PWM逆变器的控制及并联运行控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字控制技术是实现高性能逆变器的关键技术之一,并联运行控制技术是实现模块化、高可靠性冗余逆变电源系统的基础。随着数字信号处理器技术的迅速发展和逆变电源系统的应用日益广泛,数年来上述问题一直是电力电子领域的研究热点和难点。
     本文对PWM (Pulse Width Modulation)逆变器的数字控制方法和技术进行了较为系统的研究,建立了逆变器系统的等效数学模型,研究了调节器的设计和实现方法。提出了利用数字调制信号中心值对数字电压基准信号进行实时调节的方法,有效地消除了数字运算截断误差累积等因素造成的输出变压器直流偏磁问题;提出了一种采用电压电流双闭环控制与重复控制相结合的复合控制策略,有效地改善了逆变器带非线性负载的输出特性。
     提出了一种基于电力线通信(PLC)的逆变器并联系统结构和控制方法,将并联控制解耦成为基准同步控制和输出均流控制,简化了并联控制尤其是模块热插拔控制的实现,实现了很好的均流特性。各并联模块之间首先交换电压基准信号的相位信息,直接据此分别调节各自电压基准信号的频率、达到相互同频同相,并且在并联运行时也始终进行电压基准信号的同步控制,在此基础上,模块间交换输出电流或功率信息,结合电压调节器统一实现逆变桥PWM脉宽调节。
     研究了基于同步母线的电压基准同步控制,采用线与逻辑方法在逆变器并联系统中实现基准同步控制;提出了基于电力线通信(PLC)的基准同步控制方法,各模块均根据相同的相位参考信号计算各自方波同步信号的相位,在各逆变器之间传递各方波同步信号的频率和相位差信息,据此调节各基准信号的相位,实现各逆变器基准相位信号始终保持同频同相。
     提出了一种基于功率差调节的逆变器输出均流控制方法,各模块分别计算本机输出的有功功率和无功功率,经PLC交换相互之间的输出有功功率差和无功功率差,利用功率差异信息调节各自电压基准信号的相位和幅度。提出了功率调节累加算法,实现了负载功率的均分。逆变器中通常采用输出有效值调节以获得好的负载调整率。本文研究了带输出有效值调节逆变器分布式并联系统的环流特性,揭示了均流控制与有效值调节之间的互相妨碍,提出了一种克服逆变器中输出有效值调节器影响均流效果的控制方法,在各模块中将其输出电流有效值或其输出环流信号引入输出电压有效值调节算法,能够兼顾实现并联系统很好的负载调整率和均流精度。
     将上述研究的正弦波PWM逆变器并联运行控制的原理和实现方法推广应用到U/f控制三相通用变频器并联系统中,在规定的输出频率变化范围内实现两模块的电压基准信号同频同相;采用主从式均流控制方法,在从机中检测各相输出环流,分别对从机各相电压基准信号进行调节,实现了并联系统带三相异步电机负载的均流控制。
     研制了单相全桥逆变器、单相二极管箝位型三电平半桥逆变器和三相通用变频器等实验系统样机,实验证实了研究结果的正确性和可行性。研究成果已经成功应用于民用和军用逆变器产品样机中。
Digital control and parallel operation control are among the key techniques for high performance inverters with the features of excellent regulation, modular, high reliability, and redundancy etc, and the corresponding research activities have been implementing since the development of digital signal processing and wide application of inverter power supply systems.
     Methods and techniques for digital control PWM (Pulse Width Modulation) inverters are researched systematically. Equivalent mathematical model of inverter is built, and digital regulators are designed and implemented. The control strategy for real-time regulation of digital voltage reference signal with mean value of digital modulating signal is proposed to eliminate the flux imbalance in output transformer or output filter inductor effectively. A compound digital control strategy combining output voltage and inductor current dual-loop control with repetitive control is proposed for inverter to improve its voltage regulation and nonlinear load performance.
     A novel system configuration and parallel control method for inverter parallel system based on power line communication (PLC) are porposed, in which the parallel operation control is decoupled to voltage reference synchronization control and output current distribution control to simplify the parallel realization, especially the module hot-swap operation realization. The frequency and phase information of voltage reference signal in each module is delivered to all the other modules in the parallel system, and the frequency of each voltage reference signal is adjusted accordingly to realize synchronization control. Based on pre-synchronized voltage reference signals, output current or output power information is shared among the parallel system, and current distribution control is implemented by modified SPWM (Sinusoidal PWM) output regulation.
