拉索损伤演化机理与剩余使用寿命评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在斜拉桥结构体系中拉索寿命最短,斜拉桥在其设计基准期内需实施多次换索工程。因此有必要对退化拉索的承载力和剩余使用寿命展开分析,确定最佳换索时间。
     根据实桥检测研究,钢丝锈蚀和开裂是决定拉索承载力和剩余使用寿命的致命性因素,其它病害对拉索的影响都可以忽略。钢丝损伤的主因是锈蚀,因此将拉索承载力和剩余使用寿命分析过程分解为三个步骤:根据检测结果模拟拉索锈蚀分布;根据钢丝的锈蚀程度确定钢丝的承载力;根据钢丝的承载力评估整索的承载力和剩余使用寿命。
     为进行拉索锈蚀程度检测,首先根据钢丝外观将钢丝的锈蚀程度划分为8个锈蚀等级。为找出拉索的锈蚀分布规律,对实桥拆换下来的拉索进行了锈蚀程度检测,发现钢丝的锈蚀程度与到护套破损位置的距离有关。在拉索截面表层钢丝的周向上,钢丝的锈蚀程度随到护套破损位置的距离增加而降低;在拉索截面径向上,钢丝的锈蚀程度由外向内逐渐降低。比较相邻钢丝的锈蚀程度变化关系,发现在这两个方向上钢丝的锈蚀程度都是按指数形式递减的。根据以上检测规律确定了拉索截面锈蚀分布模拟方法:首先对护套破损位置暴露出的表层钢丝进行检测,确定这些钢丝的锈蚀程度;根据护套位置钢丝锈蚀程度模拟截面周向上其它钢丝的锈蚀程度;根据截面周向上的钢丝锈蚀程度模拟径向上的钢丝锈蚀程度。
     钢丝的损伤演化过程包括6个阶段:钢丝完好阶段、镀锌层锈蚀阶段、钢丝均匀锈蚀阶段、钢丝孔蚀阶段、钢丝腐蚀疲劳阶段和钢丝应力腐蚀阶段。在孔蚀阶段、腐蚀疲劳阶段和应力腐蚀阶段,钢丝都可能失效断裂。钢丝在各阶段的失效机理是不同的,但导致钢丝力学性能降低的原因是相同的:钢丝截面积降低或外形改变导致局部应力集中。因此可以用一个模型描述钢丝的损伤演化过程。这个模型包含两个参数:等效裂纹深度和等效截面直径。在钢丝进入腐蚀疲劳阶段以前,钢丝损伤演化模型的两个参数仅与钢丝的锈蚀程度有关,应根据钢丝的锈蚀程度推算。当钢丝达到腐蚀疲劳阶段后,结合锈蚀程度以及腐蚀疲劳裂纹扩展理论分析了等效裂纹深度的计算理论。
     为计算拉索的承载力,可将拉索简化成一个串并联系统:拉索由高强钢丝并联构成,而高强钢丝由不同锈蚀程度的钢丝单元串联构成。当拉索内锈蚀分布已知,首先根据钢丝损伤演化模型计算钢丝单元的力学性能,然后根掘串并联规律就可得到拉索的承载力。在研究过程中,还发现拉索的承载力不仅与钢丝的强度有关,还与钢丝的伸长率有关。随着拉索的伸长量不断增加,拉索的承载力经历一个先升高,后降低的过程。在这个过程中,极限伸长率低的钢丝不断地断裂失效。拉索的极限承载力由那些极限伸长率相对较高的钢丝提供。
     为评估拉索的剩余使用寿命,在拉索损伤演化模型中考虑钢丝锈蚀速度的影响,分析拉索在不同寿命下的极限承载力,认为当极限承载力低于拉索的失效判据时拉索就达到了剩余使用寿命。
Stayed cables are vulnerable to rupture, which leads to high maintaining cost during the life time of cable stayed bridges. To ascertain the cable replacing, it is necessary to assess the remained strength and life of deteriorated cables.
     While all kinds of cable degradations are assessed, the wire degradation was found out to be the fatal cause which leads to the decreasing of cable life. Wire degradation mainly results from corrosion. The process of strength assessment of deteriorated cables includes three steps: simulating the corrosion distribution of wires, calculating the strength of corrosion wires, evaluating the strength and remained life of cables.
     In order to evaluate wire corrosion practically, 8 corrosion levers are developed according to the appearance of damaged wires. The corrosion distribution state of replaced cables was inspected and the results were provided. The corrosion degree of the wire is affected by the distance between the sheath breakage and wire. Both at the radial direction and at the tangential direction, the corrosion degree degrades exponentially while the distance increases. According to these rules, the corrosion distribution could be simulated with following steps. Firstly, evaluate the corrosion degree of wires at the sheath breakage; simulate the wires at the first layer of cross section; simulate the wires at the radius of cross section.
