智能温室计算机集散系统的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先提出了智能温室环境计算机集散系统的总体设计方案,该系统是由PC机和多台8031单片机组成的总线型主从式计算机系统。PC机主要完成参数设定、数据处理以及数据的存贮、分析、显示、打印等;运用嵌入式自开发的思想开发下位单片机应用系统,除了自开发所具有的功能以外,还要完成温室的数据采集、传送、处理等实时控制任务。
     本文通过对智能温室计算机集散系统中的单片机应用系统的研究,提出了单片机嵌入式自开发的思想,对单片机应用系统中的微处理器系统进行了硬件设计及部分软件的设计。其中特别对总线进行了设计,参考了STD总线的优点和PC/104总线的结构,设计出了USER-BUS用户总线。该总线采用三总线结构,即地址总线(AB)、数据总线(DB)和控制总线(CB),具有良好的兼容性,从而使应用系统具有灵活性和通用性等特点,方便用户对应用系统进行扩展。
     本文以8031单片机最小系统为基础,对单片机系统进行扩展。由于8031单片机的CPU无片内RAM,其程序存储器和数据存储器又是分开编址的,因此,为了达到自开发的目的、实现单片机应用系统的自开发功能,需要对程序存储器和数据存储器进行统一编址,使程序存储器可读写,以便在程序调试、修改、下装过程中修改程序存储器。
     整个单片机应用系统的设计,包括微处理器部分的设计、应用部分的设计及电源部分的设计等。其中,微处理器的设计是关键。在微处理器部分的设计中,主要包括以下内容:单片机及存储器电路设计、译码器电路设计、参数区电路设计、中断控制电路设计、看门狗电路设计、串行通信接口电路设计等。
     文中对上位PC机与下位单片机之间的串行通信接口进行设计,上位PC机通信软件运用Visual C++6.0编写,下位机通信软件运用汇编语言进行编写,从而实现了上、下位机之间的数据串行通信。
In this paper, the whole design plan of computer total distributed system in intelligent greenhouse environment control is purposed. The control system consists of PC and multi-single chip 8031 that is a principal and subordinate computer system. PC mainly performs following functions: parameter setting and data processing, storing, analysis, display and print, etc. Using embedded self-developing idea to develop single-chip applying system, besides of the function of self-developing system, it also should accomplish missions of real-time control on greenhouse environment, such as data gathering, transmitting, and processing.
    Through the study of single-chip applying system in computer total distributed system of intelligent greenhouse, the idea of embedded and self-developing of single-chip is purposed, and hardware and partial software of applying system are designed. Especially BUS is designed. Advantages of STD BUS and structure of PC/104 BUS are referred to design the USER-BUS, which uses three bus structures, i.e. Address BUS(AB), Data BUS(DB) and Control BUS(CB). It is well compatible, and the applying system has flexibility and common use and is convenient to extent for users.
    The research extents the single-chip system on the basis of the 8031 single-chip minimal system. Because there is no inner RAM in CPU of 8031 single-chip and addresses of program memory and data memory are organized separately, in order to attain the goal of self-developing and to realize self-developing function of single-chip applying system, the address of program memory and data memory should be organized uniformly to be read and written for program memory and be revised for it during debugging, modifying and unloading programs.
    Designing of whole single-chip applying system includes micro-processor, applying part and power part. The designing of microprocessor is a key. In the part, there are following contents: single-chip and memory circuit, interrupt control circuit, decoding circuit, parameter area circuit, watchdog circuit and serial communication interface circuit, etc.
    In this paper, serial communication interfaces between upper PC and lower single-chips are designed. Upper PC communication software uses Visual C++6.0 to program, and lower communication software uses assembly language to program, therefore, data serial communication between upper and lower computers are realized.