     The voltage reference synchronization control based on synchronization bus is researched and realized by means of interconnecting line and wired-and logic in uninterruptible power supply (UPS) parallel system. The voltage reference synchronization control based on PLC is proposed, in which the phase angle of each voltage reference signal is calculated with the same phase reference, and phase difference information is exchanged by PLC among the parallel modules. With the same synchronization regulation algorithm as that of the former method, all the voltage reference signals share the identical frequency and phase.
     A load distribution control based on output power difference is proposed, in which the active power and reactive power are calculated in each module to obtain the active power difference and reactive power difference among the modules by PLC, and the phase and amplitude of each voltage reference signal are regulated in accordance with output power difference. The power regulation accumulative algorithm is proposed to realize load power distribution.
     In inverter system, output voltage root-mean-square (RMS) regulation is a common solution to improving good load regulation. The circulating current characteristics of the distributed inverter parallel system with analog control are researched to reveal the interference between current distribution and load regulation. A novel control method for compensating the impact on load distribution by output voltage RMS regulator is proposed, in which the amplitude of output current or circulating current in each moduled in each module is introduced into the output voltage RMS regulator to give attention to both good load regulation and precise current distribution.
     The application scope of decoupled parallel control for PWM inverter parallel system is extended to general-purpose three-phase inverter system with conventional U/f control to realize voltage reference synchronization control within the frequency range of zero to 50 Hz. By detecting the circulating current signals and adding them into the corresponding digital modulating signals of each phase in the slave module, the master-slave current distribution control is realized with three-phase asynchronous machine load.
     Different experimental platforms are built to verify the control methods mentioned previously, including single-phase full-bridge inverter, single-phase diode-clamped three level half-bridge inverter, and three-phase inverter. Theoretical analysis, simulation evaluation, and experimental results are provided to demonstrate the validity and feasibility of the proposed control methods. Furthermore, the main control methods in this dissertation have been transfered successfully to both civil and military parallel inverter and UPS products.
引文
[1] J. Arai, K. Iba, T. Funabashi, et al, Power electronics and its application to renewable energy in Japan, IEEE Circuits and Systems Magazine, 2008, 8 (3): 52 ~ 66.
    [2] J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, et al, Power-electronic systems for the grid integration of renewable energy sources: a survey, IEEE Trans. Industrial Electronics, 2006, 53 (4): 1002 ~ 1016.
    [3]陈敏,非线性负载条件下的逆变器特性研究,[博士学位论文],杭州,浙江大学,2006。
    [4] S. Luo, and I. Batarseh, A review of distributed power systems part II: high frequency AC distributed power systems, IEEE Aero. and Elec. Systems Magazine, 2006, 21 (6): 5 ~ 14.
    [5] Ch’i-Hsin Lin, and Shin-Yeh Lin, Distributed optimal power flow with discrete control variables of large distributed power systems, IEEE Trans. Power Systems, 2008, 23 (3): 1383 ~ 1392.
    [6]张国荣,张铁良,丁明,等,具有光伏并网发电功能的统一电能质量调节器仿真,中国电机工程学报,2007,27 (14): 82 ~ 86.
    [7] M. Liserre, R. Teodorescu, and F. Blaabjerg, Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values, IEEE Tran. Power Electronics, 2006, 21 (1): 263 ~ 272.
    [8]张强,张崇巍,张兴,等,风力发电用大功率并网逆变器研究,中国电机工程学报,2007,27 (16): 54 ~ 59.
    [9] J.V. Milanovic, H. Ali, and M.T. Aung, Influence of distributed wind generation and load composition on voltage sags, IET Generation, Transmission and Distribution, 2007, 1 (1): 13 ~ 22.
    [10] P. Thounthong, S. Ra?l, and B. Davat, Control algorithm of fuel cell and batteries for distributed generation system, IEEE Trans. Energy Conversion, 2008, 23 (1): 148 ~ 155.
    [11] H. Nehrir, Caisheng Wang, and S.R. Shaw, Fuel cells: promising devices for distributed generation, IEEE Power and Energy Magazine, 2006, 47 ~ 53.
    [12] F. Blaabjerg, R. Teodorescu, M. Liserre, et al, Overview of control and grid synchronization for distributed power generation systems, IEEE Trans. Industrial Electronics, 2006, 53 (5): 1398 ~ 1409.
    [13]彭力,张宇,康勇,等,高性能逆变器模拟控制器设计方法,中国电机工程学报,2006,26 (6): 89 ~ 94.