     The process of damage evolution of wires includes 6 steps: scatheless wire stage, zinc coat corrosion stage, general corrosion stage, pitting corrosion stage, corrosion fatigue stage and stress corrosion stage. The wire would rupture at pitting corrosion stage, corrosion fatigue stage and stress corrosion stage. At different stages, the deterioration mechanism is different, but the degradation of mechanical properties of wires come from the same reason: the cross section decreasing or stress concentration due to surface roughness. The course of wire deteriorating could be simulated by the damage evolution model of wires, which has two parameters: a, which is equivalent crack depth and d, which is equivalent diameter. Before the corrosion fatigue stage, a and d are influented by the corrosion degree alone, while after the stage, the two parameters are influented by the corrosion and load, which means that a should be calculated according to the CFCP theory.
     Stayed cable may be considered as a parallel series system in which the cable consists of parallel wires and the wires are formed of wire elements in series. After the corrosion distribution being simulated, the mechanical properties of wire elements could be calculated according to the damage evolution model of wires, so do the strength of cane according to the deteriorated cable model. The strength of cable is affect not only by the strength of wires, but also by the ultmost elongation of wires. The strength of cable experience a period which increase at first and, then decrease, while the elongation of cable increases. During the period, wires full breakage gradually when the elongations of wires are less than the elongation of cable.
     For the porpose of evaluation the service lives of cables, the ultmost strengths of cables in different stage are calculated when the corrosion rate is counted. The Cables will fall rustily when the strengths achieve the failure criterion.
引文
[1] A.Martin. V.Sanchez-Galvez. J. Llorca. Corrosion Fatigue of Cold Drawn Eutectoid Steel Wires in Artificial Seawater. Environment Assisted Fatigue, EGF7(edited by P. Scott). 1990. Mechanical Engineering Publications. London. p435-447
    [2] Adel B. El-Shabasy. John J. Lewandowski. Effects of load ratio. R. and test temperature on fatigue crack growth of fully pearlitic eutectoid steel (fatigue crack growth of pearlitic steel). International Journal of Fatigue.26.2004.p305-309
    [3] Alan Kowalik. Acoustic Monitoring on the Fred Hartman Bridge
    [4] Andrea Bergamini.Rouven Christen. A Simple Approach to the Localization of Flaws in Large Diameter Steel Cables. Proceedings of SPIE Vol. 5047 (2003).p243-251
    [5] Antonio Sarcos-Portillo, Alfredo Navarro-Cerpa, Hildrun Garcia-Legl. Inspection and Process of Tension of Cables of General Rafael Urdaneta Bridge. Journal of Bridge Engineering. Vol. 8. No. 4, July 1.2003
    [6] Brenda Littlea. Roger Staehleb. Robert Davisc. Fungal in uenced corrosion of post-tensioned cables. International Biodeterioration & Biodegradation 47 (2001) p71—77
    [7] BSI PD6493. 1991. Guidance on Some Methods for the Derivation of Acceptance Levels for Defects in Fusion Welded Joints. London: British Standard Institution, 1991
    [8] Colin MacDougall. Behavior of Monostrand Tendons with Broken Wires. Paper for Doctor's Degree. The University of Western Ontario. 2001
    [9] C. Alonso. J. Fullea and C. Andrade. The Risk of Stress Corrosion Cracking of Prestressed Steel and Its Prevention by Use of Nitrite Inhibitor. The Journal of Corrosion Science and Engineering. Vol.6 Paper c004
    [10] Desmond C. Cook, Ann C. Van Orden. The Luling Bridge: an Inside Story.Corrosion2000
    
    [11] Eiselstein L. E. . Caligiuri R. D. .Atmospheric corrosion of the suspension cables on the Williamsburg Bridge. Degradation of metals in the atmosphere .Spec.Teck.Publ.965, 1988
    
    [12] Frank L.Stahl.Christopher P. Gagnon.Cable Corrosion in Bridges and Other Structures. ASCE Press. 1996
    [13] Garry Wayne Vermaas. Corrosion and Embrittlement of High-Strength Steel Bridge Wires. Ph.D. Thesis. Columbia University.2001
    [14] Gongkang Fu. Fred Moses. Dyab A. Khazem. STRENGTH OF PARALLEL WIRE CABLES FOR SUSPENSION BRIDGES. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability
    [15] Guido Roelfstra. Rade Hajdin. Bryan Adey. Eugen Bruhwiler. Condition Evolution in Bridge Management Systems and Corrosion-Induced Deterioration. Journal of Bridge Engineering. Vol. 9, May. 2004