引文
[1] Alan Reeve. Which fieldbus will you use and when? [J].C & I, 1993 (5) :67-70
    [2] Albert Setiawan, Louis D. Albright, Richard M. Phelan. Application of seudo-derivative-feed-back algorithm in greenhouse air temperature control[J]. Computers and Electronics in Agriculture, 2000(26) :283-302
    [3] B.J.Bailey. Optimum control of greenhouse heating[J]. Acta Horticulturae, 1989, 245: 512-517
    [4] B.Nielson. Identification of transfer functions for control of greenhouse air temperature[J]. J.agric.Engng Res., 1995, 60:25-34
    [5] Beaulah S.A., Chalabi Z.S.. Intelligent real-time fault diagnosis of greenhouse sensors [J]. Control Engineering Practice, 1997,5(11) : 1573-1580
    [6] C.Stanghellini. Environment control of crop transpiration[J]. J.agric.Engng Res., 1992, 51: 297-313
    [7] Cunha J Boaventura, Couto C, Riano A E. Real-time parameter estimation of dynamic temperature models for greenhouse environmental control [J]. Control Engineering Practice, 1997,5(10) : 1473-1481
    [8] Daren Lewis. Making more of your DCS[J].C & I, 1993(5) :41-44
    [9] E.J.van Henten. Model based design of optimal multivariable climate control system[J]. Acta Horticulturae, 1989, 248:301-306
    [10] G.van Straten, H. Challa, F. Buwalda. Towards user accepted optimal control of greenhouse climate[J].Computers and Electronics in Agriculture, 2000(26) :221-238
    [11] Georgios K. Spanomitsios. SE-structure and environment temperature control and energy conservation in a plastic greenhouse [J]. Journal of Agricultural Engineering research/British Society for Research in Agricultural Engineering, 2001,80(3) : 251-259
    [12] H.J.Tantau. Greenhouse climate control using mathematical models[J]. Acta Horticulturae, 1985,174:449-459
    [13] H.J.Tantau. On-line climate control[J]. Acta Horticulturae, 1989, 248:217-222
    [14] http://e.swjtu.edu.cn/educai/szdl/10-3. htm
    [15] http://go3. 163. com/netschool/five/index5-5. htm
    [16] http://www.etnet.com.cn/exist/education/numbcr/content-24. htm
    [17] http://www.teachersong.com/pic/eeprom.htm
    [18] I.Seginer. Neural network models of greenhouse climate[J]. J.agric.Engng Res., 1994 (59) : 203-216
    [19] Ioslovich Ilya, Gutman Per-Olof, Seginer Ido. No-linear optimal greenhouse control problem with heating and ventilation [J]. Optimal control applications & methods, 1996,17(3) : 157-169
    [20] Jeanne Dictsch, William Kennedy, John Belanger, et al. PC/104 takes a ride [J]. Circuit cellar INK, 1999,000(7) : 38-41
    [21] John A Shaw. Design your DCS to reduce operator error[J].chem Eng Progress, 1991(2) : 61-65
