无线自组织网络路由与低功耗节点关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普适计算是一种让人们随时随地都能获得信息服务的一种计算模式。它强调以人为本,关注的是人们的注意力以及人们对计算的满意程度。作为一个新兴的研究领域,普适计算受到越来越广泛的关注,它将对计算机、信息学科的发展产生广泛而深远的影响。无线自组织网络作为实现普适计算的一种新型技术,是由一组带有无线通信收发装置的移动终端节点组成的一个多跳、临时、无中心的移动通信网络,不需要基础网络设施的支持,可以在任何时候、任何地点快速构建。无线自组织网络在许多特殊情况下有着不可替代的作用,可广泛应用于国防战备、灾难援助等无法得到有线网络支持或某些临时需要通信但建立有线通信网络代价太大的环境中。尤其是在未来战场上,无线自组织网络对于高技术武器装备、集中指挥、协同作战和提高作战机动性等具有很好的应用前景。
     快速可靠的路由是无线自组织网络具有高可靠性、高抗毁性和高移动性的基础,是无线自组织网络研究的关键技术之一。无线自组织网络使用宽带较窄的无线信道,且由于节点的移动造成拓扑变化比较频繁,如果直接将传统路由协议应用于无线自组织网络中,周期性的控制信息将会占用大量的无线信道资源,降低系统效率。因此,构建有效的适合自身特点的路由成为了无线自组织网络研究的极为重要的课题。同时,由于无线自组织网络节点一般使用电池供电,且受技术的限制,电池的容量在短期内很难得到大规模的提高,而对于无线自组织网络这种有特殊用途的网络来说,延长网络工作时间又显得尤其重要。因此,无线自组织网络的节能研究同样具有重要的意义。
     本文对无线自组织网络的研究主要包括两大方面:路由算法和低功耗节点技术。主要贡献是:普适计算环境下,多个嵌入式设备之间的协作成为了嵌入式技术重要的研究内容,基于此,提出了多嵌入式系统新概念;无线自组织网络是普适计算实现的支撑技术之一,针对无线自组织网络的可扩展性和能量问题,在对现有分布式路由算法进行综合分析的基础上,设计了一种基于连通度和能量感知的按需自维护分簇路由协议,同时随着实时多媒体等业务在无线自组织网络中的出现,提出了一种基于带宽约束和能量感知的分布式QoS路由协议;最后针对无线传感器网络的能耗问题,在波束供电技术的基础上,提出了一种低功耗射频唤醒无线传感器网络节点的设计方法。作为一项具有创新性意义的工作,论文在研究方法与思路上力求有所突破,其主要研究成果包括如下几个方面:
     ①对普适计算的发展历史、现状、技术难点和研究热点进行了综述,分析和讨论了普适计算的概念和特性,重点探讨了多嵌入式系统新概念以及多嵌入式系统的结构框架,并对目前一些具有代表性的普适计算研究项目进行了简述。
     ②对无线自组织网络进行了较为全面的分析和总结,重点讨论了无线自组织网络的分布式路由算法,结合平面路由机制和分簇算法,提出了一种基于连通度和能量感知的按需自维护分簇路由协议。该路由协议采用了一种以分簇路由为主,平面按需路由为辅的工作机制。通过仿真表明按需自维护分簇路由协议在保持了平面按需路由优点的基础上,有着更好的可扩展性,提高了网络性能。
     ③系统地讨论了无线自组织网络的QoS保证体系,重点分析了无线自组织网络的QoS路由。针对现有QoS路由算法大多没有特别考虑节点的能量约束,而带宽保证又是实时应用最关键的需求之一,提出了一种基于TDMA机制的带宽约束和能量感知的分布式QoS路由协议,将路由发现、时隙预留以及维护结合起来,满足无线自组织网络对QoS路由的需求。
     ④从通信的角度讲,无线传感器网络可以看成是一种特殊的无线自组织网络。论文对无线传感器网络进行了概述,指出低功耗和实时性正是无线传感器网络应用中需要解决的重要问题,并针对无线传感器网络通常采用的周期性睡眠/唤醒机制在能耗和实时性方面的不足,提出了一种无线传感器网络节点的低功耗射频唤醒机制,分析了基于这种低功耗射频唤醒机制的无线传感器网络节点的硬件总体结构和节点设计。通过性能对比分析,表明了这种低功耗射频唤醒机制在无线传感器网络中的有效性。
Pervasive computing is a computing mode which enables people to attain information services anywhere and anytime. It humanitarianly emphasizes people’s attention and their satisfaction with information service. As a booming research field, pervasive computing gets more and more attention from people, which will greatly influence the development of computers as well as information disciplines. The Ad Hoc network, one non-centre transient network comprised by a group of wireless and mobile terminal nodes, is one important new technology to realize pervasive computing, which can be swiftly set up without any information-based supporting facility at any place and any time. Thence, the Ad Hoc network is irreplaceably used in the situation like civil defense equipment, emergency rescue, where it’s too costly to set up wire network. And in the future battlefield, the Ad Hoc network will be more and more used in hi-tech weapons, military centralization, military joint operation and military operation maneuverability, etc.
