增益可调超宽带低噪声放大器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,超宽带技术(UWB)作为一种新兴的无线通信技术成为了研究的热点。低噪声放大器(LNA)是超宽带系统接收前端最重要的模块,其噪声性能直接影响整个系统的噪声性能,所以对于超宽带低噪声放大器的研究具有重要的意义。
     本文首先介绍了超宽带低噪声放大器的研究现状和意义,并引出了增益可调超宽带低噪声放大器研制的必要性;然后系统地概述了超宽带低噪声放大器的基本理论;最终设计出了性能比较优越的连续增益可调的超宽带低噪声放大器。本文所做的工作和创新如下:
     (1)总结和分析了当前超宽带低噪声放大器的各种结构,对其小信号模型,噪声模型作了分析并比较了它们的优缺点;
     (2)对现有的增益可调技术作了简要地介绍,比较了它们的优缺点;
     (3)设计出一种3-5GHz的具有大范围连续增益变化的CMOS可调增益低噪声放大器,采用两极的共源共栅电路结构,二阶切比雪夫滤波器作为输入,源极跟随器作为输出,在带内获得了良好的输入输出匹配和噪声性能。通过控制第二级的偏置电流,获得了36dB的连续增益可调,同时也不影响输入输出匹配.该电路在最高增益时输入和输出反射系数S11和S22分别小于-10.1dB和-15dB,最高增益达到23.8 dB,最小噪声系数只有1.5dB,三阶交调截点为-7dBm,在1.2V的供压下,功耗为6.8 mW。
     (4)提出应用于3-10GHz的连续增益可调的低噪声放大器,采用共栅输入,并利用一个简单的高通滤波器置于输入端和电感峰化来实现3-10GHz的宽带匹配。同样也是通过控制第二级的偏置电流来实现连续增益可调,同时也不影响输入输出匹配。其电路性能如下:连续增益可调范围是19dB,输入和输出反射系数S11和S22分别小于-10.3dB和-10.6dB,在12.4dB的最高增益时,最小噪声系数为3.28 dB,在1.5V的供压下直流为13.1mA.
     本文提出的电路由ADS软件仿真,采用TSMC 0.18μm CMOS工艺,并利用Candence软件画出版图和后仿真,前仿和后仿结果与当前发表过的UWB LNA相比,具有很大的优越性,并实现了超宽带低噪声的连续增益可调的功能。
In recent years, the Ultra Wide-Band (UWB) technology as a novel wireless communication technology has become a hot research. A low noise amplifier (LNA) is one of the most critical blocks in the receiver front-end of UWB systems, which determines the performance of the whole receiver.So it is very significant to research on UWB LNA.
     The paper briefly introduces the research status and significance of UWB LNA, and illustrates that it is necessary to design a variable gain UWB LNA firstly.Then the basic theory of low noise amplifier (LNA) is summarized systematically. Finally,a CMOS continuous variable gain UWB LNA is presented.The main achievements of this work consist of following aspects:
     (1) The current various configurations of UWB LNA including their small-signal model and noise model are analyzed and summarized systematically.Also thier advantages and disadvantages are compared.
     (2) The existing variable gain methods are introduced and compared.
     (3) A tow-stage CMOS variable gain LNA (VG-LNA) with large and continuous gain variation for 3-5GHz is presented. A tow-section Chebyshev filter is exploited to achieve excellent input match in the band and to optimize the noise performance. An source-follower is designed specially to match output. By controlling the bias current of the second stage, a continuous gain tuning range of 36dB is achieved without influencing the input match and output match. The VG-LNA shows the following performance at the highest gain:S11and S22 are less than -10.1dB and -15dB respectively, and 23.8dB peak gain, only 1.5dB minimum noise figure,-7dBm input-referred third-order intercept point, while dissipates 6.8 mW from a 1.2V supply.
     (4)A new CMOS variable gain LNA (VG-LNA) with continuous gain variation for 3-10GHz is presented. With the common-gate configuration and a simple high-pass filter employed as the input stage, the broad-band input matching is obtained. By controlling the bias current of the second stage, a continuous gain tuning range of 19dB is achieved without influencing the input match and output match. Its performance at the highest gain mode is as follows: S11 and S22 are less than -10.3dB and -10.6dB respectively, and 12.4dB peak gain, 3.28dB minimum noise figure, while drawing13.1mA from a 1.5V supply.