    [22] K.Chao. Design of switching control systems for ventilated greenhouse[J]. Transactions of the ASAE., 1996, 39(4) :305-320
    [23] K.G. Arvanitis, P.N. Paraskevopoulos, A.A. Vernardos. Multiratc adaptive temperature control of greenhouses[J].Computers and Electronics in Agriculture, 2000(26) :303-320
    [24] Katz P. Digital control using microcomputer[M]. New York: Hall International Inc., 1981
    [25] King P.J. The application of fuzzy control systems to industrial processes [J]. Automat, 1977,
    
    13(3):235~242
    [26] Kok R., Lacroix R., Clark G., et al. Imitation of a procedural greenhouse model with an artificial neural network [J]. Canadian Agricultural Engineering, 1994, 36(2): 117~126
    [27] Kuo, B.C. Digital control systems[M]. New York: Holt, Rinehart and Winston Inc., 1980
    [28] L. Gauthier, et al. An object-oriented design for a greenhouse climate control system[J]. Transactions of the ASAE, 1990, 33 (3):97~105
    [29] Mamdani E H. Applications of fuzzy alyorithms for simple dynamic plant [J]. Proc. IEE, 1974, 121:1585~1588
    [30] Morris A J. Foundation of structural optimization[M]. New York: John Wiley and Sons, 1982
    [31] Nick Sigrimis, Robert E. King. Advances in greenhouse environment control[J].Computers and Electronics in Agriculture, 2000(26):217~219
    [32] P. Jones. Simulation for determining greenhouse temperature setpoints[J]. Transactions of the ASAE., 1990, 33(5):1722~1728
    [33] Procky T J. A linguistic self-organizing process controller [J]. Automat, 1979, 15(1):15~30
    [34] R. Linker, P.O. Gutman, I. Seginer. Robust model-based failure detection and identification in greenhouses[J].Computers and Electronics in Agriculture, 2000(26):255~270
    [35] R. S. Gates, K. Chao, N. Sigrimis. Identifying design parameters for fuzzy control of staged ventilation control systems[J].Computers and Electronics in Agriculture, 2001 (31):61~74
    [36] S. Ameur, M. Laghrouche, A. Adane. Monitoring a greenhouse using a microcontroller based meteorological data-acquisition system[J].Renewable Energy, 2001 (24): 19~30
    [37] Seginer Ido. Some artificial neural network applications to greenhouse environmental control [J]. Computers and Electronics in Agriculture, 1997,18(2-3): 167~186
    [38] T. Hesketh. Advanced digital control for New Zealand glasshouse[J]. J.agric. Engng Res., 1986, 34:207~218
    [39] T. Takakura Climate control to reduce energy input[J]. Acta Horticulturae, 1989, 245:406~415
    [40] T. Takakura. Physical models and the greenhouse climate[J]. Acta Horticulturae, 1985, 174:206~212