    [16] H. R. Hamilton III, H. G. Wheat, J. E. Breen. K. H. Frank. Corrosion Testing of Grout For Post tensioning Ducts and Stay Cables. Journal of Structural Engineering, vol. 126, February.2000
    [17] H. R. Hamilton III. J. E. Breen. K.. H. Frank. Bridge Stay Cable Corrosion Protection I: Grout Injection and Load Testing. Journal of Structural Engineering, vol. 126. February.2000
    [18] H. R. Hamilton III. J. E. Breen. K. H. Frank. Bridge Stay Cable Corrosion Protection 11: Accelerated Corrosion tests. Journal of Structural Engineering, vol. 126. February.2000
    [19] H. R. Hamilton III, J. E. Breen. K. H. Frank. Investigation of Corrosion Protection Systems for Bridge Stay Cables[R]. 1995,10
    [20] Henning Agerskov, Jette Andkjaer Nielsen. Fatigue in Steel Highway Bridges under Random Loading. Journal of Structure Engineering, Vol. 125, February, 1999
    [21] Hiroshi Onishi. Shigeyuki Matsui. Influence of Corrosion Rate on Tensile Strength of PC Strands. Technology Reports of The Osaka University, Vol.49. No.2357, October, 1999, pl65-170
    [22] Hirotaka Yoshida, Ken-ichi Sobue, Jun-ichi Masuda.Image-processing Technique for Inspecting Stranded Wire. IEEE 1994,p1919-1924
    [23] Hopwood T., Haven J. Inspection. Prevention, and Remedy of Suspension Bridge Cable Corrosion Problems. Kentucky Transportation Research Program Report UKTRP-84-15. May. 1984
    [24] I. Congleton. 1. Hussain. R. N. Parkins. Effect of Applied Potential on Corrosion Fatigue of Wire Ropes in Sea Water. Br. Corrosion J..Vol.20, 1985.p5-18
    [25] Ian D. Peggs. Bruce Schmucke. Peter Carey. Assessment of Maximum Allowable Strains in Polyethylene and Polypropylene Geomembranes. Proceedings of the Sessions of the Geo-Frontiers 2005 Congress
    [26] J. Dowd. M. Poser. K. H. Frank. S. L. Wood. E. B. Williamson. Bending Fatigue of Cable Stays. Journal of Bridge Engineering. Vol. 6. November.2001
    [27] J. Llorca. V. Sanchez-Galvez. Fatigue Threshold Determination in High Strength Cold Drawn Eutectoid Steel Wires. Engineering Fractuee Mechanics Vol.26,No.6,1987.p869-882
    [28] J. M. Walton. Development in Steel Cables. Journal Construct Steel Resource. Vol. 39. No. 1.1996
    [29] J.Toribio. A. M. Lancha. Anisotropic stress corrosion cracking behavior of prestressing steel. Materials and Corrosion, vol.49.1998,p34-38
    [30] J.Toribio. E. OVEJERO. Effect of Cold Drawing on Microstructure and Corrosion Performance of High Strength Steel. Mechanics of Time-Dependent Materials. 1.1998.p307-319
    [31] J.Toribio. E. OVEJERO. Failure analysis of cold drawn prestressing steel wires subjected to stress corrosion cracking. Engineering Failure Analysis. 12.2005,p654—661
    [32] J.Toribio. E. OVEJERO. Microstructure-based modeling of hydrogen assisted cracking in pearlitic steels. Materials Science and Engineering. A319-321.2001,p540-543
    [33] J.Toribio,E.OVEJERO. Microstructure-based modeling of localized anodic dissolution in pearlitic steels. Materials Science and Engineering. A319-321,2001,p308-311
    [34] J. Toribio, F. J. Ayaso. Fracture Performance of Progressively drawn Pearlitic Steel under Triaxial Stress States. Materials Science. Vol. 37. No. 5, 2001.p707-717
    [35] J. Toribio. Micromechanical Modeling of Time-Dependent Stress-Corrosion Behavior of High-Strength Steel. Mechanics of Time-Dependent Materials vol.2, 1999,p229-244
    [36] J. Toribio, J.Ayaso. Micromechanics of Fracture in Notched Samples of Heavily Drawn Steel. International Journal of Fracture, vol. 115.2002.p29-34
    [37] James M. Stallings, Karl H. Frank. Stay-Cable Fatigue Behavior. Journal of Structural Engineering. Vol. 117, March. 1991
    [38] Jeong-In Suh, Sung Pil Chang. Experiment Study on Fatigue Behavior of Wire Ropes. International Journal of Fatigue, Vol. 22, 2000
    [39] John H. G. Macdonald. Separation of the contributions of aerodynamic and structural damping in vibrations of inclined cables. Journal of Wind Engineering and Industrial Aerodynamics, vol.90,2002,p19-39
    [40] John Matteo, George Deodatis, David P. Billington. Safety Analysis of Suspension-Bridge Cable: Williamsburg Bridge. Journal of Structural Engineering. Vol. 120, November, 1994
    [41] John Sun. Rafael Manzanarez. Marwan Nader. Suspension Cable Design of the New San Francisco-Oakland Bay Bridge. Journal of Bridge Engineering. Vol. 9. No. 1. January 1, 2004.