     Speedy and stable routes are the basis of hi-stability, hi-destroy-proof, and hi-mobility Ad Hoc network, one of the key technologies for the research of the Ad Hoc network. The Ad Hoc network is typically characterized by bandwidth-constrained wireless links and dynamic topology, leading to frequent and unpredictable connectivity changes. So if the traditional route is applied in Ad Hoc networks, the periodic controlled information will take up too many wireless resources. Accordingly, how to create the efficient route adapting to the characteristics itself becomes one of the primary research projects of Ad Hoc networks. Besides, the Ad Hoc network usually takes batteries as its power resources, whose volume can’t be much improved in a short time for the poor technology. Hence, the prolonging of the working time of batteries becomes especially essential for the Ad Hoc network. The research on the energy saving of Ad Hoc networks becomes very important.
     This paper researches in two parts of the Ad Hoc network, including routing arithmetic and low energy consumption. The main sacrifices of the paper are as follows. Firstly, collaborations among many embedded devices become the important research areas under pervasive computing. So the new concept of multi-embedded system is put forward. Secondly, the Ad Hoc network is one of the supporting technologies of achieving pervasive computing, and an on-demand self-maintenance clustering routing protocol based on connectivity and energy awareness is addressed for the extension and energy issue of the Ad Hoc network. Thirdly, a distributed QoS routing protocol based on bandwidth constraint and energy awareness is designed for the real time multimedia services and so on. Finally, a design method of the wireless sensor network(WSN) node with the characteristics of low energy consumption and radiation frequency arousing is put forward. The important research results are as follows:
     ①The development history, situation and research highlights of pervasive computing are presented, the concept and characteristics are analyzed. Especially, the new concept of multi-embedded system and its framework are discussed. And also the representative projects of pervasive computing research are introduced.
     ②The Ad Hoc network is analyzed comprehensively, especially the distributed routing arithmetic. Combined with flat-based routing mechanism and clustering arithmetic, an on-demand self-maintenance clustering routing protocol based on connectivity and energy awareness is put forward which cited a mechanism with clustering routing key point and with flat-based on-demand routing supplementary point. The simulation results show its validity. This protocol keeps the advantages of flat-based on-demand routing, improves the scalability, and enhances the network performance.
     ③The QoS routing of Ad Hoc networks is discussed. Most present QoS routing arithmetic is sophisticated and don’t take energy constraint into consideration, while bandwidth guarantee is one of the key requirements for the real time application. So the paper addresses a distributed QoS routing protocol based on bandwidth constraint and energy awareness to hang the routing discovery and slot reservation as well as maintance together for the QoS routing demanding.
     ④From the point of communication view, WSN could be treated as a special Ad Hoc network. This paper summarizes WSN, pointing out energy consumption and real time performance is the most important problem of WSN. According to the demerit of periodical sleeping and waking mechanism in WSN, the paper brings forward a new mechanism with the characteristics of low energy consumption and radiation frequency arousing, and also analyzes the hardware structure and designation of WSN node. Performance comparison demonstrates the effect of the mechanism in WSN.
引文
[1] M Weiser. The Computer for the 21st Century[J]. Scientific America. 1991, 265(3): 66-75.
    [2] S Basagni, M Conti, S Giordano, I Stojmenovic. Mobile Ad Hoc Networking[M]. Wiley-IEEE Press. 2004.
    [3]于宏毅等.无线移动自组织网[M].北京:人民邮电出版社. 2005.
    [4]郑少仁,王海涛,赵志峰等. Ad Hoc网络技术[M].北京:人民邮电出版社. 2005.
    [5] I F Akyildiz, W Su, Y Sankarasubramaniam, E Cayirci. A Survey on Sensor Networks[J]. IEEE Communications. 2002, 40(8): 102-114.
