分布式电源的配网故障检测及隔离技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来分布式发电技术(Distribution Generation:DG)得到了快速的发展,随着DG的并网运行,改变了配网原有的短路电流流向,导致原有馈线保护出现灵敏度降低、拒动、误动等问题,这给配网故障的检测与隔离带来多方面的问题,因此开展相关方面的研究,寻找新的解决问题的途径,提出相应的对策是十分必要的,对于DG在配网中的发展和推广有着重要的意义。
     本文在总结和借鉴前人研究工作的基础上,通过对DG接入配网后对保护影响的定性分析,发现当发生故障时,故障点与DG之间不同的位置关系,对线路保护的影响会有所不同。通过分析可知:当DG上游发生故障时,故障馈线保护所感受到的故障电流与只与系统侧电源有关,但由于DG所引起的反向电流如果过大,有可能引起故障点与DG之间馈线保护的误动;DG下游发生故障时,DG上游的馈线保护感受到的短路电流将会根据DG接入的位置和容量的改变,受到不同程度的影响。当故障发生在DG接入馈线时,对DG下游保护影响;当故障发生在DG下游馈线时,下游保护流过的短路电流将受DG助增电流的影响而增大。基于以上的结论对电流保护进行了改进配置,并提出了三种应对DG并网后配网故障检测与隔离的方案,包括重合器-分段器配合模式的改进方案、基于通信的分布式纵联与主从式区域纵联方案,并分析了其各自的特点和适用范围。重点对其中的主从式区域纵联方案进行了深入研究,包括对故障检测与隔离算法的研究、相应软硬件装置的设计与实现和通信方案的研究等。
     主从式区域纵联方案在每一个分段开关处配备保护从机,依靠其内部的故障方向元件,测量其安装点处的故障方向,当配网系统故障后,主机下发命令收集从机故障方向信息,之后通过故障检测与隔离算法对所收集的信息进行运算处理,得出最终的故障区段和需要跳开的开关信息,并下发跳闸指令,完成故障的隔离。其中方向元件的可靠动作、故障检测与隔离算法的合理设计和通信的快速可靠是方案实现的关键。因此在实现方案之前首先通过对系统的需求进行分析,构建出了方案基本的结构框架,并重点针对系统的核心算法进行了各种情况的讨论,包括故障检测算法、故障隔离算法、系统结构发生变化时的处理措施和系统信息不完备情况的故障处理分析,在此基础上通过各功能模块的构建实现,开发完成了主机监控系统;故障方向的检测是通过分段开关处的保护从机实现的,其中的故障方向元件采用故障分量和90°接线原理,保证了方向元件的可靠性,该从机装置是为实现本方案单独开发的软硬兼备的保护装置,很好的满足了对故障检测的需要,并且具有友好的人机交互界面和组网功能。
     在配网故障的处理过程中,主机和从机通过光纤通信网络进行信息的交互。本文制定了详细的通信策略和搭建了可靠的通信平台,保证了系统通信的快速实现。最后通过搭建现场实验平台和制定相应的测试方案,完成了对整套系统方案的测试工作,从而验证了主从式区域纵联方案在分布式电源接入后实现正确、快速的配网故障检测与隔离的可行性。
Distribution generation (DG) technology has been rapidly developed in recent years. The direction and distribution of the short circuit current in distribution power system has changed a lot due to the introduction of DG, as a result, the existing feeder protection there may be reduced sensitivity, tripping failure, malfunction, and so on, which gives distribution network fault detection and isolation brought about many problems. Therefore it is necessary to carry out related research, find new ways to solve problems and put forward countermeasures, and of great significance for the distribution network with DG in the development and promotion.
     On the basis of previous research, after qualitative analyzing the influence of distribution networks with DG on the protection, we found the impact of the line protection will be different, when the relationship of the fault point and DG position has changed. As following:When DG upstream failure, the fault current flowing through the fault feeder protection is only relevant to the system power, but if the reverse current caused by the DG is too large, it may lead malfunction of the feeder protection between fault point and DG. When the fault occurred in the DG access feeder, the protection have no effect on the DG downstream. When the fault occurred in the feeder of DG downstream, the fault current flowing through the protection will be increased by the help of DG. Based on the above conclusions, we improved the current protection configuration, and integrated it into the distribution network under different fault detection and isolation scheme, then put forward three kinds of fault detection and isolation schemes to response the distribution network with DG, including Recloser-Sectionalizer model improvement program, Distributed Pilot program and Master-Slave Regional Pilot program based on communications, and analyzed characteristics and scope of their. Focus on the master-slave regional pilot program conducted in-depth research, including fault detection and isolation algorithm, the design and implementation of device and communications programs.
