面向互操作的分布式网络地理信息系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着GIS广泛地应用于各行各业,同时产生了大量的异质空间数据和异构GIS应用系统。如何共享这些空间信息资源和实现GIS应用之间的互操作,是一个非常迫切的问题,也是一个挑战。建立可互操作的分布式网络地理信息系统是解决问题的有效途径之一,并且分布式地理信息系统的研究一开始就十分重视GIS互操作。分布式网络地理信息系统是分布式计算技术与网络地理信息系统技术结合的产物,是GIS领域的一个重要的研究方向。
     本文从GIS互操作的角度,对分布式网络地理信息系统的原理、框架体系和构建技术等展开了深入研究,主要集中在以下几个方面:
     (1)针对不同应用需求的网络地理信息系统建设
     WebGIS是构建分布式网络地理信息系统的基础,目前已经广泛地应用于各行各业。本文在分析WebGIS主要构建技术的基础上,结合实际的应用研究项目,探讨了不同应用需求下的WebGIS应用系统的设计和实现过程。
     (2)分布式网络地理信息系统构建技术研究
     用于构建分布式网络地理信息系统的方法有许多,传统的分布式对象技术方法主要有:微软的COM/DCOM、对象管理集团(OMG)的COBRA和Sun的J2EE/EJB。本文对基于传统分布式对象模型的分布式网络地理信息系统构建技术进行了深入探讨,并给出了相应的结构框架设计。同时,论文分析了传统分布式对象技术之间在跨平台互操作能力上的局限性。
     (3)基于Web服务的分布式网络地理信息系统研究
     Web服务是基于互联网的新一代分布式计算技术。与传统分布式对象技术相比,它具有通用数据格式、松散偶合性和高度可集成能力等跨平台互操作的优势。本文提出了基于Web服务构建分布式网络地理信息系统的新方法,并在WebGIS通用三层体系结构的基础上,设计出了一个基于Web服务的分布式网络地理信息系统的结构框架。
     (4)空间数据模型和GIS服务规范研究
     建立分布式网络地理信息系统的重要目的是实现空间信息资源共享和GIS互操作,其中空间数据标准和GIS服务规范的制定具有重要的意义。本文深入分析了OGC的开放地理数据模型(OGM)、简单特征规范(SFS)、地理标记语言(GML3.0)和Web服务计划(OWS)。它们是实现分布式网络环境下空间数据互操作和GIS服务互操作的基础。
     (5)分布式网络地理信息系统的应用开发实例
     本文结合“空间信息搜索引擎技术研究”项目,设计和实现了一个基于Web服务的分布式网络地理信息系统——空间信息Web服务系统。该应用系统通过对GeoBeans地图Web服务、ArcIMS地图Web服务、地名Web服务和投影转换
    
    中科院遥感应用研究所博士学位论文
    、V亡b服务的应用集成,为用户提供基于地名获取地图的服务,展现了跨GIS应
    用系统的集成应用和互操作能力。
     并且,本文结合“数字福建一空间信息共享与服务平台”建设项目,设计和
    实现了一个分布式空间数据发布和共享WebGIS应用系统。它为分布的空间数据
    提供集成应用环境,实现了空间数据的统一管理和异地处理能力。该应用系统的
    主要功能包括本地和异地空间数据加载、空间数据的异地处理(缓冲区分析)等。
With the rapid development of GIS, vast amount of heterogeneous spatial data has been produced and lots of heterogeneous GIS applications have been established. How to share the spatial information resource and realize the interoperability between the GIS applications is very urgent, and also is a challenge. Establishing an interoperable Distributed WebGIS is an effective way to resolve the problem. And GIS interoperability has been heavily emphasized even at the beginning research of distributed WebGIS. Distributed WebGIS which combines distributed computing technology and WebGIS technology, is an important research direction of GIS.
    This dissertation is focused on the research of distributed WebGIS and GIS interoperability. And its content includes following parts:
    1. Developing WebGIS with different application requirements
    WebGIS is the base of distributed WebGIS development. Based on the analysis of main technology of WebGIS, this dissertation discusses the design and implementation of WebGIS system with different application requirements by using real application cases.