    [14]彭力,张凯,康勇,等,数字控制PWM逆变器性能分析及改进,中国电机工程学报,2006,26 (18): 65 ~ 70.
    [15] Heng Deng, Ramesh Oruganti, and Dipti Srinivasan, PWM methods to handle time delay in digital control of a UPS inverter, IEEE Power Electronics Letters, 2005, 3 (1): 1 ~ 6.
    [16]李春龙,沈颂华,卢家林,等,基于状态观测器的PWM整流器电流环无差拍控制技术,电工技术学报,2006,21 (12): 84 ~ 89.
    [17] Kay Soon Low, A DSP-based variable AC power source, IEEE Trans. Instrumentation and Measurement, 1998, 47 (4): 992 ~ 996.
    [18] Heng Deng, Ramesh Oruganti, and Dipti Srinivasan, Adaptive digital control for UPS inverter applications with compensation of time delay, in Proc. IEEE APEC, 2004: 450 ~ 455.
    [19] Kalyan P. Gokhale, Atsuo Kawamura, and Richard G. Hoft, Dead beat microprocessor control of PWM inverter for sinusoidal output waveform synthesis, IEEE Trans. Industry Applications, 1987, 23 (5): 901 ~ 910.
    [20] T. Fujii, and T. Yokoyama, FPGA based deadbeat control with disturbance compensator for single phase PWM inverter, in Proc. IEEE PESC, 2006: 1 ~ 6.
    [21]许爱国,谢少军,数字双闭环瞬时值控制逆变器外特性研究,南京航空航天大学学报,2006,38 (4): 513 ~ 518.
    [22] Paolo Mattavelli, An improved deadbeat control for UPS using disturbance observers, IEEE Trans. Industrial Electronics, 2005, 52 (1): 206 ~ 212.
    [23] G.H. Bode, Poh Chiang Loh, M.J. Newman, et al, An improved robust predictive current regulation algorithm, IEEE Trans. Industry Applications, 2005, 41 (6): 1720 ~ 1733.
    [24] T. Inoue, M. Nakano, T. Kubo, et al, High accuracy control of a proton synchrotron magnet power supply, in Proc. IFAC World Congress, 1981: 3137 ~ 3142.
    [25] B.A. Francis and W.M. Wonham, The internal model principle for linear multivariable regulators, Applied Mathematics and Optimization, 1975, 2 (2): 170 ~ 194.
    [26] Y. Ye, B. Zhang, K. Zhou, et al, High-performance cascade-type repetitive controller for CVCF PWM inverter: analysis and design, IET Electric Power Applications, 2007, 1 (1): 112 ~ 118.
    [27]熊健,史鹏飞,张凯,等,基于积分环节电压微分反馈的逆变器重复控制策略,电工技术学报,2007,22 (1): 85 ~ 90.
    [28]刘飞,邹云屏,李辉,基于重复控制的电压源型逆变器输出电流波形控制方法,中国电机工程学报,2005,25 (19): 58 ~ 63.
    [29] John Y. Hung, Weibing Gao, and James C. Hung, Variable structure control: a survey, IEEE Trans.Industrial Electronics, 1993, 40 (1): 2 ~ 22.
    [30] V.I. Utkin, Variable structure systems with sliding modes, IEEE Trans. Automatic control, 1977, 22 (2): 212 ~ 222.
    [31]王庆龙,交流电机矢量控制系统滑模变结构控制策略研究,[博士学位论文],合肥,合肥工业大学,2007。
    [32]陈宏,基于重复控制理论的逆变电源控制技术研究,[博士学位论文],南京,南京航空航天大学,2003。
    [33] J. Knight, S. Shirsavar, and W. Holderbaum, An improved reliability Cuk based solar inverter with sliding mode control, IEEE Trans. Power Electronics, 2006, 21 (4): 1107 ~ 1115.
    [34]张黎,丘水生,滑模控制逆变器的分析与实验研究,中国电机工程学报,2006,26 (3): 59 ~ 63.
    [35] Heng Deng, R. Oruganti, and D. Srinivasan, Neural controller for UPS inverters based on B-spline network, IEEE Trans. Industrial Electronics, 2008, 55 (2): 899 ~ 909.
    [36] Bin Xu, Dan Yang, and Xu Wang, Neural network based fault diagnosis and reconfiguration method for multilevel inverter, in Proc. IEEE CCDC, 2008: 564 ~ 568.