     Every switch in the distribution power system is equipped with slave protection device (SPD)by Master-Slave Regional Pilot program. Each SPD has a fault direction element inside, which measures the voltage and current of its position and determines the fault direction. When the distribution power systerm is failure, the fault direction information are collected through the communication system, and used by fault detection and isolation algorithm. The reliable action of fault direction element, reasonably design of fault detection and isolation algorithm and fast communication is the key to program implementation. We analyzed the program requirements on the system before scheme implementation, constructed the basic structural framework, and focusing on core of the system algorithm discussed various situations, including fault detection algorithms, fault isolation algorithms, the method to deal with system structure change and the processing with incomplete information. Through the construction and implementation of each functional module, we develop the host monitoring system. Fault direction detection is achieved by SPD, in which the fault direction element use fault component and 90°wiring principle to ensure the reliability. The slave device is developed for the implementation of the program with both hardware and software, better to meet the needs of fault detection, and has a friendly interactive interface and networking functions.
     In the processing of fault detection and isolation, master and slave device achieve the interaction of information by the optical fiber communication network. This paper developed a detailed communication strategy and built a reliable communications platform, to ensure the system communication quickly. Finally, we set up the test platform and developed the corresponding test program to complete the entire system testing, which examined the Feasibility that Master-Slave Regional Pilot program in the distribution network with DG could also correctly and rapidly accomplish the fault detection and isolation.
引文
[1]王敏,丁明.含分布式电源的配电系统规划[J].电力系统及其自动化学报,2004,16(6):5-8.
    [2]朱守真,张昊,郑竟宏,等.分布式电源与配电系统并网运行的探讨[J].沈阳工程学院学报(自然科学版),2005,1(4):1-4.
    [3]钱科军,袁越.分布式发电技术及其对电力系统的影响[J].继电器,2007,35(13):25-28.
    [4]JEN KINS N. Embedded generation. London, UK:Institution of Electrical Engineers,2000.
    [5]ACKERMANN T, ANDERSSON G, SODER L. Distributed generation:a definition. Electric Power Systems Research,2001,57(3):195-204.
    [6]PEPERMANS G, DRIESEN J, HAESELDONCKX D, et al. Distributed generation:definition, benefits and issues. Energy Policy,2005,33 (6):787-798.
    [7]梁才浩,段献忠.分布式发电及其对电力系统的影响.电力系统自动化,2001,25(12): 53-56.
    [8]Kauhaniemi K, Kumpulainen L. Impact of Distributed Generation on the Protection of Distribution Networks[A]. Developments in Power System Protection.2004.315-318.
    [9]赵上林,吴在军,胡敏强,等.关于分布式发电保护与微网保护的思考[J].电力系统自动化,2010,34(1):73-77.
    [10]IEEE Std.1547, IEEE standard for interconnecting distributed resources with electric power systems[S].
    [11]UK Electricity Association. Engineering recommendation G.59/1, recommend-ations for the connection of embedded generating plant tothe regional electricity companies[S].
    [12]易新,陆于平.分布式发电条件下配电网孤岛划分算法的研究[J].电网技术,2006,30(7):50-54.
    [13]黄伟,雷金勇,夏翔,等.分布式电源对配电网相间短路保护的影响.电力 系统自动化,2008,32(1):93-97.
    [14]EPRI Project Managers F. Goodman, L. Ard. Distribution system design for strategic use of distributed generation. December 2005.
    [15]Ferry A. Viawan, Daniel Karlsson. Protection scheme for meshed distribution systems with high penetration of distributed generation.
    [16]王希舟,陈鑫,罗龙,等.分布式发电与配电网保护协调性研究[J].继电器,2006,3(34):36-39.
    [17]Kojovic, L.A.,Witte, J.F. Improved relay coordination and relay response time by integrating the relay functions. Power Engineering Society Summer Meeting,2000. IEEE, Volume 2,16-20 July 2000 Page(s):1202-1207 vol.2.