    2. Research on main technology of distributed WebGIS
    There are many ways to develop a distributed WebGIS. Traditional distributing object computing technology includes COM/DCOM, COBRA and J2EE/EJB. In this dissertation, distributed WebGIS development based on traditional distributing object computing technology is discussed and a corresponding architecture design is given. In the meanwhile, this dissertation further analyses the interoperability limitations of crossing platform between them.
    3. Research on Distributed WebGIS based on Web Service
    Web Services, a new generation of distributing computation technology, have advantages over traditional distributing object computing technology with the properties of common data format, loosely coupled relations and strong capability of integration etc. In this dissertation, the author introduces a new method of developing a distributed WebGIS based on Web Services, and designs an architecture framework for the distributed WebGIS on the basis of common three-tier architecture of WebGIS.
    4. Research on spatial data model and GIS service specification
    A vital purpose of developing a distributed WebGIS is to share spatial information resources and realize GIS interoperability, and spatial data standard and GIS service specification play important roles. This dissertation discusses deeply the OGM(Open Geodata Model), SFS(Simple Feature Specification), GML(Geography
    iii
    
    
    Markup Language) and OWS(OpenGIS Web Services) by OGC(OpenGIS Consortium), which are the basis of spatial data interoperability and GIS service interoperability under distributing network environment. 5. Application cases of distributed WebGIS
    In this dissertation, two application cases are given. The first one is Spatial Information Web Service System, a distributed WebGIS based on Web Services. This application system is part of Research on Spatial Information Search Engine project. It integrates GeoBeans Map Web Service, ArcIMS Map Web Service, Place Name Web Service and Projection Transform Web Service to provide map-searching service by place name for users. The system demonstrates its capabilities of integration and interoperability crossing GIS application systems.
    Another one is Spatial Information Sharing and Services Platform for Digital Fujian project. In this project, the author designs and implements a WebGIS application system for distributed spatial data sharing and publishing. The system provides integrated application environment for distributed spatial data, with the capabilities of uniform management and remote processing of spatial data. It includes the following functions: loading spatial data locally and remotely, remote processing (e.g., buffer analysis)of spatial data etc.
引文
1. Al Gore, 1998, The Digital Earth: Understanding Our Planet in the 21st Century
    2. Andrew S.Tanenbaum, Distributed Operating Systems, Prentice Hall, Inc, 1995
    3. ArcIMS Metadata Service. http://www.esri.com/news/arcnews/fall01articles/-threenew.html
    4. Arcweb Service. http://arcweb.esri.com/arcwebonline/index.htm
    5. Benjamin Hatton. Distributed Data Sharing. AURISA 97-The 25th Annual Conference of the Australasian Urban and Regional Information Systems Association Christchurch, New Zealand, 19-21 November 1997
    6. Bernard A. Engel, Jin-Yong Choi, Jon Harbor and Shilpam Pandey, Web-based DSS for hydrologic impact evaluation of small watershed land use changes, Computers and Electronics in Agriculture Volume 39, Issue 3, August 2003, Pages 241-249
    7. Bishr Y., Overcoming the semantic and other barriers to GIS interoperability, 1998
    8. Bishr Y A, Pundt H, Probing the concept of information communities—A road towards semantic interoperability [M], http://www.ncgis.edu, 1997
    9. Buehler K, Mckee L, editors. The Open GIS Guide[J], OpenGIS Consortium, Inc., 1996
    10. Chao Tang, Li Da Xu, Shan Feng, An agent-based geographical information system, ScienceDirect, Volume 14, Issues 5-6, August 2001, Pages 233-242
    11. Clearinghouse. http://www.fgdc.gov/clearinghouse/clearinghouse.html
    12. DHPC-047 Implementation of a Geospatial Imagery Digital Library using Java and CORBA, P.D. Coddington, K.A. Hawick, K.E. Kerry, J.A. Mathew, A.J. Silis, D.L. Webb, http://www.dhpc.adelaide.edu.au/reports/047/abs-047.html
    13. ESRI. http://www.esri.com/
    14. ESRI, 1995. ESRI's Approach to Interoperability, White Paper Series, Aug.
    15. FANGJU WANG, A Distributed Geographic Information System on the Common Object Request Broker Architecture(CORBA), GeoInformatica 4:1, 89—115(2000)
    16. FGDC. http://www.fgdc.gov
    17. Fody M.A., OLE and COM vs CORBA[J], Unix Review, 1996, 14(4):43-45
    18. Frank, A., 1997. Spatial ontology: a geographical point of view. In: Stock, O., Editor, 1997. Spatial and temporal reasoning, Kluwer, Dordrecht, Netherlands, pp. 135-153.