    [37] Phan Quoc Dzung, Le Le Phuong, and Pham Quang Vinh, The development of artificial neural network space vector PWM for four-switch three-phase inverter, in Proc. IEEE PEDS, 2007: 1009 ~ 1014.
    [38]任永峰,李含善,胡洪涛,等,基于多层前馈神经网络的并联型电能质量控制器,电工技术学报,2007,22 (8): 108 ~ 113.
    [39] S.M. Ayob, Z. Salam, and N.A. Azli, Analysis of double loops discrete single input PI fuzzy for single phase inverter, in IEEE PEDS, 2007: 1174 ~ 1178.
    [40] Xinping Ding, Zhaoming Qian, Shuitao Yang, et al, A direct DC-link boost voltage PID-like fuzzy control strategy in Z-source inverter, in Proc. IEEE PESC, 2008: 405 ~ 411.
    [41] Li Jian, Kang Yong, and Chen Jian, A hybrid fuzzy-repetitive control scheme for 400 Hz CVCF inverters, Proceedings of the CSEE, 2005, 25 (9): 54 ~ 61.
    [42]王萍,孙雨耕,许会军,等,逆变器直流侧谐波分析与有源补偿,中国电机工程学报,2005,25 (14): 52 ~ 56.
    [43] G. Escobar, P. Mattavelli, A.M. Stankovi?, An adaptive control for UPS to compensate unbalance and harmonic distortion using a combined capacitor/load current sensing, IEEE Trans. Industrial Electronics, 2007, 54 (2): 839 ~ 847.
    [44] Heng Deng, R. Oruganti, and D. Srinivasan, Analysis and design of iterative learning controlstrategies for UPS inverters, IEEE Trans. Industrial Electronics, 2007, 54 (3): 1739 ~ 1751.
    [45] G. Willmann, D.F. Coutinho, L.F.A. Pereira, et al, Multiple-loop H-infinity control design for uninterruptible power supplies, IEEE Trans. Industrial Electronics, 2007, 54 (3): 1591 ~ 1602.
    [46] Heng Deng, R. Oruganti, and D. Srinivasan, A simple control method for high-performance UPS inverters through output-impedance reduction, IEEE Trans. Industrial Electronics, 2008, 55 (2): 888 ~ 898.
    [47] A. Cid-Pastor, L. Martinez-Salamero, C. Alonso, et al, Paralleling DC–DC switching converters by means of power gyrators, IEEE Trans. Power Electronics, 2007, 22 (6): 2444 ~ 2453.
    [48] S.K. Mazumder, M. Tahir, and K. Acharya, Master-slave current-sharing control of a parallel DC–DC converter system over an RF communication interface, IEEE Trans. Industrial Electronics, 2008, 55 (1): 59 ~ 66.
    [49] Josep M. Guerrero, Lijun Hang, and Javier Uceda, Control of distributed uninterruptible power supply systems, IEEE Trans. Industrial Electronics, 2008, 55 (8): 2845 ~ 2859.
    [50] Mohammad N. Marwali, Jin-Woo Jung, and Ali Keyhani, Control of distributed generation systems—Part II: Load sharing control, IEEE Trans. Power Electronics, 2004, 19 (6): 1551 ~ 1561.
    [51]陈卫民,陈国呈,吴春华,等,基于分布式并网发电的新型孤岛检测研究,电工技术学报,2007,22 (8): 114 ~ 118.
    [52] T. Iwade, S. Komiyama, Y. Tanimura, et al, A novel small-scale UPS using a parallel redundant operation system, in Proc. IEEE INTELEC, 2003: 480 ~ 483.
    [53] A.P. Martins, A.S. Carvalho, and A.S. Araújo, Design and implementation of a current controller for the parallel operation of standard UPSs, in Proc. IEEE IECON, 1995: 584 ~ 589.
    [54] J.-F. Chen, and C.-L. Chu, Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation, IEEE Trans. Power Electronics, 1995, 10 (5): 547 ~ 558.
    [55] H. van der Broeck, and U. Boeke, A simple method for parallel operation of inverters, in Proc. IEEE INTELEC, 1998: 143 ~ 150.
    [56] Yunqing Pei, Guibin Jiang, Xu Yang, et al, Auto-master-slave control technique of parallel inverters in distributed AC power systems and UPS, in Proc. IEEE PESC, 2004: 2050 ~ 2053.