    [18]NIKKHAJOEIH, LASSETER R H. Microgrid fault protection based on symmetrical and differential current components [EB/OL]. [2006-12-01].
    [19]S.M. Brahma and A.A. Girgis. Development of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation. IEEE Transactions on Power Delivery, vol.19, no.1.
    [20]庞建业.分散电源并网对配电系统的影响分析研究[D].山东:山东大学,2006.
    [21]庞建业,夏晓宾.分布式发电对配电网继电保护的影响[J].继电器,2007,11(35):5-8.
    [22]Yiming Mao. Protection system design for distribution systems in the presence of distributed generation. Ph.D.dissertation,2005.
    [23]Zeng Xiangjun, Li K.K. Multi-Agents Based Protection for Distributed Generation Systems.2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT2004) April 2004 Hong Kong.
    [24]陈堂,赵祖康,陈星莺,等.配电系统及其自动化技术[M].北京:中国电力出版社,2002.
    [25]《配电网新设备与新技术》编写组.配电网新设备与新技术[M].北京:中国水利出版社,2006.
    [26]刘健,倪建立.配电网自动化新技术[M].北京:中国水利水电出版社,2003.
    [27]王宝华,许贵东.配电网馈线自动化故障恢复系统探讨[J].电力自动化设备,2001,21(10):23-26.
    [28]孙成宝,李广泽.配电网实用技术[M].北京:中国水利水电出版社,2007.
    [29]李澍森,杨迎建,吴夕科,等.配电技术概括及发展趋势[J].高电压技术,2008,34(1):113-122.
    [30]Kumpulainen L K, Kauhaniemi K T. Analysis of the Impact of Distributed Generation on Automatic Reclosing[A]. Power Systems Conference and Exposition.2004.603-608.
    [31]张超,计建仁,夏翔,等.分布式发电对配电网继电保护及自动化的影响[J].华东电力,2006,34(9):23-26.
    [32]苗俊杰,李娟,焦邵华,等.配网自动化中故障处理模式的分析比较[J].电工技术杂志,2003,(3):17-20.
    [33]焦振有,焦邵华,刘万顺,等.配电网馈线系统保护原理分析[J].电网技术,2002,26(12):75-78.
    [34]胡诚,周芳.配电网保护的现状与发展[J].湖北电力,2007,31(1):14-15.
    [35]周念成,贾延海,赵渊.基于配电网系统保护的馈线终端[J].电力系统自动化,2006,30(8):94-97.
    [36]张青杰,陆于平.基于故障相关区域自适应划分的分布式保护新原理[J].电力系统自动化,2008,32(7):39-43.
    [37]丛伟,潘贞存,郑罡,等.配电线路全线速切继电保护技术[J].电力自动化设备,2009,29(4):91-95.
    [38]卢志刚,董香玉.含分布式电源的配电网故障恢复策略[J].电力系统自动化,2007,31(1):89-92.
    [39]丛伟,潘贞存,王成山.含高渗透率DG的配电系统区域纵联保护方案[J].电力系统自动化,2009,33(10):81-84.
    [40]苏永智,潘贞存,丁磊.一种复杂配电网快速故障定位算法[J].电网技术,2005,29(18):75-78.
    [41]丁同奎,陈歆.配电网馈线末端故障定位优化算法[J].电力系统自动化, 2005,29(20):60-62.
    [42]Jason Price. C#数据库编程从入门到精通[M].北京:电子工业出版社,2003.
    [43]Mickey Williams. Visual C#.NET技术内幕[M].北京:清华大学出版社2003.
    [44]Tom Archer, Andrew Whitechapel. C#技术揭秘[M].北京:机械工业出版社2003.
    [45]周存杰.Visual C#.NET网络核心编程[M].北京:清华大学出版社,2002.
    [46]杨奇逊,黄少锋.微机继电保护基础[M].北京:中国电力出版社,2007.
    [47]罗士平.微机保护实现原理及装置[M].北京:中国电力出版社,2001.
    [48]张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2005.
    [49]葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学出版社,2007.
    [50]束洪春.配电网络故障选线[M].北京:机械工业出版社,2008.
    [51]金之诚,李德领,马潮.uPSD32xx高速SOC5 1单片机原理及应用[M].北京:清华大学出版社,2005.
    [52]边春元,李文涛,江杰,等.C51单片机典型模块设计与应用[M].北京:机械工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700