    19. Geographynetwork. http://www.geographynetwork.com/
    20. GLASS G, The Web Service Evolution [EB/OL], http://www-900.ibm.com/-
    
    developerWorks/cn/webservices/ws-peerl/indexall.shtml. 2001-02.
    21. GML3. Geography Markup Language 3.0. 2002. OGC Document #02-023r4
    22. Goodchild M.F., Direction in GIS, www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/googchild_michael/goog.html
    23. Goodchild M F, Egenhofer M., Fegeas P,. and Kottman C., 1999. Interoperating geographic information systems, Kluwer, Norwel, MA.
    24. Goodchild M.F., Egenhofer M.J., Regears R, Interoperating GISs, Report of a Special Meeting Held Under the Auspices of the Carenius Project Panel on Computational Implementations of Geographic Concepts, Santa Barbara, Dec. 5-6, 1997
    25. Hardy Pundt and Yaser Bishr, Domain ontologies for data sharing-an example from environmental monitoring using field GIS, Computers & Geosciences Volume 28, Issue 1, February 2002, Pages 95-102
    26. Holger G(?)irtner, Andreas Bergrnann and Jochen Schmidt, Object-oriented modeling of data sources as a tool for the integration of heterogeneous geoscientific information, Computers & Geosciences Volume 27, Issue 8, October 2001, Pages975-985
    27. Horstmann M. and Kirtland M., DCOM Architecture, http://premium.microsoft.com/msdn/library/backgrnd/html/msdn_dcomarch.htm, 1998
    28. IBM. Web Services-The Web's next revolution, p.2,2000
    29. ISO/TC211 WG4, Geospatial services NO42. Open Geographic Datastore Interface(OGDI)
    30. ISO/TC211, ISO 19115, Metadata
    31. J. Albrecht, Geospatial information standards. A comparative study of approaches in the standardisation of geospatial information, Computers & Geosciences Volume 25,Issue 1, February 1999, Pages 9-24
    32. Kong Yunfeng, Lin Hui. Rethinking GIS: Technological Perspectives and Beyond, http://137.189.169.210/GIS-RBE-GB.htm
    33. Levinsohn A., Geospatial Interoperability: The Holy Grail of GIS, GeoWorld, No.10, 2000
    34. Macmillan, W. D., Computing and the Science of Geography: the Postmodern Turn and the GeoComputational Twist, http://divcom.otago.ac.nz:800/conferences/ geocomp97, 1997
    35. Mapdotnet. http://www.mapdotnet.com/
    36. MapInfo. http://www.mapinfo.com/
    
    
    37. Mappoint. http://www.microsoft.com/m(?)ppoint/webservice/default.mspx
    38. Montgomery, J. (1997). Distributing Components, BYTE, April 1997, 22(4), pp.93-98
    39. Nunes, J., 1991. Geographic space as set of concrete geographical entities. In: Mark, D. and Frank, A., Editors, 1991. Cognitive and linguistic aspects of geographic space, Kluwer, Dordrecht, Netherlands, pp. 9-33.