     The proposed circuits are simulated in TSMC RF CMOS 0.18μm technology by ADS2006, and the layout and post-layout simulation are used by Candence. The pre-layout simulation and post-layout simulation results show that it is more excellent than recently published CMOS designs, and the function of continuous variable gain for UWB LNA is achieved.
引文
[1] FCC First Report and Order, Revision of the Part 15 Commission’s Rules Regarding Ultra-Wideband Transmission Systems, April 22, 2002: 98-153
    [2] 张在深, 毕光国. 超宽带关键技术分析及发展略的思考. 电气电子教学学报. 2004, 26 (3) : 6217
    [3] Reinhold Ludwig, Panel Bretchko. RF Circuit Design Theory and Applications, Publishing House of Electronics,2004:87-112
    [4] Thomas H Lee.The Design of CMOS Radio-Frequency Integrated Circuits. New York, New York:Cambridge University Press, 1998
    [5] D Shaeffer, T Lee. A 1.5V, 1.5GHz CMOS Low Noise Amplifier.IEEE J. Solid State Circuits. 1997, 32: 745-759
    [6] Yuyu Chang, Choma J. A 900M Hz active CMOS LNA with a bandpass filter.Mixed-Signal Design.1999 Southwest Symposium on,1999:33-36
    [7] David J.Allstot. Design consideration For CMOS Low Noise Amplifier.2004 IEEE Radio Frequency Integrated Circuits Symposium,2004:90-100
    [8] A N, L Chan, C B Guo, and H C Luong. A 1-V 2.4-GHz CMOS LNA with Source Degeneration as Image-Rejection Notch Filter.IEEE 2001 International Symposium On Circuits and Systems,2001,4(89):878-893
    [9] Fujimoto R, Kojima K, Otaka.A 7-GHz 1.8-dB NF CMOS low-noise amplifier. Solid-State Circuits, IEEE Journal ,2002,37(7):852-856
    [10] Kuo J S, Zuo M T,Kun Y L,and Wang H.A Noise Optimization Formulation for CMOS Low-Noise Amplifiers With On-Chip Low-Q Inductors. Microwave Theory and Techniques, IEEE Transactions on, 2006:1554-1560
    [11] Francesco Gatta.A 2-dB Noise Figure 900-MHz differential CMOS LNA.IEEE Journal of Solid State Circuit, 2001,1(36):45-50
    [12] Hafez Fouad.An RF CMOS Cascode LNA With Current Reuse And Inductive Source Degeneration.Circuits and Systems, 2001,2(14-17):824-828
    [13] Heechan Doh, Youngkyun Jeong, Sungyong Jung. Design of CMOS UWB Low Noise Amplifier with Cascode Feedback. Circuits and Systems, 2004. MWSCAS '04 The 2004 47th Midwest Symposium on,2004:641-644
    [14] Chang-Tsung Fu, Chien-Nan Kuo. 3-11GHz CMOS UWB LNA Using Dual Feedback for Broadband Matching. Radio Frequency Integrated Circuits(RFIC) Symposium, 2006 IEEE, June 2006:4-10
    [15] Fan X H. A 3GHz-10GHz Common Gate Ultrawideband Low Noise Amplifier. Circuits and Systems, 48th Midwest Symposium on, 2005:631-634
    [16] Ismail A, Abidi A. A 3 to 10 GHz LNA using a wide-band LC-ladder matching network.IEEE ISSCC Dig Tech Papers,San Francisco, CA, USA.2004:384-385
    [17] A. Bevilacqua, A. M. Niknejad.An ultrawideband CMOS low noise amplifier for 3.1–10.6-GHz wireless receivers. IEEE J. Solid-State Circuits, 2004,39(12):2259-2268
    [18] Sullivan P J, Xavier B A, Ku W H. An integrated CMOS distributed amplifier utilizing packaging inductance. IEEE Trans. Microwave Theory Tech.1997, 45:1969-1975
    [19] Ballweber B M, Gupta R, Allstot D J. A fully integrated 0.5-5.5 GHz CMOS distributed amplifier. IEEE Journal of Solid-state Circuits, 2000, 35: 231-239