    [6] M Tubaishat, S Madria. Sensor Networks: An Overview[J]. IEEE Potentials. 2003, 22(2): 20-23.
    [7] C S R Murthy, B S Manoj. Ad Hoc Wireless Networks: Architectures and Protocols[M]. Prentice Hall, New Jersey, 2004.
    [8] R Weisman. Oxygen Burst-MIT is Readying New Technologies that Put Humans in the Center of Computing[J]. The Boston Globe, 2004.
    [9] D Garlan, D Siewiorek, A Smailagic, P Steenkiste. Project Aura: Toward Distraction-Free Pervasive Computing[J]. IEEE Pervasive Computing, 2002. 22-31.
    [10] M Roman, R H Campbell. GAIA: Enabling Active Spaces[C]. Proceedings of the 9th ACM SIGOPS European Workshop, Denmark. 2000.
    [11] The Endeavour Expedition: Charting the Fluid Information Utility[Z]. http://endeavour.cs.berkeley.edu/
    [12] M Esler, J Hightower, T Anderson, G Borriello. Next Century Challenges: Data-Centric Networking for Invisible Computing: The Portolano Project at the University of Washington[C]. Proceedings of Mobicom’99, Washington. 1999.
    [13] T Butler. The Design and Implementation of a Pervasive Computing Application[EB/01]. http://omega.cs.iit.edu/~ipro305/resources.htm, 2004.
    [14] V Stanford, J Garofolo, O Galibert, et al. The NIST Smart Space and Meeting Room Projects: Signals, Acquisition, Annotation and Metrics[C]. Proceedings of ICASSP, 2003.
    [15] N A Streitz. Designing Interaction for Smart Environments: Ambilent Intelligence and the Disappearing Computer[C]. Proceedings of the 2nd IET International Conference on Intelligent Environments. 2006, 1: 3-8.
    [16] DreamSpace Project[Z]. http://www.research.ibm.com/natural/dreamspace/
    [17] S R Hedberg. After Desktop Computing: A Progress Report on Smart EnvironmentsResearch[J]. Intelligent Systems and Their Applications. 2000, 15(5): 7-9.
    [18] T Kindberg, J Barton, J Morgan, et.al. People, Places, Things: Web Presence for the Real World[C]. Proceedings of the Third IEEE Workshop on.Mobile Computing Systems and Applications, 2000. 19-28.
    [19] C E Perkins, P Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers[C]. Proceedings of ACM SIGCOMM Conference on Communications Architectures, Protocols and Applications, London. 1994, 24(4): 234-244.
    [20] T Clausen, P Jacquet. Optimized Link State Routing Protocol (OLSR)[EB/01]. IETF RFC3626, http://www.ietf.org/rfc/rfc3626.txt, 2003.
    [21] X Hong, K Xu, M Gerla. Scalable Routing Protocols for Mobile Ad Hoc Networks[J]. IEEE Network. 2002, 16(4): 11-21.
    [22] S Murthy, J J Garcia-Luna-Aceves. An Efficient Routing Protocol for Wireless Networks[J]. ACM Mobile Networks and Applications. 1996, 1(2): 183-197.
    [23] R Ogier, F Templin, M Lewis. Topology Dissemination Based on Reverse-Path Forwarding (TBRPF) [EB/01]. IETF RFC3684, http://www.ietf.org/rfc/rfc3684.txt, 2004.
    [24] G Y Pei, M Gerla, T W Chen. Fisheye State Routing in Mobile Ad Hoc Networks[C]. Proceedings of the Workshop on Wireless Networks and Mobile Computing, 2000. 71-78.
    [25] C E Perkins, E B Royer, S Das. Ad Hoc On-Demand Distance Vector (AODV) Routing[EB/01]. IETF RFC3561, http://www.ietf.org/rfc/rfc3561.txt, 2003.
    [26] R Dube, C D Rais, K Wang, S K Tripathi. Signal Stability Based Adaptive Routing (SSR) for Ad Hoc Mobile Networks[J]. IEEE Personal Communications. 1997, 4(1): 36-45.
    [27] C K Toh. Associativity-Based Routing for Ad-Hoc Mobile Networks[J]. Wireless Personal Communications. 1997, 4(2): 103-139.
    [28] D B Johnson, D A Maltz, Y C Hu. The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR) [EB/01]. IETF MANET Working Group, http://www.ietf.org/internet-drafts/ draft-ietf-manet-dsr-10.txt, 2004.