    40. OGC. http://www.opengis.org
    41. OpenGIS Consortium. OGC Web Service 1.1 Initiative
    42. OpenGIS Web Feature Service Implementation Specificationl.0.0. 2002. OGC Document #02-058
    43. OpenGIS Web Map Service Implementation Specificationl.1.1. 2001.OGC Document #01-068r3
    44. OpenGIS Web Services Architecture. http://www.opengis.org/
    45. OWS. OGC Web Services 1.2. http://ip.opengis.org/ows1.2/index.html
    46. Orfali, R. & Harkey, D. (1997). Client/Server Programming with Java and CORBA. New York: John Wiley & Sons
    47. Orfali, R., Harkey, D. & Edwards, J. (1996). The Essential Distributed Objects Survival Guide, New York: John Wiley & Sons, Inc
    48. Paul Hardy, MULTI-SCALE DATABASE GENERALISATION FOR TOPOGRAPHIC MAPPING, HYDROGRAPHY AND WEB-MAPPING, USING ACTIVE OBJECT TECHNIQUES,IAPRS, Vol. ⅩⅩⅩⅢ, Amsterdam, 2000
    49. Plewe, B. (1997). GIS Online: Information Retrieval, Mapping, and the Internet. Santa Fe, New Mexico: OnWord Press
    50. Pountain, D. (1997). The Component Enterprise, BYTE May 1997, 22(5), pp. 93-98
    51. Reza Beheshti and Ralph Michels, The global GIS: a case study, Automation in Construction Volume 10, Issue 5, July 2001, Pages 597-606
    52. SAIF. Spatial archive and interchange format: formal definition. British Columbia Specifications and Guidelines for Geomatics, Reference Series, vol. 1. Surveys and Resource Mapping Branch, Ministry of Environment, Lands and Parks, British Columbia, Canada (17 documents totalling 284 pp.), 1994.
    53. SDTS. Spatial data transfer standard, Federal Information Processing Standard(FIPS) Publication 173. Spatial Data Transfer Standard Task Force, United States Geological Survey, Rolla, Missouri (4 parts plus annex, 423 pp.), 1992.
    54. Smith, B. (1998). An introduction to ontology. In D. Peuquet, B. Smith, & B.
    
    Brogaard, The ontology of fields (Technical Report). National Center for Geographic Information and Analysis, University of California, Santa Barbara (pp. 10-14).
    55. Smith, B. & Mark, D.(1998). Ontology and geographic kinds. In T. Peucker, & N. Chrisman, International Symposium on Spatial Data Handling, Vancouver, Canada (pp. 308-320).
    56. Smith, B.(1993). Ontology and the logistic analysis of reality. In N. Guarino, &. R. Poli, International Workshop on Formal Ontology in Conceptual Analysis and Knowledge Representation, Institute for Systems Theory and Biomedical Engineering of the Italian National Research Council, Padua, Italy (pp. 51-68).
    57. SOAP. Specification. http://www.w3.org/TR/2003/PR-soap12-part1-20030507/
    58. T. Badard and D. Richard, Using XML for the exchange of updating information between geographical information systems, Computers, Environment and Urban Systems Volume 25, Issue 1, 1 January 2001, Pages 17-31
    59. Terraservice. http://www.terraservice.net/
    60. Voisard and Schweppe. Abstraction and decomposition in interoperable GIS[J], International Journal of Geographical Information Science, 1998
    61. W3C Note, Web Services Description Language (WSDL) 1.1 [EB/OL], 2001.
    62. WANG F J, JUSOH S. Integrating Multiple Web-based Geographic Information Systems [J]. IEEE Multimedia, 1999, 6(1):49-61
    63.沈体雁、程承旗、袁文,基于空间元数据的分布式地理数据管理模型及应用研究,CAGIS&CPGIS年会论文集,1998
    64.黄裕霞、陈常松、何建邦,GIS互操作的实现途径评述[J],地理研究,1999,18(1):105~112
    65.易善桢,李琦,陈继成,空间信息的共享与互操作,测绘通报[J],2000年8期
    66.易善桢,李琦,陈继成,互操作GIS模型及其在空间信息基础设施体系结构中的实现途径,中国图象图形学报[J],1999年11月
    67.黄裕霞,Cliff Kottman,柯正谊,何建邦,可互操作的GIS研究,中国图象图形学报,2001年9月
    68.龚健雅、朱欣焰、朱庆、熊汉江、面向对象集成化空间数据管理系统的设计与实现,武汉测绘科技大学学报,2000
    69.承继成、林晖、周成虎、曾杉,数字地球导论,地球信息科学基础丛书,科学出版社,2000
    70.张立、龚健雅,地理空间元数据管理的研究与实现,武汉测绘科技大学学报,第25卷第2期,2000年4月
    
    
    71.易善桢、承继成、李绮,空间信息框架研究,2000
    72 沈体雁、程承旗、袁文,基于空间元数据的分布式地理数据管理模型及应用研究,测绘通报,第七期。p34~p37,1999
    73.陈能成,基于J2EE的分布式地理信息服务研究,武汉大学博士学位论文,2003
    74.形彭龄,罗英伟,空间信息共享和互操作的关键问题分析,计算机工程,2003年7月
    75.杨崇俊、王宇翔、王兴玲、董鹏、刘冬林,互联网地理信息系统发展及前景,中国图象图形学报,2001.9,P886
    76.阎守邕、刘亚岚、李小文、曹春香、金水高,SARS空间传播模式及其在疫情监控信息系统设计中的应用,遥感学报,2003,7(4):226—272.
