股流体出口温度的变化及稳定后流体的压力温度分布、隔板的温度分布。通过给定制冷剂流量的阶跃扰动,获得了各股流体出口温度的响应。将上述稳定后结果与板翅式换热器模拟软件计算结果进行比较,两者一致。对两台换热器降温过程进行模拟,得出了各换热器内各股流体出口温度变化,并完成了多台板翅式换热器模型在系统级动态仿真时的软件测试。
During the designing process of the natural gas liquefaction plant, parametersdescribed the static performance of the device always be used to select the heat ex-changing equipment, but the dynamic performance and the applicability to the varia-tional working conditions were not quantitatively analyzed. In view of the operationcondition can not always follow the design one, in order to control the operation bet-ter, a reliable mathematical model was needed to predict the dynamic performance ofthe device. A model was established in this paper, and it described the dynamic char-acteristics of the plate-fin heat exchanger which was used in the Mixed-RefrigerantCycle (MRC) Liquefied Natural Gas (LNG) plant, and the study was instructive toimprove the controlling performance of the device.
     First of all, a model was established to predict thermal properties of the natu-ral gas and mixed refrigerant, it can determine phase and percentages of the multi-component mixtures by calculating the phase equilibrium, then the thermodynamicand transport properties were acquired, and they provided support for the calculationof thermal properties in dynamic model. In other words, the property model mainlyfocused on the drastic changes of the mixture’s thermal properties in low temperature,which might reduce the accuracy of the dynamic model.
     Secondly, a mathematical model was established for a multi-?ow, phase-changeplate-fin heat exchanger, which was based on the theory of gas-liquid two-phase ?owand phase equilibrium. Heat transfer and ?ow characteristics in the heat exchangerwere described according to the mass equation, momentum equation, energy equa-tion and phase equilibrium equation. The governing equations were dispersed by im-plicit scheme in time dimension and second-order upwind scheme in space dimension.Based on the modularized modeling method, the model was established in Simulinkenvironment using C MEX S-function. Subsequently, using the Graphical user inter-face (GUI) which was provided by MATLAB, software was developed to simulate thedynamic performance of the plate-fin heat exchanger.
     Finally, static and dynamic performance of the plate-fin heat exchanger werestudied using the developed software. The cooling process of a plate-fin heat ex- changer was simulated in the case of the inlet and initial parameters were known. Atthe same time, the pressure profile and temperature profile of the ?uid, the tempera-ture profile of the parting sheet were acquired in steady state. Later, a step disturbanceof the refrigerant’s ?ow rate was given, the responses of outlet temperature was re-ceived. Results in steady state fitted the professional software well and it made themodel credible. At last, the cooling process of two plate-fin exchangers was simu-lated, and the system testing of multi-plate-fin heat exchangers in the dynamic modelwas successful completed.
引文
1王松汉.板翅式换热器.化学工业出版社, 1984:1~7
    2陈长青,沈裕浩.低温换热器.机械工业出版社, 1993:42~47
    3嵇训达.我国板翅式换热器技术进展.低温与特气. 1998, 1:22~27
    4嵇训达.国外板翅式换热器技术与应用.流体工程. 1986, 4:36~41
    5凌祥,涂善东,陆卫权.板翅式换热器的研究与应用进展.石油机械. 2000,28(5):54~58
    6 J. M. Rice. Electrical Shock Absorber for Docking System Space. Proceed-ing of the International Intersociety Electronic Packaging Conference. New York,1995:423~433
    7 B. S. V. Prasad, S. M. K. A. Gurukul. Differential Method for Sizing MultistreamPlate Fin Heat Exchangers. Cryogenics. 1987, 27(5):257~262
