孑遗植物水松保护生物学及其恢复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水松为稀有的松柏纲乔木,是我国特有的单种属植物,国家一级保护树种。作为古老的活化石植物,水松起源于中生代,经第四纪冰期后残存,现已成为罕见孑遗树种,仅零星分布于我国南方部分地区,在研究杉科植物的系统发育、古植物学和第四纪冰期气候等方面都有重要科学价值。由于历史气候变迁、人为干扰、生境被占、演替压力等因素,目前水松分布范围不断缩小且呈片断化,天然种群数量剧烈下降,大部分水松分布地仅剩几株孤立木,这一古老孑遗植物面临灭绝危险,如何保护水松稀有珍贵基因与珍稀种质资源,扩大水松种群规模已成为当务之急,开展必要的保护生物学和濒危机制及种群恢复研究刻不容缓。
     本研究综合运用种群生态学、保护遗传学、繁殖生态学等理论与方法,较全面、系统地开展水松自然地理分布、种群数量特征、遗传多样性、扦插繁殖技术等方面研究。通过种群生态学特性和数量特征研究,分析种群结构和动态规律及演化趋势;通过种群遗传多样性与遗传变异研究,分析水松物种水平和种群水平遗传多样性,比较现有水松人工种群与天然种群在遗传多样性和遗传结构方面的异同,探讨人工种群遗传结构是否得到恢复;从繁殖过程中播种苗生长过程探讨水松幼苗生长规律,通过试验不同因素对水松扦插繁殖生根率及生根性状的影响,建立良好的水松扦插繁殖体系;揭示水松濒危机制并提出科学保护对策。主要研究结果如下:
     (1)运用植被与气候关系指标探讨水松地理分布与气候因子相互关系,揭示水松主要种群的
     地理分布规律。结果表明,水松分布范围为中亚热带北纬13°21'~37°36',东经102°40'~121°29',主要分布在珠江三角洲、长江中下游及闽江流域,垂直分布范围为25~2000 m,不同分布区垂直分布差异很大。水松地理分布对气候因子要求是温暖湿润,光照充足,适宜分布区气候指标范围为:年平均温度12.10℃~22.60℃,年降水量1199.60 mm~2231.00 mm,年平均相对湿度62.00%~82.00%,年平均日照时数1589.20 h~2781.60 h。气候水热指标对水松地理分布影响很大,按影响力大小排序依次为低温因子>相对湿度>高温因子>年日照时数>年平均降水量。
     (2)运用种群生态学原理和方法,分析水松种群结构和动态规律及其演化趋势。
     天然种群方面:①运用直径分布模型拟合方法,探讨水松天然林种群直径分布规律。主要树种胸径和地径分布用正态分布函数拟合效果最好,β分布次之,Weibull分布、Γ分布和对数正态分布拟合效果不理想。水松中老龄径材较多,伴生树种以中小径阶林木为主,正态分布参数与林分直径呈显著线性关系,用林分特征因子预估正态分布参数值十分理想。②运用“空间代时间”方法,以胸径结构代替年龄结构分析水松种群结构特征,结果表明年龄结构为倒金字塔型,呈现大树过熟、幼龄木数量极少,种群天然更新差的现象,说明该种群属于衰退型,稳定性差严重影响种群发展,年龄结构与水松生物学特性及其生境条件有关。③以种群生命表及生存分析理论为基础,运用“横向代纵向”方法编制水松种群静态生命表,分析各龄级个体死亡数量、存活率及后代生长趋势,绘制种群存活曲线、死亡率曲线、死亡密度曲线、危险率函数曲线。水松种群存活曲线属于Deevey-Ⅲ型,反映了水松种群数量动态变化趋势。死亡密度函数与危险率动态变化规律基本一致,累计死亡率单调递增,生存率单调递减,累计死亡率和生存率上升或下降幅度均表现出前高后低,死亡密度函数表现出死亡个体数随着龄级曲线起伏,呈现两端高、中间低趋势。④应用谱分析方法揭示水松种群更新动态过程及其稳定性特征,结果表明水松种群天然更新过程通过不同龄级的株数分布波动表现,呈现出大周期内有小周期的多谐波迭加特征。基波A1 = 1.752最大,反映了水松种群最基本的周期波动,小周期波动性与高生长特性基本一致。⑤运用聚集度指标法、Iwao方程评价水松种群空间格局及其动态变化规律,结果表明水松种群空间格局呈聚集分布,形成机制与样地所处的地理环境关系密切。