    77.王劲峰、韩卫国、刘旭华、郑晓瑛、刘纪远、李小文,传染病时空传播模型.“SARS时空传播模型与预警控制空间信息系统”学术研讨会,2003,pp13-18.
    78.龚建华、孙战利、钱贞国等,SARS疫情控制的模拟分析,遥感学报,2003,7(4):260~265
    79.杨崇俊、刘冬林、钱贞国等,高访问量的“SARS网络地理信息系统”解决方案遥感学报Vol.7,No.4
    80.陈述彭 鲁学军 周成虎,地理信息系统导论,科学出版社,1999年
    81.王兴玲.基于XML的地理信息Web服务研究[博士论文].中科院遥感应用研究所,2002
    82.赵霈生、杨崇俊,Web-GIS的设计与实现,中国图象图形学报,2000,5(1),pp:75-79
    83.陈文博、夏长虹,以组件对象为中心的动态WEB开发方法,计算机应用,2000年6月
    84.Carl L.Hall,邓召义、张云华译,沈翔校,客户/服务器系统技术基础,电子工业出版社,1995
    85.罗英伟,基于Agent的分布式地理信息系统研究,北京大学博士学位论文,1999
    86.朱磊,基于ORDB的WebGIS系统的研究和实现,北京大学硕士学位论文,1998
    87.罗英伟,从升日,分布式地理信息系统研究,计算机工程与应用,2000年11月
    88.陈能成、龚建雅、韩海洋,分布式地理信息共享,测绘信息与工程,2000年3期
    89.浦善新.数字地球与地名数字化.http://www.cgn.ac.cn/Keyan/lunwen5.htm
    90.数字地球北京宣言[EB/OL],http://www.digitalearth.net.cn/de99/isde-declaration.htm, 1999-12-2
    
    
    91. Robert Orfali, Dan Harkey, Jeri Edwards,陈章渊等译,智能CORBA,电子工业出版社,北京,1999
    92.潘爱民,COM原理与应用,北京北京清华大学出版社,1999-11
    93.刘正军、冯学智,基于INTERNET的分布式组件GIS集成的实现方法[J],遥感技术与应用,1999,14(3):44-48
    94.王志兵、李满春、周炎坤等,基于DCOM的分布式GIS研究[J],计算机应用研究,2001(2):59-60
    95.罗英伟、从升日、汪小林等,WEBGIS构件设计[J],中国图形图像学报,1999-4(增刊):79-84
    96.史杏荣、俞能海、张永谦,基于组件对象技术的WebGIS研究[J],计算机工程,2001,27(6):4-8
    97.兑继英、沈卓炜,顾冠群,COM/CORBA互操作的研究与实现[J],东南大学学报,1999,29(3)
    98.袁相儒、龚健雅、林晖等,互联网地理信息系统的分布式部件方法[J],测绘学报,2000,29(1):40-46
    99.方裕、周成虎等,第四代GIS软件研究[J],中国图象图形学报,2001,6(9):817
    100.赵霈生,Internet GIS领域软件体系结构研究,中科院遥感应用研究所博士论文,导师:徐冠华、杨崇俊,2000年
    101.吴信才,WebGIS地理信息系统参考手册,武汉:中国地质大学(武汉)信息工程学院,2001
    102.黄为民、陈世福,分布式对象构件及其应用[J],计算机应用研究,2000(10):83~85
    103.Stephen Walther著,马朝晖等译,ASP.NET技术内幕,机械工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700