    [42] K. R. Cooper. J. Elster, M. Jones,R.G. Kelly.Optical Fiber-Based Corrosion Sensor Systems for Health Monitoring of Aging Aircraft.IEEE.2001.p847-856
    [43] Kazuhiko Furuya. Makoto Kitagawa. Shun-ichi Nakamura. Keita Suzumura. Corrosion Mechanism and Protection Methods for Suspension Bridge Cables. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE).no.3,2000, p189-193
    [44] Keita Suzumura. Shun-ichi Nakamurac Environmental Factors Affecting Corrosion of Galvanized Steel Wires. Journal of Materials in Civil Engineering. Vol. 16. February, 2004
    [45] Koei Takena, Chitoshi Miki, Hirosuke Shimokawa, Kenji Sakamoto.Fatigue Resistance of Large—Diameter Cable. Journal of Structural Engineering, Vol. 118.March. 1992
    [46] L. Vehovar, V. Kuhar, A. Vehovar. Hydrogen-Assisted Stress-corrosion of Prestressing Wires in a Motorway Viaduct. Engineering Failure Analysis.vol.5,No.1.1998
    [47] Lal D N,Weiss. Met Trans.1978,9A(3) p720-725
    [48] Laura Akl. Corrosion Detection Using Fiber Optics
    [49] Llorca J. Sanchez-Galvez V. FATIGUE THRESHOLD DETERMINATION IN HIGH STRENGTH DRAWN EUTECTOID STEEL WIRES. Engineering Fracture Mechanics, v 26, n 6, 1987, p 869-882
    [50] L. E. Miller, G. C. Smith, J. Iron Steel Inst. 208 (1970) 998.
    [51] M. Elices. Influence of residual stresses in the performance of cold-drawn pearlitic wires. Journal of Materials Science.vol.39,2004,p3889-3899
    [52] M. H. Faber. S. Engelund, R. Rackwitz. Aspects of parallel wire cable reliability. Structural Safety, Vol. 25, 2003,p201-225
    [53] Makoto Kitagawa, Shuichi Suzuki, and Motoi Okuda. Assessment of Cable Maintenance Technologies for Honshu-Shikoku Bridges. Journal of Bridge Engineering, Vol. 6, November, 2001
    [54] Maria Grazia Bruschi, Terry L. Koglin. Preserving Williamsburg's Cables. Civil Engineering, March 1996
    [55] Martin, A.,Sanchez-Galvez, V.,Llorca, J. Corrosion fatigue of cold drawn eutectoid steel wires in artificial seawater. Environment Assisted Fatigue, 1990, p435-446
    [56] Mary E. Elliott, and Ernest Heymsfield. Inspection of Luling Bridge Cable Stays: Case Study. Journal of Construction Engineering and Management, Vol. 129, April, 2003
    [57] Milne. I, Ainsworth R A, Stewart A T. Assessment of the Integrity of Structures Containing Defects. CEGB Report R/H/R6 Revision 3. London: CEGB, 1986
    [58] Mohammed Raoofa, Ivana Kraincanic. Determination of wire recovery length in steel cables and its practical applications. Computers and Structures, vol.68,1998, p445-459
    [59] Niels J.Gimsing 著,金增洪 译,缆索支承桥梁——概念与设计(第二版)[M].人民交通出版社 2002.2,p76-79
    [60] Onishi Hiroshi, Matsui Shigeyuki. Influence of corrosion rate on tensile strength of PC strands. Technology Reports of the Osaka University, v.49, n 2348-2365, Oct,1999, p165-170
    [61] P. Gandhi, D. S. Ramachandra Murthy, G. Raghava, A. G. Madhava Rao. Fatigue Crack Growth in Stiffened Steel Tubular Joints in Seawater Environment. Engineering Structures, Vol. 22, 2000
    [62] P. Sarin, V. L. Snoeyink, D. A. Lytle, and W. M. Kriven. Iron Corrosion Scales: Model for Scale Growth, Iron Release, and Colored Water Formation. Journal of Environmental Engineering, Vol. 130, April, 2004
    [63] Pan Shi. Corrosion Fatigue Reliability of Aged Structures. Paper for Doctor's Degree of Vanderbilt University,2001
    [64] Pedro Albrecht, Terry T. Hall Jr.. Atmospheric Corrosion Resistance of Structural Steels. Journal of Materials in Civil Engineering, Vol. 15, February,2003
    [65] Post-Tensioning Institute. Recommendations for Stay Cable Design, Testing and Installation[S]. The 4th Edition. 2001,p20-26