    [57]肖岚,胡文斌,蒋渭忠,等,基于主从控制的逆变器并联系统研究,东南大学学报(自然科学版),2002,32 (1): 133 ~ 137.
    [58] T.-Fu Wu, Y.-K. Chen, and Y.-H. Huang, 3C strategy for inverters in parallel operation achieving an equal current distribution, IEEE Trans. Industrial Electronics, 2000, 47 (2): 273 ~ 281.
    [59] K. Piboonwattanakit, and W. Khan-ngern, Design of two parallel inverter modules by circular chain control technique, in Proc. IEEE PEDS, 2007: 1518 ~ 1522.
    [60]何中一,邢岩,付大丰,模数混合分布式逆变器并联控制方法,中国电机工程学报,2007,27 (4): 113 ~ 117.
    [61] Y.-K. Chen, Y.-E. Wu, T.-F. Wu, et al, ACSS for paralleled multi-inverter systems with DSP-based robust controls, IEEE Trans. Aerospace and Electronic Systems, 2003, 39 (3): 1002 ~ 1015.
    [62] Xiao Sun, Yim-Shu Lee, and Dehong Xu, Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current- sharing scheme, IEEE Trans. Power Electronics, 2003, 18 (3): 844 ~ 856.
    [63]肖岚,陈良亮,李睿,等,基于有功和无功环流控制的DC-AC逆变器并联系统分析与实现,电工技术学报,2005,20 (10): 7 ~ 12.
    [64] T.-F. Wu, H.-M. Hsieh, Y.-E. Wu, et al, Parallel-inverter system with failure isolation and hot-swap features, IEEE Trans. Industry Applications, 2007, 43 (5): 1329 ~ 1340.
    [65] T.-F. Wu, Y.-E. Wu, H.-M. Hsieh, et al, Current weighting distribution control strategy for multi-inverter systems to achieve current sharing, IEEE Trans. Power Electronics, 2007, 22 (1): 160 ~ 168.
    [66] A. Tuladhar, H. Jin, T. Unger, et al, Control of parallel inverters in distributed ac power systems with consideration of line impedance effect, IEEE Trans. Industry Applications, 2000, 36 (1): 131 ~ 138.
    [67] J.M. Guerrero, Luis García de Vicu?a, J. Matas, et al, Output impedance design of parallel-connected UPS inverters with wireless load-sharing control, IEEE Trans. Industrial Electronics, 2005, 52 (4): 1126 ~ 1135.
    [68] J.M. Guerrero, J. Matas, Luis García de Vicu?a, et al, Wireless-control strategy for parallel operation of distributed-generation inverters, IEEE Trans. Industrial Electronics, 2006, 53 (5): 1461 ~ 1470.
    [69] J.M. Guerrero, J. Matas, Luis García de Vicu?a, et al, Decentralized control for parallel operation of distributed generation inverters using resistive output impedance, 2007, 54 (2): 994 ~ 1004.
    [70] K. De Brabandere, B. Bolsens, J. Van den Keybus, et al, A voltage and frequency droop control method for parallel inverters, IEEE Trans. Power Electronics, 2007, 22 (4): 1107 ~ 1115.
    [71]姚玮,陈敏,陈晶晶,等,一种用于无互连线逆变器并联的多环控制方法,电工技术学报,2008,23 (1): 84 ~ 89.
    [72]姜桂宾,裴云庆,杨旭,等,SPWM逆变电源的无互联信号线并联控制技术,中国电机工程学报,2003,23 (12): 94 ~ 98.
    [73]林新春,段善旭,康勇,等,基于下垂特性控制的无互联线并联UPS建模与稳定性分析,中国电机工程学报,2004,24 (2): 33 ~ 38.
    [74] Yeong Jia Chang, and E.K.K. Sng, A novel communication strategy for decentralized control of paralleled multi-inverter systems, IEEE Trans. Power Electronics, 2006, 21 (1): 148 ~ 156.
    [75] W. Stefanutti, S. Saggini, P. Mattavelli, et al, Power line communication in digitally controlled dc-dc converters using switching frequency modulation, IEEE Trans. Industrial Electronics, 2008, 55 (4): 1509 ~ 1518.
    [76] N.V. Vellano, K.T. Soletto, P.R. Pimentel, PLC systems performance analysis regarding power quality disturbances, in Proc. IEEE ISPLC, 2007: 1 ~ 6.
    [77]刘晓胜,周岩,戚佳金,电力线载波通信的自动路由方法研究,中国电机工程学报,2006,26 (21): 76 ~ 81.