    8 B. S. V. Prasad, S. M. K. A. Gurukul. Differential Methods for the PerformancePrediction of Multi-stream Plate-fin Heat Exchangers. Journal of Heat Transfer.1992, 14:41~49
    9彭波涛,罗来勤,王秋旺,等.多股流板翅式换热器的微分与优化数值研究.化工学报. 2004,6:876~881
    10张哲,厉彦忠,田津津.多股流板翅式换热器的优化设计.石油化工. 2002,27(5):257~262
    11汪艳萍,路智敏,刘晓霞,等.板翅式换热器优化设计.内蒙古工业大学学报. 2004,4:261~264
    12 B. S. V. Prasad. Fin Efficiency and Mechanisms of Heat Exchange Through Finsin Multi-stream Plate-fin Heat Exchangers: Formulation. International Journal ofHeat and Mass Transfer. 1996, 39(2):419~428
    13 B. S. V. Prasad. Fin Efficiency and Mechanisms of Heat Exchange Through Finsin Multi-stream Plate-fin Heat Exchangers: Development and Application ofa Rating Algorithm. International Journal of Heat and Mass Transfer. 1997,40(18):4279~4288
    14 C. H. Ranganayakulu, K. N. Seetharamu, K. V. Sreevatsan. The Effects of InletFluid Flow Nonuniformity on Thermal Performance and Pressure Drops in Cross-?ow Plate-fin Compact Heat Exchangers. International Journal of Heat and MassTransfer. 1996, 40(1):27~38
    15 L. W. Zhang, D. K. Tafti, F. M. Najjar, et al. Computations of Flow and HeatTransfer in Parallel-plate Fin Heat Exchangers on the Cm-5: Effects of FlowUnsteadiness and Three-dimensionality. International Journal of Heat and MassTransfer. 1997, 40(6):1325~1341
    16张哲,厉彦忠,焦安军.板翅式换热器封头结构的数值模拟.化工学报. 2002,53(11):1182~1187
    17 J. Wen, Y. Z. Li. Study of Flow Distribution and Its Improvement on the Headerof Plate-fin Heat Exchanger. Cryogenics. 2004, 44(11):823~831
    18 A. J. Jiao, R. Zhang, S. K. Jeong. Experimental Investigation of Header Config-uration on Flow Maldistribution in Plate-fin Heat Exchanger. Applied ThermalEngineering. 2003, 23(10):1235~1246
    19 J. Wen, Y. Z. Li, A. M. Zhou, et al. PIV Experimental Investigation of EntranceConfiguration on Flow Maldistribution in Plate-fin Heat Exchanger. Cryogenics.2006, 46(1):37~48
    20 W. M. Kays, A. L. London. Compact Heat Exchangers,3rd Ed. McGraw-HillBook Company, 1964:1~7
    21 R. K. Shah. Research Needs in Low Reynolds Number Flow Heat Exchangers.Proceeding of the Fourth NATO ASI on Heat Exchanger. Kakac, 1981
    22 H. M. Joshi, R. L. Webb. Heat Transfer and Friction in the Offset Stript-fin HeatExchanger. International Journal of Heat and Mass Transfer. 1987, 30(1):69~84
    23 L. J. Goldstein, E. M. Sparrow. Heat/mass Transfer Characteristics for Flow in aCorrugated Wall Channel. International Journal of Heat and Mass Transfer. 1977,99(3):187~195
    24 E. Michallon, C. Marvillet, M. Lebouche. Thermal and Hydraulic Characteristicsof Plate-fin Heat Exchangers in Single Phase Flow. Experimental Thermal andFluid Science. 1993, 7(2):132
    25 E. V. Dubrovsky. Experimental Investigation of Highly Effectice Plate-fin HeatExchanger Surfaces. Experimental thermal and ?uid science. 1995, 10:200~220
    26 S. Hu, K. E. Herold. Prandtl Number Effect on Offset Fin Heat Exchanger Per-formance: Predictive Model for Heat Transfer and Pressure Drop. InternationalJournal of Heat and Mass Transfer. 1995, 38(6):1043~1051
    27 S. Hu, K. E. Herold. Prandtl Number Effect on Offset Fin Heat Exchanger Per-formance: Experimental Results. International Journal of Heat and Mass Transfer.1995, 38(6):1053~1061
    28张力,曲明道.矩型锯齿翅片热力特性的实验研究.工程热物理学报. 1996,17:147~150
    29张力,王敬.不同错开位置的锯齿翅片的热力特性研究.内燃机学报. 1998,16(2):238~243
    30杜浦,徐益锋,李美玲,等.板翅式换热器动态特性的试验研究.华东工业大学学报. 1996,18(1):27~32
    31 S. Y. Kim. Flow and Heat Transfer Correlations for Porous Fin in a Plate-fin HeatExchanger. International Journal of Heat Transfer. 2000, 8:572~578