    [66] Pourladian, B. Fracture Toughness Evaluation of High-Strength Cold-Drawn Eutectoid Steel Wires Used in Wire Ropes. Ph.D. Thesis, University of Kansas. 1999
    [67] R. Betti, A. C. West, G. Vennaas, Y, Cao. Corrosion and Embrittlement in High-Strength Wires of Suspension Bridge Cables. Journal of Bridge Engineering, Vol. 10, No. 2,March 1, 2005
    [68] R. E. Hobbs, M. Raoof. Behaviour of Cable under Dynamic or Repeate Loading. Journal Construct Steel Resource, Vol. 39, No. 1,1996
    [69] R. Kerry Rowe, Henri P.Sangam. Durability of HDPE Geomembranes. Geotextiles and Geomembranes. Vol.20 2002, p77-95
    [70] R. M. Mayrbaur!, S. Camo. Cracking and Fracture of Suspension Bridge Wire. Journal of Bridge Engineering, Vol. 6, November, 2001
    
    [71] R. M. Salas, A. J. Schokker, J. S. West, J. E. Breen, M. E. Kreger. Conclusions, Recommendations, and Design Guidelines for Corrosion Protection of Posttensioned Bridges. FHWA/TX-04/0-1405-9 Report. 2004
    
    [72] R. M. Salas, A. L. Kotys, J. S. West, J. E. Breen, M. E. Kreger. Final Evaluation of Corrosion Protection for Bonded Internal Tendons in Precast Segmental Construction. Research Report 1405-6,2002
    [73] Roger Patrick Jude Bligh. NDE Techniques for Detecting Grout Defects in Cable Stays. Paper for Doctor's Degree of Texas A&M University,2001
    [74] Roger Q. Halght, David P. Billington, Dyab Khazem. Cable Stay Safety of Four Suspension Bridges. Journal of Bridge Engineering. Vol. 2, November, 1997
    [75] Ronald M. Mayrbaurl. Corrosion in Suspension Bridge Cables. 16th Conference of IABSE,Lucerne.2000
    
    [76] Ruben Mario Salas Pereira. Accelerated Corrosion Testing, Evaluation and Durability Design of Bonded Post-Tensioned Concrete Tendons. Paper for Doctor's Degree of The University of Texas at Austin.2003
    [77] Ruoxue Zhang, Sankaran Mahadevan. Fatigue Reliability Analysis Using Nondestructive Inspection. Journal of Structural Engineering, Vol. 127, August, 2001
    [78] Sante Camo. Probabilistic Strength Estimates and Reliability of Damaged Parallel Wire Cables. Journal of Bridge Engineering, Vol.8,September 1, 2003
    [79] Satoshi Kashima, Yukikazu Yanaka. Shuichi Suzuki, Kunihisa Mori. Monitoring the Akashi Kaikyo Bridge: First Experiences.Report
    
    [80] Schmidt, R A.Paris, P C.Threshold for fatigue crack propagation and the effects of load ratio and frequency.Proceedings of the Sixth National Symposium on Fracture Mechanics, Philadelphia, Pa ; United States; 28-30 Aug. 1972. pp. 79-94. 1973
    [81] Scott Calabrese Barton, Garry W. Vermaas, Paul F. Duby, Alan C. West, Raimondo Betti. Accelerated Corrosion and Embrittlement of High-Strength Bridge Wire. Journal of Materials in Civil Engineering, Vol.12,February, 2000,p33-38
    [82] Shun-ichi Nakamura, Kazuhiko Furuya, Makoto Kitagawa, Keita Suzumura. Corrosion Performance of New Suspension Bridge Cable Protection. 16th Conference of IABSE,Lucerne,2000
    [83] Shun-ichi Nakamura. Keita Suzumura, Toshimi Tarui. Mechanical Properties and Remaining Strength of Corroded Bridge Wires. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), v 14. n 1, August. 2004, p 50-54
    [84] Stephen J. Burke. An Experimental Study on the None-Destructive Evaluation of Corroded Bridge Steel. Paper for Master's Degree of University of Ottawa, 2000
    [85] Stewart C. Watson. David Stafford, Cable in Trouble[J]. Civil Engineering, ASCE.1988, 4
    [86] Suresh S, Zamiski. G F Ritchie R O. Oxide-Induced Crack Closure: an Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior. Metall. Trans. A. Vol. 12A, no. 8. Aug. 1981, p1435-1443
    [87] Svend Engelund,MichaeI H. Faber. Planning of Ultrasonic Inspections of Parallel Wire Cables. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability.