    [20] Ahn H T, Allstot D J. A 0.5-8.5-GHz fully differential CMOS distributed amplifier. IEEE Journal of Solid-State Circuits, 2002, 37(8): 985-993
    [21] Shin S C, Lin C S, Tsai M. A Low-voltage and variable-gain distributed amplifier for 3.1-10.6 GHz UWB systems. IEEE Microwave and Wireless Components Letters, 2006, 16(4): 179-181
    [22] Zhang F, Kinget P K. Low-Power programmable gain CMOS distributed. IEEE Journal of Solid-state Circuits, 2006, 41(6):1333-1343
    [23] Chang C P, Hou J A, Su J G, et.al. A high gain and low supply voltage LNA for the direction conversion application with 4-KV HBM ESD protection in 90-nm RF CMOS. IEEE Microwave and Wireless Components Letters, 2006, 16(11):612-614
    [24] Liao Che-Hong, Chuang Huey-Ru. A 5.7-GHz 0.18-_m CMOS gain-controlled differential LNA with current reuse for WLAN receiver. IEEE Microwave and Wireless Components Letters, 2003, 13(12):526-528
    [25] Guo Xiaoling, Kenneth K. O. A power efficient differential 20-GHz low noise amplifier with 5.3-GHz 3-dB bandwidth. IEEE Microwave and Wireless Components Letters, 2005, 15(9): 603-605
    [26] Fontana R J. Recent system applications of short-pulse Ultra-Wideband (UWB) technology. IEEE Trans on MicrowaveTheory and Techniques, 2004,52: 2087-2104
    [27] 王军 . 低噪声放大器模块化分析与设计的等效噪声模型法 . 电子学报 , 2000, 28(3): 81-83
    [28] 陶蕤,王志功,谢婷婷,陈海涛. 2.19GHz 0.35μm CMOS 低噪声放大器. 电子学报, 2001, 29(11): 1530-1532
    [29] 林敏,王海永,李永明,陈弘毅. 2-GHz CMOS 射频放大器的设计与测试.电子学报, 2002, 30(9):1278-1281
    [30] 姚飞 ,成步文 . 1GHz 0.5μm CMOS 低噪声放大器的设计 . 半导体学报 , 2004,25(10):1291-1295
    [31] 徐化, 姚远, 石寅. 一种新型的 5GHz 自适应偏置及可变增益低噪声放大器. 电子与信息学报, 2006, 28(8): 1521-1525
    [32] 彭龙新,林金庭,魏同立. 宽带单片低噪声放大器.电子学报,2004,32(11): 1933-1936
    [33] 罗志勇 ,李巍 ,任俊彦 . 超宽带 CMOS 低噪声放大器的设计 .微电子学,2006,36(5):688-691
    [34] B. Razavi.Architectures and circuits for RF CMOS receivers.IEEE Custom Integrated Circuits Conference, Design Considerations for 1998:93-400
    [35] B. Razavi. Design considerations for direct-conversion receivers.IEEE Trans. Circuit and Systems, June 1997,44:428-435
    [36] Alberto V G.An 11-Band 3.4 to 10.3 GHz MB-OFDM UWB Receiver in 0.25μm SiGe BiCMOS. 2006 Symposium on VLSI Circuits Digest of Technical Papers,2006:206-207
    [37] A. Tanaka, H. Okada, H. Kodama, et al.A 1.1V 3.1-to-9.5 GHz MB-OFDM transceiver in 90 nm CMOS. Solid State Circuits Conf. Tech. Dig, 2006, 120-121
    [38] Roovers R, Leenaerts D M W,et al. An interference-robust receiver for ultra-wideband radio in SiGe BiCMOS technology.IEEE,Solid State Circuits, 2005,40(12): 2563–2572
    [39] Ranjan M and Larson L.A sub-1 mm2 dynamically tuned CMOS MB-OFDM 3-to-8GHz UWB receiver front end.IEEE ISSCC Dig. Tech. 2006:128-129
    [40] Ismail A and Abidi A .A 3.1- to 8.2-GHz zero-IF receiver and direct frequency synthesizer in 0.18-m SiGe BiCMOS for mode-2 MB-OFDM UWB communication.IEEE,Solid State Circuits, 2005,40(12):2573–2582
    [41] 陈邦媛.射频通信电路.科学出版社,2002.8
    [42] Wang Yanjie, Iniewski, Kris.A 4.7-10.5-GHz Ultra-wideband CMOS LNA Using Inductive Inter-stage Bandwidth Enhancement Technique, Circuits and Systems, 2006. MWSCAS '06. 49th IEEE International Midwest Symposium on, 2006,2: 215-219