    [29] V Park, S Corson. Temporally-Ordered Routing Algorithm (TORA) Version 1 Functional Specification[EB/01]. http://tools.ietf.org/html/draft-ietf-manet-tora-spec-04, 2001.
    [30] Y B Ko, N H Vaidya. Location-Aided Routing (LAR) in Mobile Ad Hoc Networks[J]. Wireless Networks. 2000, 6: 307-321.
    [31] B Karp, H T Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks[C]. Proceedings of ACM MOBICOM, Boston, 2000. 243-254.
    [32] I Stojmenovic, X Lin. Loop-Free Hybrid Single-Path/Flooding Routing Algorithm with Guaranteed Delivery for Wireless Networks[J]. IEEE Transactions on Parallel and DistributedSystems. 2001, 12: 1023-1032.
    [33] R Jain, A Puri, R Sengupta. Geographical Routing Using Partial Information for Wireless Ad Hoc Networks[J]. IEEE Personal Communications. 2001, 2: 48-47.
    [34] S Basagni, I Chlamtac, V R Syrotiuk, B A Woodward. A Distance Routing Effect Algorithm for Mobility (DREAM)[C]. Proceedings of MOBICOM’98, Texas USA. 1998. 76-84.
    [35] R Sivakumar, P Sinha, V Bharghavan. CEDAR: A Core-Extraction Distributed Ad Hoc Routing Algorithm[J]. IEEE Selected Areas in Communications. 1999, 17(8): 1454-1465.
    [36] C E Perkins, E M Royer. Quality of Service for Ad Hoc On-demand Distance Vector Routing[EB/01]. IETF Internet Draft, draft-perkins-manet-aodvqos-00.txt, 2000.
    [37] M Shi, Y Yao, Y Bai. QDSR: QoS Aware Dynamic Source Routing Protocol for Mobile Ad Hoc Network[J]. Chinese Journal of Electronics. 2004, 13(2): 245-249.
    [38] H Badis, A Munaretto, K A Agha, G Pujolle. QoS for Ad Hoc Networking Based on Multiple Metrics: Bandwidth and Delay[C]. Proceedings of IEEE MWCN2003, Singapore, 2003. 14-18.
    [39] Q Xue, A Ganz. Ad Hoc QoS On-Demand Routing (AQOR) in Mobile Ad Hoc Networks[J]. Parallel and Distributed Computing. 2003, 63(2): 154-165.
    [40] C X Zhu, M S Corson. QoS Routing for Mobile Ad Hoc Networks[C]. Proceedings of the Twenty-First International Annual Joint Conference of the IEEE Computer and Communication Societies, New York, USA. 2002, 2: 958-967.
    [41] C R Lin, J S Liu. QoS Routing in Ad Hoc Wireless Networks[J]. IEEE Selected Areas in Communications. 1999, 17(8): 1426-1438.
    [42] C R Lin. On-Demand QoS Routing in Multihop Mobile Networks[C]. Proceedings of the IEEE Computer and Communications Societies. 2001, 3: 1735-1744.
    [43] J Elson, D Estrin. Sensor Networks: A Bridge to the Physical World[M]. Wireless Sensor Networks, Kluwer, 2004. 3-20.
    [44] T Arampatzis, J Lygeros, S Manesis. A Survey of Applications of Wireless Sensors and Wireless Sensor Networks[C]. Proceedings of the 13th Mediterranean Conference on Control and Automation, Cyprus, 2005. 719-724.
    [45] R Rashid, D Julin, D Orr, et al. Mach: A System Software Kernel[C]. Proceedings of the 34th IEEE Computer Society International Conference, USA, 1989. 176-178.
    [46] S Vardhan, M Wilczynski, G J Portie, W J Kaiser. Wireless Integrated Network Sensors (WINS): Distributed in Situ Sensing for Mission and Flight Systems[C]. Proceedings of Aerospace Conference. 2000, 7: 459-463.
    [47] K Pister, J Kahn, B Boser. Smart Dust Project: Autonomous Sensing and Communication in aCubic Millimeter[EB/01]. http://robotics.eecs.berkeley.edu/~pister/SmartDust/, 2001.
    [48] NEST Project[Z]. http://webs.cs.berkeley.edu/nest-index.html
    [49] D Caterinicchia. DARPA Developing Killer Tech[Z]. http://www.fcw.com/
    [50] J L Paul. Smart Sensor Web: Web-Based Exploitation of Sensor Fusion for Visualization of the Tactical Battlefield[J]. IEEE Aerospace and Electronic Systems. 2001, 16(5): 29-36.