    [88] Toshimi Tarui.Naoki Maruyama.Tat suya Eguchi.Shimichi Konno. High St rengh Galvanized Steel Wire for Bridge Cables. Structural Engineering International,vol.3,2002,p209-213
    [89] V. K. Blokhin.E. Yu. Narusova,O. V. Livanova.G.A. Filippov. EFFECT OF LONG-TERM SERVICE ON THE STRUCTURAL STRENGTH OF REINFORCING WIRE. Metal Science and Heat Treatment,vol.45,2003,p10-14
    [90] Wei Liu, Robert G. Hunsperger, Michael J. Chajes, Kevin J. Folliard. Eric Kunz. Corrosion Detection of Steel Cables using Time Domain Reflectometry. Journal of Materials in Civil Engineering, Vol. 14, June, 2002
    [91] Wei Liu.Robert Hunspergera, Kevin Folliard. Detection and characterization of corrosion of bridge cables by time domain reflectometry.
    [92] Wei Liu. Robert Hunsperger, Michael Chajes, Eric Kunz. An Overview of Corrosion Damage Detection in Steel Bridge Strands Using TDR.
    [93] William H. Hartt, Siva Venugopalan. Corrosion Evaluation of Post-Tensioned Tendons on the Mid Bay Bridge in Destin,Florida. Report. 2002
    [94] William H. Hartt. Siva Venugopalan. Post-tensioned Tendons on the Mid Bay Bridge in Destin, Florida. Report. 2002
    [95] Y. G. Hsuan. Timothy J. Mcgrath. HDPE Pipe Recommended Material Specifications and Design Requirements[R]. NCHRP Report 429, 1999
    [96] Ying Xi. Nonlinear Analysis and Load-Carrying Capacity of Cable-Stayed Bridges. Paper for Doctor's Degree of The Hong Kong University of Science and Technology, 1998
    [97] Yukikazu Yanaka, Makoto Kitagawa. Maintenance of steel bridges on Honshu-Shikoku crossing. Journal of Constructional Steel Research.2002
    [98] 才庆魁.金属疲劳断裂理论.东北工学院出版社.1989.9
    [99] 曹楚南.中国材料的自然环境腐蚀.化学工业出版社,2005
    [100] 陈炳坤.周履译.汉堡科尔布兰德斜拉索的更换.国外桥梁.1997,3
    [101] 陈雷,侯亚丽,李春兰,张铭辉,曹胜先.HDPE5000S耐老化性能的研究.塑料科技,6,2001.p26-28
    [102] 陈明宪.斜拉桥建造技术.人民交通出版社.3,2004,p70-79
    [103] 陈惟珍,王春生,徐磊.上海市外白渡桥剩余寿命与使用安全[J].桥梁建设,NO.2,2002.p6-10
    [104] 陈惟珍.钢桥疲劳设计方法研究[J].桥梁建设,No.2.2000.p1-3
    [105] 陈惟珍.老钢桥剩余安全度与剩余寿命估计[J].同济大学学报,N0.4,2001.p384-389
    [106] 褚武扬.乔利杰.陈奇志等.断裂与环境断裂.科学出版社,2000