    [41] Tetsuo Morimoto, Yasushi Hashimoto. An intelligent control for greenhouse automation, oriented by the concepts of SPA and SFA — an application to a post-harvest process[J]. Computers and Electronics in Agriculture, 2000(29):3~20
    [42] V. Goggos, R. King. Qualitative-evolutionary design of greenhouse environment control agents[J].Computers and Electronics in Agriculture, 2000(26):271~282
    [43] 安平幸雄著,陈次吕泽.使用微犁机的温室环境控制系统[J].国外农机化,1984(9):76~80
    [44] 白存广.计算机数据采集与控制系统在农业上的应用[J].农业工程学报,1995,11(增刊):185~189
    [45] 白存广.计算机数据采集与控制应用系统开发研究[J].农业工程学报,1995,11(增刊):180~184
    [46] 鲍可进.一种衫的单片机系统的RS-232接口[J].电子技术应用,1997(2):41~42
    [47] 陈曙光.利用通信控件开发Windows环境下的串口通信稃序[J].淮北煤炭师院学报,2000,21(1):87~90
    [48] 陈万春.PC/104——新一代嵌入式工业PC标准[J].微型机与应用,1996(9):21~24
    [49] 陈细军,谭民.VC编程中的串口通信技术[J].计算机应用,2001,21(9)
    [50] 陈小平.微机I/O地址扩展技术的实现[J].计算机自动测量与控制,1998(4)
    [51] 陈新望.MSComm控件实现中文Win9x下的通信[J].电子与电脑,1999(2)
    
    
    [52] 邓素萍.串行通信RS232/RS485转换器[J].国外电子元器件,2001(7)
    [53] 范云翔.智能温室环境控制器的研究工发[J].农业工程学报,1997,(13):25~27(增刊)
    [54] 方瑞华.我国设施农业的现状和发展方向[J].江苏理工大学学报,1998(7):65
    [55] 付古稳,刘建业.利用8259A扩展MCS-51系列单片机外部中断源[J].河北工业科技,2002(1)
    [56] 高东林.单片机系统可靠掉电保护的实现[J].测控技术,2002,21(1)
    [57] 宫克存,黄永平.一种高效的串行通信协议及实现[J].长春科技大学学报,2000,30(1)
    [58] 顾寄南,毛罕平.国内外实施栽培综合环境控制技术及其发展[J].农业现代化研究,1999(5):20~22
    [59] 杭柏林.适用于实时监控仪器的多微机系统设计[J].自动化与仪器仪表,1993(2):25~27
    [60] 杭小树.Win95下基于API的串行通信开发方法[J].计算机时代,1998(10):13~14
    [61] 何立民.单片机应用系统设计——系统配置与接口技术[M].北京:北京航空航天大学出版社,1991
    [62] 何媛.PC机与MCS-51单片机之间的远程通信[J].西北大学学报(自然科学版),2001,31(5)
    [63] 侯伯亨,李伯成编著.十六位微型计算机原理及接口技术[M].西安:西安电子科技大学出版社,1998
    [64] 胡劲松,吴捷.单片机多机通信的新型方式[J].电子技术应用,1997(8):32~33
    [65] 黄东生.可编程逻辑器件在译码电路中的应用[J].辽宁工学院学报(自然科学版),2000,20(1)
    [66] 黄建国.PC机与单片机多机实时通信的设计与实现[J].电子工程师,2001,27(7)
    [67] 蒋晴霞,赵望达,鲁五一.室内环境智能监测控制系统的设计[J].电子技术,2000(10):31-33
    [68] 金向阳.同比较器应用于地址译码电路的设计[J].浙江师大学报(自然科学版),2000(23)
    [69] 郎文鹏,赵维琴.VB6.0用于PC机与MCS-51单片机多机串行通信[J].仪器仪表用户,2001,8(2)
    [70] 乐仁吕.ActiveⅩ控件实现串行通信编程[J].华东地质学院学报,1999(4)
    [71] 雷卫武.MCS单片机与PC机串行通信的几种方法[J].电子世界,2000(4):32
    [72] 李宝福,刘桂芝.新型电压监控芯片TPS383x的特性与应用[J].单片机与嵌入式系统应用,2001(6),41~43
    [73] 李长杰,潘天红,和卫星.分布式控制系统主机与前端机群之间的主从式通信[J].江苏理工大学学报(自然科学版),2001,22(3)
    [74] 李朝青著.PC机及单片机数据通信技术[M].北京:北京航空航天大学出版社,2001
    [75] 李成斌,幸国全,王宜等.单片机系统的光电隔离式RS-232接口设计[J].测控技术,2001,20(1)
    [76] 李萍萍,毛罕平,朱伟兴.现代温室种植业的系统分析和优化设计[J].农业系统科学与综合研究,2002,18(1)
    [77] 李应红,贾智伟.串行通信中应注意的两个问题[J].电子工程师,2001,27(8)
    [78] 林真纪夫.设施园艺环境控制的发展现状[J].上海蔬菜,2000(2):45
    [79] 刘莉明.用IBM-PC/XT和8098单片机实现多点温度遥测[J].微小型计算机开发与应用,1996(3):30~33
    [80] 刘曙光,王志宏,费佩燕等.模糊控制的发展与[J].机电工程,2000,17(1):9~11
    [81] 刘毅,孙莹光,冯秀清.可编程单片机接口芯片PSD311在51单片机扩展中的应用[J].辽宁工学院学报(自然科学版),2001,21(5)
    
    