    [51] Y C Powell. Unattended Ground Sensors Stop and Analyze the Roses[R]. OE Reports. http://www.spie.org/web/oer/april/apr00/cover2.html, 2000.
    [52] The Cooperative Engagement Capability[J]. Johns Hopkins APL Technical Digest. 1995, 16(4): 377-396.
    [53]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报. 2003, 14(7): 1282-1291.
    [54]崔莉,鞠海玲,苗勇等.无线传感器网络研究进展[J].计算机研究与发展. 2005, 42(1): 163-174.
    [55]马祖长,孙怡宁,梅涛.无线传感器网络综述[J].通信学报. 2004, 25(4): 114-124.
    [56] G W Allen, P Swieskowski, M Welsh. MoteLab: A Wireless Sensor Network Testbed[C]. Fourth International Symposium on Information Processing in Sensor Networks. 2005. 483-488.
    [57] S Park, J W Kim, K Lee, et al. Embedded Sensor Networked Operating System[C]. Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing. 2006.
    [58] R X Gao, Z Y Fan. Architectural Design of a Sensory Node Controller for Optimized Energy Utilization in Sensor Networks[J]. IEEE Transactions on Instrumentation and Measurement. 2006. 55(2): 415-428.
    [59] M Weiser, J S Brown. Designing Calm Technology[EB/01]. http://www.ubiq.com/weiser/ calmtech/calmtech.htm, 1996.
    [60] R Want, B N Schilit, N I Adams, et a1. An Overview of the ParcTab Ubiquitous Computing Experiment[J]. IEEE Personal Communications. 1995, 2(6): 28-43.
    [61] B N Schilit, M M Theimer. Disseminating Active Map Information to Mobile Hosts[J]. IEEE Network. 1994, 8(5): 22-32.
    [62] P J Brown, J D Bovey, X Chen. Context-Aware Applications: From the Laboratory to the Marketplace[J]. IEEE Personal Communications. 1997, 4(5): 58-64.
    [63] A K Dey. Providing Architectural Support for Building Context-Aware Applications. Dissertation[D]. College of Computing, Georgia Institute of Technology, 2000.
    [64] G D Abowd, E D Mynatt. Charting Past, Present, and Future Research in Ubiquitous Computing[C]. ACM Transactions on Computer-Human Interaction. 2000, 7(1): 29-58.
    [65] B N Schilit, N Adams, R Want. Context-Aware Computing Applications[C]. Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications, 1994. 85-90.
    [66]徐光祐,史元春,谢伟凯.普适计算[J].计算机学报. 2003, 26(9): 1042-1050.
    [67] G K Mostéfaoui, J Pasquier-Rocha, P Brézillon. Context-Aware Computing: A Guide for the Pervasive Computing Community[C]. Proceedings of the IEEE/ACS International Conference on Pervasive Services, 2004.
    [68] D Estrin, D Culler, K Pister, et a1. Connecting the Physical World with Pervasive Networks[J]. IEEE Pervasive Computing. 2002, 1(1): 59-69.
    [69] G Erik. Service Location Protocol: Automatic Discovery of IP Network Services[J]. IEEE Internet Computing. 1999, 3(4): 71-80.
    [70] E Guttman, C Perkins, J Veizades, M Day. Service Location Protocol, Version 2[EB/01]. IETF RFC 2608, http://www.ietf.org/rfc/rfc2608.txt, 1999.
    [71] J Waldo. The Jini Architecture for Network-Centric Computing[J]. Communications of the ACM. 1999, 42(7): 76-82.
    [72] K F Eustice, T J Lehman, A Morales, et a1. A Universal Information Appliance[J]. IBM Systems Journal. 1999, 38(4): 575-601.
    [73] S E Czerwinski, B Y Zhao, T D Hodes, et a1. An Architecture for a Secure Service Discovery Service[C]. Proceedings of MobiCom'99, Seattle, USA, 1999. 24-35.
    [74] R E Mcgrath. Discovery and Its Discontents: Discovery Protocols for Ubiquitous Computing[Z]. Department of Computer Science University of Illinois Urbana-Champaign, 2000.
    [75] A Friday, N Davies, N Wallbank, et al. Supporting Service Discovery, Querying and Interaction in Ubiquitous Computing Environments[J]. Wireless Networks. 2004, 10(6): 631-641.
    [76] A Ferscha. Coordination in Pervasive Computing Environments[C]. Proceedings of the 12th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003. 3-9.