    [107] 党志杰.斜拉索的疲劳抗力.桥梁建设,v4,1999
    [108] 邓阳春,蒋华,刘江.失效评定图技术进展.锅炉压力容器安全技术.vol.6,1998,p18-21
    [109] 付春晓.雷俊卿.既有悬索桥主缆现状的检测与研究.世界桥梁,vol.4.2002.p70-74
    [110] 傅祥炯.结构疲劳与断裂.西北工业大学出版社,1995.12
    [111] 高小云,杨岳民.大跨径斜拉桥拉索系统的疲劳评定.国外桥梁.vol.4.1999,p42-46
    [112] 公路斜拉桥设计规范(试行),JTJ027-96
    [113] 龚志刚,党志杰.奥尔顿克拉克大桥斜拉索的疲劳强度.国外桥梁,vol.1,1997,p37-41
    [114] 韩恩厚译.大气腐蚀.化学工业出版社,2005,p225-236
    [115] 何文德,杜江,熊洁.富密灌区渠首斜拉桥换索工程技术述评.黑龙江水利科技.No.1.2002
    [116] 黄跃平,胥明,姜益军,顾成军,段永胜,朱绍庄.拉索局部腐蚀检测与评估分析.腐蚀科学与防护技术.Vol.18 No.2.Mar.2006.p132-135
    [117] 蒋剑彪,崔毅,杜自力,王建荣,杨燊林.怒江三达地斜拉桥换索工程,北京特希达科技有限公司科研论文
    [118] 黎学明,陈伟民,黄宗卿,黄尚廉.一种新型光纤腐蚀传感器.传感技术学报.Vol.3,1999.9,p176-180
    [119] 李广龄.镀锌钢丝的锌层均匀性.金属制品.vol.27,No.3,2001,p36-38
    [120] 李先立,宋显辉,刘禹钦.高强镀锌钢丝疲劳可靠性研究.土木工程学报.Vol.28,1995.p36-43
    [121] 李乔.斜拉桥的受力特征分析.工程力学增刊,1999
    [122] 李兴华.刘自明译.悬索桥的检查与维护.国外桥梁.1998,3
    [123] 李仲,吕国志,葛森.一种预测蚀坑腐蚀疲劳寿命的概率模型.机械强度,vol.26,2004,p226-228
    [124] 梁彩凤,侯文泰.碳钢、低合金钢16年大气暴露腐蚀研究.中国腐蚀与防护学报,Vol.25.N0.1,2005.p1-6
    [125] 梁彩凤,侯文泰.大气腐蚀与环境.装备环境工程.Vol.1.no.2,2004,p49-52
    [126] 廖景娱.苏达根.斜拉桥钢索堕落事故原因分析.腐蚀与防护.vol.20,No.2,Feb.1999,p83-85
    [127] 梁奎基,王文涛.斜拉桥换索工程拉索选型制作工艺及质量检测.华东公路,vol.103,1996,p14-19
    [128] 林元培.斜拉桥.人民交通出版社,1994
    [129] 刘明辉,张晓云,赖俊滨等.江津、武汉、宜昌大气腐蚀预测方程的建立.腐蚀科学与防护技术.Vol.116,No.14,2004,p240-242
    [130] 刘士林等.斜拉桥.人民交通出版社,2002
    [131] 刘效尧,蔡键.刘晖.桥梁损伤诊断.人民交通出版社.2002.07,p124-127
    [132] 刘秀晨.安成强.崔作兴等.金属腐蚀学.国防工业出版社,2002.9
    [133] 刘有元,曲学守,易刚祥,赵希胜.武汉长江公路桥冷铸锚试验研究.桥梁建设,vol.2,1994,p10-17
    [134] 马颐军,李家柱.锌铍层大气腐蚀试验研究.材料保护.vol.31,No.9,1998,p4-6
    [135] 南京长江第三大桥复合防腐型拉索技术研究报告.上海浦江缆索股份有限公司.2005.06
    [136] 马颐军.李家柱.锌镀层大气腐蚀试验研究.材料保护.vol.31,No.9,1998,p4-6
    [137] 彭旭民,党志杰.斜拉桥的损伤及预防措施.国外桥梁,Vol.2,1999
    [138] 蒲黔辉等.犍为岷江大桥斜拉索检测报告.西南交通大学结构工程试验中心.2000.6
    [139] 桥梁缆索用热镀锌钢丝 CB/T 17101—1997
    [140] 桑春明,沈爱国.缆索用高强度PC镀锌钢丝的研制.金属制品,Vol130.No16,2004,12,p6-8
    [141] 上海市企业标准Q/IMAA01-92.挤包互层绞扭型拉索
    [142] 宋诗哲.腐蚀电化学研究方法.化学工业出版社,1988
    [143] 宋显辉,刘禹钦,李卓球.武汉长江公路桥镀锌高强钢丝疲劳断口分析.桥梁建设,1994,2
    [144] 宋维僖.金属学.冶金工业出版社 1989.5,p250-263
    [145] 苏达根.韩大建.陈志雄等.斜拉桥拉索浆体异常特性的研究.华南理工大学学报.vol24,No.8.1996