    [82] 卢瑞英.一种用GAL器件实现的可编程计数器[J].电子技术应用,1996(12):42~43
    [83] 卢世魁,周立.几种实用的单片机抗干扰和掉电保护电路[J].煤矿自动化,2001(4)
    [84] 罗文广.串行通信RS-232C电平转换器[J].电子技术应用,1996(10):40~41
    [85] 马维华,基于I/O方式的单片机在UPS实时控制中的应用[J].南京航空航天大学学报,2000,32(6)
    [86] 毛罕平.工厂化蔬菜生产成套装备及自动化系统的研究[J].农业机械学报,1996,27(增刊):111~114
    [87] 米根锁.海量数据存储器单片机应用系统的实现[J].兰州铁道学院学报,2000,19(1)
    [88] 农毅.基于Windows'98的VC++串行通信编程[J].桂林电子工业学院学报,2000,20(3):68~71
    [89] 骈赞红,钟武清.微型计算机在温室管理中的应用初探[J].农业工程学报,1987(3):66~74
    [90] 任雪玲,徐立鸿.工控系统在设施农业中的应[J].基础自动化,2001,8(3)
    [91] 沈弘飞.模块化单片机系统的软件设计自动化[J].武汉理工大学学报(交通科学与工程版),2001,25(2)
    [92] 石振华,许丹,石新智.用GAL器件实现数据的单线传输[J].计算机应用,2000(1):108~110
    [93] 宋向荣,韩克敏,陈梦华.基于VC++6.0的PC机与多台单片机的串行通信[J].西北农林科技大学学报,2002,30(2):123~126
    [94] 宋寅卯,陈息坤,王成群.MCS-51单片机中断源扩展[J].电子与仪表,1999(3):38~39
    [95] 苏光奎,袁志勇.剧VC++6.0编写串行通信程序[J].电脑学习,2000(6)
    [96] 孙力,鲍健.嵌入式单片机应用系统程序结构[J].量子电子学报,2000,17(3)
    [97] 谭志标.IBM-PC机与多台MCS-51单片机的通讯软件设计[J].机械工艺师,2001(11)
    [98] 田吉,秦文明.PC机与多单片机组成串行通信的新尝试[J].基础自动化,2001,8(3)
    [99] 田梦倩,丛福建,肖绍原等.智能温室系统控制器的开发[J].南京农专学报,2001,17(2)
    [100] 万学遂.现代智能塑料温室[J].农业机械,1998(3):22
    [101] 汪佳莹.可编程逻辑器件的应用[J].西铁科技,1995(4):15~18
    [102] 王安健,刘灵芳.RS-232/422/485综合接口[J].电子世界,2001(6)
    [103] 王常力,廖道文.集散型控制系统的设计与应用[M].:北京:清华大学出版社,1993
    [104] 王国庆,严琳.VC++6.0开发Windows95环境下的串行通信[J].交通科技,2000(5):31~34
    [105] 王令红,孙勇,论智能化温室的特点与发展方向[J].设施园艺,1999(9):33~36
    [106] 王万良,李敏,李勤学等.温室环境的模糊逻辑网络建模与智能控制[J].机电工程,2000,17(2):63~66
    [107] 吴乃优,王晓初,吴小洪等,串行实时通信系统及应[J].制造技术与机床,1999(12)
    [108] 吴吴春,任玉东,陈晓峰.通信设计中的中断服务程序和信息接收程序的设计[J].东北农业大学学报,2001,32(1)
    [109] 谢剑英.微型计算机控制技术[M].北京:国防工业出版社,1991
    [110] 徐立鸿,谈眣晔,吴军辉.基于RTOS的单片机系统在温室外境控制中的应用研究[J].农业工程学报,2001,17(5)
    [111] 徐颖,王悦.Windows98下利用VC++6.0的MSComm控件实现微机与8051单片机的串行通信[J].自动化与仪表,2000(6):35~37
    [112] 薛均义,张彦斌编.MCS-51/96系列单片微型计算机及其应用[M].西安:西安交通大学出版社,1999
    [113] 杨国威,韩建宁.日本温室的发展趋势[J].设施园艺,1999(11):7
    [114] 尹立新.用GALl6V8实现三相六拍环行分配器[J].自动化与仪表,1996,10(2):16~19
    
    
    [115] 于海业.发达国家温室设施自动化研究的现状[J].农业工程学报,1997,13(增刊)
    [116] 在VC++中利用Active Ⅹ控件开发串行通信程序[J].电子技术应用,2000,26(6)
    [117] 詹国华.升发MCS-96单片机应用系统须注意的若干要点[J].实验室研究与探索,2000,19(5)
    [118] 张鑫.微机和单片机串行通讯接口的电路设计[J].青岛大学学报(工程技术版),1999,(1)
    [119] 张慧莉,徐击水,李毅.基于Windows95的微机与多台单片机的通信[J].电子技术,1998(8):29~30
    [120] 张良.用MAX813L设计单片机看门狗与电源监控电路[J].单片机与嵌入式系统应用,2001(5):51~52
    [121] 赵文敏,寿彩丽.用VB6.0开发微机与多台单片机之间的串行通信程序[J].浙江大学学报(理学版),2000,27(2)
    [122] 赵文武,徐颖,杨振亚.Window98在串行通信中存在的问题和解决方案[J].计算机应用,2000,20(10)
    [123] 郑学坚,周斌编著.微型计算机原理及应用[M].北京:清华大学出版社,1996 69
    [124] 周元庆,刘海龙.基于Windows的串行通信及单片机采集程序设计[J].计算机应用,2000,20(6)
    [125] 朱静著.模糊控制原理与应用[M].北京:机械工业出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700