    [77] M Mamei, L Leonardi, M Mahan, et a1. Motion Coordination for Ubiquitous Agents[C]. Workshop on Ubiquitous Agents on Embedded, Wearable and Mobile Devices, Bologna,2002.
    [78] M Mamei, F Zambonelli, L Ieonardi. Co-Fields: A Physically Inspired Approach to Distributed Motion Coordination[J]. IEEE Pervasive Computing. 2004, 3(2): 10-19.
    [79] M Coen, B Phillips, N Warshawsky, et al. Meeting the Computational Needs of Intelligent Environments: The Metaglue System[C]. Proceedings of MANSE'99, Dublin, Ireland, 1999.
    [80] D L Martin, A J Cheyer, D B Moran. The Open Agent Architecture: A Framework for BuildingDistributed Software Systems[J]. Applied Artificial Intelligence. 1999, 13(1): 91-128.
    [81] W K Xie, Y C Shi, G Y Xu. Smart Classroom-An Intelligent Environment for Tele-Education[C]. Proceedings of the 2nd IEEE Pacific Rim Conference on Multimedia: Advances in Multimedia Information Processing, 2001. 662-668.
    [82] M Hattori, K Cho, A Ohsuga, et a1. Context-Aware Agent Platform in Ubiquitous Environments and Its Verification Tests[J]. Systems and Computers. 2003, 35(7): 13-23.
    [83] W Shi, Y Gu. Research of Multi-Embedded Software System in Pervasive Computing Era[J]. Journal of Communication and Computer. 2004, 1(1): 7-12.
    [84] W Shi, L Xu, S X Yang. A Hierarchical Coordination Model Based on Task Priority in Pervasive Computing Environment[C]. Proceedings of the International Conference on Sensing, Computing and Automation. 2006, 8: 3663-3667.
    [85]谷洪亮,史元春,徐光祐.智能教室支持普适计算的无线网络方案的问题、挑战和解决探讨[J].小型微型计算机系统. 2005, 26(3): 367-370.
    [86] R Campbell, J Al-muhtadi, P Naldurg. et al. Towards Security and Privacy for Pervasive Computing[C]. International Symposium on Software Security, Tokyo, Japan, 2002.
    [87] D Garlan, N P Siewiorek, A Smailagic, et a1. Project Aura: Toward Distraction-Free Pervasive Computing[J]. Pervasive Computing. 2002, 2: 22-31.
    [88] R E Kahn, S A Gronemeyer, J Burchfiel, et al. Advances in Packet Radio Technology[C]. Proceedings of the IEEE. 1978, 66(11): 1468-1496.
    [89] S Corson, J Macker. Mobile Ad Hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations[EB/01]. IETF RFC2501, http://www.ietf.org/rfc/ rfc2501.txt, 1999.
    [90]李勇,黄均才,王凤碧,尹峻勋. Ad Hoc网络体系结构研究[J].计算机应用. 2005, 25(1): 163-165.
    [91]郑相全等.无线自组网技术实用教程[M].北京:清华大学出版社. 2004.
    [92]王海涛,宋丽华.一种军用自组织网络体系结构的设计[J].通信世界. 2003, 6: 41.
    [93]赵为粮,李云,刘占军等.移动Ad Hoc网络中QoS参数的相关性研究[J].电子学报. 2006, 34(3): 487-490.
    [94] R Kravets, P Krishnan. Application-Driven Power Management for Mobile Communication[J]. Wireless Networks. 2000, 6(4): 263-277.
    [95]陈林星,曾曦,曹毅.移动Ad Hoc网络-自组织分组无线网络技术[M].北京:电子工业出版社. 2006.
    [96] E M Royer, C K Toh. A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks[J]. IEEE Personal Communications. 2005, 6: 46-55.
    [97] M L Jiang, J Y Li, Y C Tay. Cluster Based Routing Protocol (CBRP) [EB/01]. Internet Draft, draft-ietf-manet-cbrp-spec-01.txt, 1999.
    [98] W H Liao, Y C Tseng, J P Sheu. GRID: A Fully Location-Aware Routing Protocol for Mobile Ad Hoc Networks[J]. Telecommunication Systems. 2001, 18(1): 37-60.
    [99] W Usaha, J Barria. A Reinforcement Learning Ticket-Based Probing Path Discovery Scheme for Manets[J]. Ad Hoc Networks. 2004, 2(3): 319-334.