    [146] 苏达根,韩大建,谭哲东等.斜拉桥拉索钢丝腐蚀失效研究.华南理工大学学报.vol.24,1996.p108-112
    [147] 苏达根,韩大建.张君.斜拉桥拉索腐蚀失效与水泥浆体的异常特性.桥梁建设,vol.4,1996,13-16
    [148] 苏达根.桥斜拉索腐蚀失效的分析.材料保护.Vol.30,1997
    [149] 孙金茂.桥梁用预应力钢丝钢绞线的防腐.金属制品.vol.26,No.3.2000,6
    [150] 唐明翰,李义.现代斜拉索.公路,Vol.10,1997
    [151] 王海良,谢桂飞.某大桥斜拉索病害原因分析及建议.铁道标准设计,5,2005.p67-69
    [152] 王荣.腐蚀疲劳裂纹扩展的断裂模型.中国腐蚀与防护学报.vol18,no.2,1998,p87-94
    [153] 王荣.金属材料的腐蚀疲劳.西北工业大学出版社,2001.9
    [154] 王文涛.斜拉桥换索工程.人民交通出版社,1996.9
    [155] 王文涛,梁奎基.国外大跨径斜拉桥使用状况综述.国外公路.vol.16,no.6,1996,p29-36
    [156] 王中光等译.材料的疲劳.国防工业出版社,1999.5
    [157] 文武松,彭旭民,党志杰.斜拉索设计、试验与安装条例(上).国外桥梁.vol.2,1997,p35-40
    [158] 文武松,彭旭民,党志杰.斜拉索设计、试验与安装条例(中).国外桥梁.vol.3,1997,p33-40
    [159] 文武松,袁旭民,党志杰.斜拉索设计、试验与安装条例(下).国外桥梁.vol.4,1997,p63-71
    [160] 吴荫顺等.腐蚀试验方法与防腐蚀检测技术.化学工业出版社,1996
    [161] 武新军,王峻峰,杨叔子.斜拉桥缆索缺陷检测系统的研制.机械科学与技术.Vol,20,No.6,2001,p901-903
    [162] 项海帆等译 钢桥的疲劳和断裂(实例研究)北京 中国铁道出版社,1989
    [163] 斜拉桥热挤聚乙烯拉索技术条件.中华人民共和国交通行业标准.JT/T 6-94,1994
    [164] 辛克贵,刘钺强,杨国平.大跨度斜拉桥恒载非线形静力分析.清华大学学报,Vol.42,2002
    [165] 徐恭义.杨进.预应力体外束的防蚀措施.桥梁建设,vol.3,1993
    [166] 徐敬淼.赵煜澄.弗雷西奈钢绞线式斜拉索简介.国外桥梁.Vol.4,1995
    [167] 徐俊,陈惟珍,唐涛.恒丰北路桥拉索试验研究.桥梁建设,vol.4,2005
    [168] 杨武等.金属的局部腐蚀.化学工业出版社,1995
    [169] 杨少军,尹玲.万州万安大桥斜拉索的修复.公路交通技术.No.6.2003,p65-66
    [170] 叶觉明,陈婉霞.缆索用热铸锚锚具和灌铸.桥梁建设,vol.1,2004,p74-77
    [171] 叶觉明,钟建驰.大桥斜拉索腐蚀防护技术的应用和探讨.腐蚀与防护.Vol.24,No.5.2003,p221-223
    [172] 易胜涛.斜拉桥拉索防护的现状.重庆交通学院学报.vol.19,No.2,2000,6
    [173] 尹万全,朱祖铭,姚戈,曹家麟,殷宗荣,秦万信.钢丝的疲劳强度与疲劳寿命.金属制品,vol.24,1998,p10-14
    [174] 袁劲松.金属腐蚀疲劳裂纹扩展速率的近似计算.材料开发与应用,vol.15,no.2,2000,p26-29
    [175] 袁胜峰.斜拉索体系的病害调查和病因分析.硕士学位论文.同济大学.2006
    [176] 袁永明,黄福伟,冯建明,陈江华,高鹏飞.重庆石门大桥斜拉索锈蚀与强度检测检验报告.No.YGJC-JY(QL)-[2005]第097号
    [177] 张舒,师奕兵,刘科.时域反射测量技术在网络故障检测中的应用.中国测试技术,Vol.131,No.15,2005,p40-41
    [178] 张正基,孙金茂,张伟君.斜拉索用PC钢丝钢绞线的种类和防腐分析.金属制品,Vol.29,2003
    [179] 赵国藩,金伟良,恭金鑫.结构可靠度.中国建筑工业出版社.2000.12
    [180] 周竹渝,陈德容,殷捷,张晚凉.重庆市降水化学特征分析.重庆环境科学,vol.25,no.11,2003,p112-114
    [181] 朱凯.撞毁护栏砸损斜拉索 失控货车重创军山大桥.武汉晨报,2003.3.25
    [182] 左宏献,付东,张士轩.广东三水大桥斜拉索维护方法.世界桥梁.vol.4,2004,p63-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700