    [43] Ke H C , Jian H L, Bo J C , Shen I L.An Ultra-Wide-Band 0.4–10-GHz LNA in 0.18μm CMOS.IEEE Circuits and Systems,2007,54(3): 217-221
    [44] A. Floyd, J. Mchta, et al. A 900-MHz CMOS Low Noise Figure. IEEE 1999 Custom Integrated Circuits Conference,1999:661-664
    [45] Mostafa M I, Embabi S, Elmala M. A 60dB 246MHz CMOS variable gain amplifier for subsampling GSM receivers. ISLPED. California, USA.2001:117-122
    [46] Mostafa M, Elwan H, Bellaour A, et al.A 110MHz 70dB CMOS variable gain amplifier. ISCAS [C]. Orlan-do, FL, USA, 1999: 628-631
    [47] Youn Y S, Choi J H, ChoM H, et al .A CMOS IF transceiver with 90 dB linear control VGA for IMT-2000 application.Symp VLSI Circuit,Kyoto, Japan.2003:131-134
    [48] Wu C P, Tsao H W. A 110MHz 84 dB CMOS programmable variable gain amplifierwith RSSI. IEEE RFIC Digest of Paper [C]. Philadelphia, PA, USA. 2003:639-642
    [49] GUO C B, Luong H C.A 70 MHz 70 dB gain VGA with automatic continuous-time offset cancellation. Proc 43th IEEE Midwest Symp Circuit and System, Lansing, MI, USA. 2000:306-309
    [50] Tadjpour S, Behbahani F, AbidiA A. A CMOS variable gain amplifier for a wideband wireless receiver. Symp VLSICirc [C].Honolulu, HI, USA, 1998:86-89
    [51] Song W C, Oh C J, Cho G H, et al.High frequency/high dynamic range CMOS VGA. Elec Lett, 2000, 36(13): 1096-1098
    [52] Kwon J K,Kim K D, SongW C, et al.Wideband high dynamic range CMOS variable gain amplifier for low voltage and low power wireless applications. Elec Lett,2003, 39(10): 759-760
    [53] R. Point, M. Mendes, and W. Foley.A differential 2.4 GHz switched gain CMOS LNA for 802.11b and Bluetooth. Radio and Wireless Conference ,2002: 221–224
    [54] Chang-Ching Wu, Albert Yen, Yu Cheng, and Jen-Chung Chang.A Switched Gain Low Noise Amplifier for Ultra-wideband Wireless Applications. Radio and Wireless Symposium, 2007 :193 -196
    [55] Yong Seok Hwang, Chang Jae Kim,Ji Hoon Kim,Hyung Joun Yoo .A Controllable variable gain LNA for 2 GHz band.Microwave Conference Proceedings, 2005. APMC 2005, Asia-Pacific Conference Proceedings,2005,5(4-7):4-9
    [56] Chiung-Feng Tai,Chih-Yu Tsai,Hwann-Kaeo Chiou.A Differential Variable Gain SiGe BiCMOS LNA Design Using Current Splitting and Feedback Techniques. Radio-Frequency Integration Technology,Integrated Circuits for Wideband Communication and Wireless Sensor Networks, 2005:179-182
    [57] Bevilacqua,A. Sandner,C. Gerosa,A. Neviani,A.A fully integrated differential CMOS LNA for 3-5-GHz ultrawideband wireless receivers. Microwave and Wireless Components Letters, IEEE,2006, 1(16): 134-136
    [58] Yang Lu, Kiat Seng Yeo, Alper Cabuk, et al. A Novel CMOS Low-Noise Amplifier Design for 3.1-to 10.6-GHz Ultra-Wide-Band Wireless Receivers. IEEE Transactions on Circuits and Systems 2006, 53(8): 1683-1692
    [59] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGrawHill, 1998
    [60] Rajashekharaiah M,Upadhyaya P and Heo D. A compact 5.6 GHz low noise amplifier with new on-chip gain controllable active balun.2004 IEEE Workshop on Microelectronics and Electron Devices, 2004:31-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700