    [100] I S Misra, D Poddar, P Nandi, et al. Congestion Controlled Reliable Multipath Source Routing in Ad Hoc Networks[C]. Proceedings of the IEEE International Conference on Personal Wireless Communications, 2005. 72-76.
    [101] I Jawhar, J Wu. Quality of Service Routing in Mobile Ad Hoc Networks[J]. Resource Management in Wireless Networking. 2005, 16: 365-400.
    [102] S Narayanaswamy, V Kawadia, R S Sreenivas, P R Kumar. Power Control in Ad Hoc Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW Protocol[C]. Proceedings of European Wireless Conference, Florence, Italy. 2002, 2: 156-162.
    [103] J Gomez, A T Campbell, M Naghshineh, C Bisdikian. Conserving Transmission Power in Wireless Ad Hoc Networks[C]. ICNP'01. 2001, 11: 443-460.
    [104] K Woo, C Yu, H Y Youn, B Lee. Non-Blocking, Localized Routing Algorithm for Balanced Energy Consumption in Mobile Ad Hoc Networks[C]. Proceedings of Int'l Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2001. 117-124.
    [105] Y Xu, J Heidemann, D Estrin. Geography-Informed Energy Conservation for Ad Hoc Routing[C]. Proceedings of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and Networking, Rome, Italy, 2001. 70-84.
    [106] D Wei, H A Chan. Clustering Ad Hoc Networks: Schemes and Classifications[C]. Proceedings of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks. 2006, 3: 920-926.
    [107] Y Qin. Analysis of Cluster-Based Hierarchical Routing in Ad Hoc Wireless Networks[J]. Electronics Letters. 2006, 42(8): 474-476.
    [108] M S Al-Kahtani, H T Mouftah. A Stable Clustering Formation Infrastructure Protocol in Mobile Ad Hoc Networks[C]. Proceedings of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications. 2005, 3: 406-413.
    [109] M Gerla, J T C Tsai. Multicluster, Mobile, Multimedia Radio Network[C]. Wireless Networks. 1995, 1(3): 255-265.
    [110] K Zheng, N Wang, A F Liu. A New AODV Based Clustering Routing Protocol[C].Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing. 2005, 2: 728-731.
    [111] The Network Simulator-Ns-2[Z]. http://www.isi.edu/nsnam/ns/
    [112]徐雷鸣,庞博,赵耀. NS与网络模拟[M].北京:人民邮电出版社. 2003.
    [113] M A Haq, M Matsumoto, J L Bordim, S Tanaka. Distributed QoS Scheme for Multimedia Communication in Mobile Ad Hoc Network[C]. IEICE Transactions on Communications. 2005, E88-B(9): 3614-3622.
    [114]郑少仁,王海涛,赵志峰等. Ad Hoc网络技术[M].北京:人民邮电出版社. 2005.
    [115] N Sarma, S Nandi. QoS Support in Mobile Ad Hoc Networks[C]. Proceedings of the International Conference on Wireless and Optical Communications Networks, 2006. 5-9.
    [116] R Braden, D Clark, S Shenker. Integrated Services in the Internet Architecture: An Overview[EB/01]. IETF RFC1633, http://www.ietf.org/rfc/rfc1633.txt, 1994.
    [117] S Blake, D Black, M Carlson, et al. An Architecture for Differentiated Services[EB/01]. IETF RFC2475, http://www.ietf.org/rfc/rfc2475.txt, 1998.
    [118] R Braden, L Zhang, S Berson, et al. Resource Reservation Protocol (RSVP)-Version 1 Functional Specification[EB/01]. IETF RFC 2205, http://www.ietf.org/rfc/rfc2205.txt, 1997.
    [119] H Xiao, W K G Seah, A Lo, et al. A Flexible Quality of Service Model for Mobile Ad Hoc Networks[C]. Proceedings of the IEEE Vehicular Technology Conference. 2000, 1: 445-449.
    [120] S B Lee, A T Campbell. INSIGNIA: In-Band Signaling Support for QoS in Mobile Ad Hoc Networks[C]. Proceedings of the 5th International Workshop on Mobile Multimedia Communication MoMuc’98, Berlin, Germany, 1998.
    [121] D D Vergados, D J Vergados, C Douligeris, S L Tombros. QoS-Aware TDMA for End-to-End Traffic Scheduling in Ad Hoc Networks[J]. IEEE Wireless Communications. 2006, 13(5): 68-74.