    [78]刘海涛,张保会,谭伦农,低压电网通信信道的理论分析,西安交通大学学报,2003,37 (10): 1048 ~ 1051.
    [79]杨扬,快速发展的低压电力线载波技术及其应用展望,浙江电力,2002,04: 43 ~ 45, 48.
    [80] Mark Hagen, Mark Heminger, and Arefeen Mohammed, Power line communication for lighting applications using binary phase shift keying (BPSK) with a single DSP controller, in Proc. IEEE APEC, 2006: 823 ~ 828.
    [81] S. Saggini, W. Stefanutti, P. Mattavelli, et al, Power line communication in dc-dc converters using switching frequency modulation, in Proc. IEEE APEC, 2006: 1595 ~ 1600.
    [82]段善旭,陈坚,冯峰,等,基于电力线通信的并联UPS逆变器的均流控制,电力系统自动化,2003,27 (24): 28 ~ 31, 62.
    [83] Pradeep M. Bhagwat, and V.R. Stefanovic, Generalized structure of a multilevel PWM inverter, IEEE Trans. Industry Applications, 1983, 19 (6): 1057 ~ 1069.
    [84]金舜,钟彦儒,程为彬,新颖的SVPWM过调制策略及其在三电平逆变器中的应用,中国电机工程学报,2006,26 (20): 84 ~ 90.
    [85] A.K. Gupta, and A.M. Khambadkone, A simple space vector PWM scheme to operate a three-level NPC inverter at high modulation index including overmodulation region, with neutral point balancing, IEEE Trans. Industry Applications, 2007, 43 (3): 751 ~ 760.
    [86]王鸿雁,王小峰,张超,等,飞跨电容多电平逆变器的新型载波PWM方法,电工技术学报,2006,21 (2): 63 ~ 67, 92.
    [87] R.H. Wilkinson, T.A. Meynard, and H. du Toit Mouton, Natural balance of multicell converters: the two-cell case, IEEE Trans. Power Electronics, 2006, 21 (6): 1649 ~ 1657.
    [88]王旭,臧义,徐彬,等,基于开关管的级联H桥逆变器故障处理方法,中国电机工程学报,2007,27 (7): 76 ~ 81.
    [89] Peter W. Hammond, Enhancing the reliability of modular medium-voltage drives, IEEE Trans. Industrial Electronics, 2002, 49 (5): 948 ~ 954.
    [90] Zhongyi He, Mingzhu Li, and Yan Xing, Core techniques of digital control for UPS, in Proc. IEEE ICIT, 2005: 546 ~ 551.
    [91] R. Ueda, T. Sonoda, K. Koga, et al, Stability analysis in induction motor driven by V/f controlled general-purpose inverter, IEEE Trans. Industry Applications, 1992, 28 (2): 472 ~ 481.
    [92] H.-P. Krug, T. Kume, and M. Swamy, Neutral-point clamped three-level general purpose inverter - features, benefits and applications, in Proc. IEEE PESC, 2004: 323 ~ 328.
    [93] F. Zidani, D. Diallo, M. El Hachemi Benbouzid, et al, A fuzzy-based approach for the diagnosis of fault modes in a voltage-fed PWM inverter induction motor drive, IEEE Trans. Industrial Electronics, 2008, 55 (2): 586 ~ 593.
    [94]王云飞,杨耕,通用变频器-感应电机系统的电机耗能型制动控制方法,电工技术学报,2006,21 (1): 12 ~ 18.
    [95]李国栋,毛承雄,陆继明,等,基于IGCT串联的三电平高压变频器直流环节研究,中国电机工程学报,2007,27 (1): 82 ~ 87.
    [96] T. Yoshikawa, H. Inaba, and T. Mine, Analysis of parallel operation methods of PWM inverter sets for an ultra-high speed elevator, in Proc. IEEE APEC, 2000: 944 ~ 950.
    [97]许波,基于变频单元并联的调速装置的研究,[硕士学位论文],西安,西安理工大学,2006。
    [98] Wei Yongqing, Zhang Xiaofeng, Qiao Mingzhong, et al, Control of parallel inverters based on can bus in large-capacity motor drives, IEEE International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008: 1375 ~ 1379.
    [99] J. Thunes, R. Kerkman, D. Schlegel, et al, Current regulator instabilities on parallel voltage- source inverters, IEEE Trans. Industry Applications, 1999, 35 (1): 70 ~ 77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700