    32 R. D. Gresham, J. W. Westwater. Boiling of Liquids in a Compact Plate-fin HeatExchanger. International Journal of Heat and Mass Transfer. 1975, 18(1):37~42
    33程华哲.乙烯冷箱模型试验–板翅式换热器中含氢轻烃垂直冷凝的研究.石油化工. 1980,4:217~222
    34 C. C. Chen, J. V. Loh, J. W. Westwater. Prediction of Boiling Heat Transfer Dutyin a Compact Plate-fin Heat Exchanger Using the Improved Local Assumption.International Journal of Heat and Mass Transfer. 1981, 24(12):1907~1912
    35 T. Kato, A. Miyake, T. Hiyama, et al. Heat Transfer Characteristics of aPlate-fin Type Supercritical/liquid Helium Heat Exchanger. Cryogenics. 1992,32(1):260~263
    36 F. Viargues, G. Claudet, P. Seyfert. Construction and Preliminary Testing ofPerforated-plate Heat Exchangers for Use in Helium II Refrigerators. Cryogenics.1994, 34(1):325~328
    37 T. Muller-Menzel, T. Hecht. Plate-fin Heat Exchanger Performance Reduction inSpecial Two-phase Flow Conditions. Cryogenics. 1995, 35(5):297~301
    38 B. Thonon, L. M. A. Feldman, C. Marvillet. Transition from Nucleate Boilingto Convective Boiling in Compact Heat Exchangers. International Journal of Re-frigeration. 1997, 20(8):592~597
    39 A. Feldman, C. Marvillet, M. Lebouch. Nucleate and Convective Boiling in PlateFin Heat Exchangers. International Journal of Heat and Mass Transfer. 2000,43(18):3433~3442
    40倪维斗,徐向东,李政.热动力系统建模与控制的若干问题.科学出版社,1996:1~5
    41 A. M. Jorge. Modelling for Control Analysis and Design in Complex Indus-trial Separation and Liquefaction Processes. Journal of Process Control. 2000,10:167~175
    42 J. C. Chato, R. J. Laverman, J. M. Shah. Analyses of Parallel Flow, Multi-stream Heat Exchangers. International Journal of Heat and Mass Transfer. 1971,14(10):1691~1703
    43 H. Pingaud, J. M. L. Lann, B. Koehret, et al. Steady-state and Dynamic Simula-tion of Plate-fin Heat Exchangers. Computers & Chemical Engineering. 1989,13(5):577~585
    44徐益锋,蔡祖恢.平行流多流体板翅式换热器的动态数学模型.化工学报.1998, 49(6):721~727
    45 X. Luo, M. Li, W. Roetzel. A General Solution for One-dimensional MultistreamHeat Exchangers and Their Networks. International Journal of Heat and MassTransfer. 2002, 45(13):2695~2705
    46关欣,罗行,李美玲,等.板翅式换热器的动态特性分析解.工程热物理学报. 2003,24(4):688~690
    47 R. Boehme, J. A. R. Parise, R. P. Marques. Simulation of Multistream Plate-finHeat Exchangers of an Air Separation Unit. Cryogenics. 2003, 43(6):325~334
    48张存泉,徐烈.空分板翅式换热器热力性能动态仿真研究.深冷技术. 2001,5:10~12
    49 I. Ghosh, S. K. Sarangi, P. K. Das. An Alternate Algorithm for the Analysis ofMultistream Plate Fin Heat Exchangers. International Journal of Heat and MassTransfer. 2006, 49(17):2889~2902
    50石玉美.混合制冷循环液化天然气流程的热力研究.上海交通大学博士学位论文. 1998:13~26
    51童景山.流体的热物理性质.中国石化出版社, 1996
    52郝敏,陈保东. RKS方程在天然气热物性计算中的应用.油气储运. 2003,20(10):22~27
    53顾安忠.液化天然气技术.机械工业出版社, 2004:8~10
    54石玉美,顾安忠.天然气和混合制冷剂的焓熵.流体机械. 2000, 6:61~63
    55刘芙蓉,范春生. LKP状态方程用于多元体系的计算.化学工程. 1995,23(3):73~77
    56 B. E. Poling原著,赵红玲译.气液物性估算手册.化学工业出版社,2006:150~160
    57 K. C. Mo, K. E. Gubbins. Conformal Solution Theory for Viscosity and ThermalConductivity of Mixtures. Molecular physics. 1976, 31:825~847
    58朱刚,顾安忠.统一粘度模型预测天然气粘度.石油与天然气化工. 2000,3:107~109
    59 H. J. Hanley, R. D. McCarty. Equations for the Viscosity and Thermal Conduc-tivity Coefficients of Methane. Cryogenics. 1975, 7:413~418
    60 P. L. Christensen. Thermal Conductivity of Gaseous Mixtures of Methane withNitrogen and Carbon Dioxide. Journal of Chemical and Engineering Data. 1979,24(4):281~284
    61齐欢,王小平.系统建模与仿真.清华大学出版社, 2004:66~93
    62任泽霈.对流换热.高等教育出版社, 1998:243~245
    63黄忠霖.控制系统MATLAB计算及仿真.国防工业出版社, 2004:129~131
    64吴旭光,杨惠珍,王新民.计算机仿真技术.化学工业出版社, 2005:64~65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700