    [122] J Lifton, M Laibowitz. Application-Led Research in Ubiquitous Computing: A Wireless Sensor Network Perspective[EB/01]. Responsive Environments Group, MIT Media Lab. http://www.cl.cam.ac.uk/~gfc22/ubiappws/finalpapers/ubiappws-Lifton.pdf
    [123] S D Bao, Y T Zhang, L F Shen. A Design Proposal of Security Architecture for Medical Body Sensor Networks[C]. Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, 2006. 84-90.
    [124] J O Donoghue, J Herbert. Profile Based Sensor Data Acquisition in a Ubiquitous Medical Environment[C]. Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2006.
    [125] S Meyer, A Rakotonirainy. A Survey of Research on Context-Aware Homes[C]. Workshop onWearable, Invisible, Context-Aware, Ambient, Pervasive and Ubiquitous Computing. Australia, 2003.
    [126] D Westhoff, J Girao, M Acharya. Concealed Data Aggregation for Reverse Multicast Traffic in Sensor Networks: Encryption, Key Distribution, and Routing Adaptation[C]. IEEE Transactions on Mobile Computing. 2006, 5(10): 1417-1431.
    [127] I Demirkol, F Alagoz, H Delic, C Ersoy. Wireless Sensor Networks for Intrusion Detection: Packet Traffic Modeling[J]. IEEE Communications Letters. 2006, 10(1): 22-24.
    [128] J L Burbank, W T Kasch. Cross-Layer Design for Military Networks[C]. Proceedings of Military Communications Conference. 2005, 3: 1912-1918.
    [129] Ten Emerging Technologies That Will Change the World[J]. Technology Review. 2003, 106(l): 22-49.
    [130] D Cullar, D Estrin, M B Srivastava. Overview of Sensor Network[J]. IEEE Computer. 2004, 37(8): 41-49.
    [131] W Gao, L M Ni, Z Xu. BLOSSOMS: A CAS/HKUST Joint Project to Build Lightweight Optimized Sensor Systems on a Massive Scale[J]. Network and Parallel Computing. 2004. 559-564.
    [132] E Shih, S H Cho, N Ickes, et al. Physical Layer Driven Algorithm and Protocol Design for Energy-Efficient Wireless Sensor Networks[C]. Proceedings of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and Networking, Italy, 2001. 272-286.
    [133]孙利民,李建中,陈渝等.无线传感器网络[M].北京:清华大学出版社. 2005.
    [134]于海斌,曾鹏等.智能无线传感器网络系统[M].北京:科学出版社. 2006.
    [135] C Lin, Y X He, N Xiong. An Energy-Efficient Dynamic Power Management in Wireless Sensor Networks[C]. Proceedings of the Fifth International Symposium on Parallel and Distributed Computing, 2006. 148-154.
    [136] A Boulis, M B Srivastava. Node-Level Energy Management for Sensor Networks in the Presence of Multiple Applications[J]. Wireless Networks. 2004, 10(6): 737-746.
    [137] C Schurgers, V Tsiatsis, S Ganeriwal, M Srivastava. Optimizing Sensor Networks in the Energy-Latency-Density Design Space[C]. IEEE Transactions on Mobile Computing. 2002, l(l): 70-80.
    [138] D Estrin. Wireless Sensor Networks Tutorial Part IV: Sensor Network Protocols[M]. Mobicom, Atlanta, USA, 2002.
    [139] L Gu, J A Stankovic. Radio-Triggered Wake-Up Capability for Wireless Sensor Networks[C]. Proceedings of the 10th IEEE Real-Time and Embedded Technology and ApplicationsSymposium, 2004. 27-37.
    [140] X Shi, G Stromberg, Y Gsottberger, T Sturm. Wake-Up-Frame Scheme for Ultra Low Power Wireless Transceivers[C]. Proceedings of the IEEE Global Telecommunications Conference (LOBECOM’04). 2004, 6: 3619-3623.
    [141] IEEE Standard for Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LRWPANs) [S]. New York: The Institute of Electrical and Electronics Engineers. 2003.
    [142] J L Hill, D E Culler. Mica: A Wireless Platform for Deeply Embedded Networks[J]. IEEE Micro. 2002, 22(6):12-24.
    [143] Atmega128L, ATA5283, ATA5276 DataSheets[EB/01]. http://www.atmel.com
    [144] CC1000 Data Sheet[EB/01]. http://focus.ti.com/lit/ds/symlink/cc1000.pdf
    [145] Y Lee, P Sorrells. MicroID 125kHz RFID System Design Guide[EB/01]. http://ww1.micro chip.com /downloads/en/DeviceDoc/51115F.pdf, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700