不同取样尺度下的分布格局变化研究表明,不同取样单元上,水松种群均表现为集群分布,且在25 m~2取样单元上聚集度最高。⑥运用有限空间种群增长的逻辑斯谛模型探讨水松种群基面积增长规律,通过改进单纯型法进行最优拟合。研究结果表明,洪-Logistic新模型比其它种群增长模型更符合水松种群实际增长趋势。该模型残差平方和Q为1.7831,内禀增长率为0.7604,特征返回时间Tr为1.3116径级年,最大增长速率出现在第8径级,即胸径为48~54 cm时期,平衡位置在环境容量为58.1991 m~2/hm~2处。可见水松种群增长较慢,平衡性脆弱,受破坏后恢复时间较长。⑦采用Lotka-Volterra竞争模型研究种间竞争关系,水松及其伴生树种优势度分别为63396 cm~2·hm~(-2)和15877 cm~2·hm~(-2),相对优势度分别为79.97 %和20.03 %,竞争系数达0.8231,种内竞争大于种间竞争。预测平衡时水松与伴生树种的相对优势度分别为69.21%和30.79%,呈现共优状态,说明群落相对稳定,但有逐渐被伴生树种取代趋势。⑧运用R型聚类分析方法对水松种群的25个数量性状进行聚类分析,探讨水松数量性状间的相互关系及其对水松生长、遗传及经济性状的影响。结果表明:水松材积与树高、冠长、胸径等性状呈显著正相关,生长性状与光合作用面积有关;树高是决定材积的第一要素;水松在干形遗传、自然整枝性方面的遗传性较为稳定。⑨将分形理论与地统计学原理相结合,计算水松不同种源树高和胸径生长的分形维数,揭示其空间分布变异规律和分形特征。结果表明,水松不同种源胸径、树高生长特性的分维值分别为1.635和1.824,胸径分维值小于树高分维值。为反映水松种源的空间差异性,在评价水松种源时应选取胸径生长指标。
     人工种群方面:①运用5种概率分布模型对斗门水松人工同龄纯林种群直径分布进行拟合,比较不同概率分布的拟合效果,探讨其直径结构特征。结果表明,水松人工林中小径阶的林木占多数,处于森林发育前期阶段,林分直径呈对称分布,变动范围不大。Weibull分布模型的或然误差值更小,拟合精度更高,为最优拟合模型。变动系数、偏度、峭度等特征值符合人工同龄林生长特点。与天然种群相比,人工同龄纯林表现出特有的直径结构规律,说明不同群落类型、不同密度、不同平均直径和生长阶段的水松种群,其直径分布规律存在差异。②运用回归分析方法,研究各竞争指标与林木胸径生长量的相关关系,在选择适合竞争指标基础上,建立水松人工林单木生长模型。结果表明,林木间距离对单木生长的影响不明显,相对树高、相对冠幅和冠长率与胸径生长量关系密切,是其主要影响因素。分别建立水松人工林相对树高、相对冠幅及冠长率与平均胸高断面积生长量的拟合方程、单木生长模型和林分蓄积量模型,拟合精度高。③运用森林自疏过程中密度变化规律模型,研究水松人工林自然稀疏机制,建立了林分总断面积与种群密度关系模型、单株材积与种群密度关系模型、种群自然稀疏规律模型,回归拟合精度高,可应用于指导水松人工林经营过程的密度管理与密度控制。④拟合水松树高胸径曲线方程,较好反映了树高与胸径的正相关性。运用Weibull分布能较好地拟合胸径和树高分布,建立的树高Weibull分布模型拟合效果良好,能进一步对树高生长进行预测。⑤探讨了水松人工林群落稳定性,阐述了斗门水松林保护现状,提出相应的保护措施。
     (3)采用ISSR分子标记技术对水松主要分布区的8个种群共136个体进行遗传多样性分析。用10条随机引物共检测到95个扩增位点,其中多态位点37个,多态位点百分率(P)为38.95%。与其它濒危裸子植物相比,水松在种群水平和物种水平都具有较低的遗传多样性。不同种群间遗传多样性差别较大,多态位点百分率(P)、Nei’s基因多样度(He)、Shannon信息指数(I)的平均值分别为33.56%、0.1078、0.1902,He和I大小变化趋势与P大致相同;物种水平Ae、P、He和I分别为1.2819、38.95%、0.1608、0.2360。各种群间基因分化系数G_(ST)为0.3982,基因流Nm仅0.3778,表明水松种群间存在一定程度的遗传分化,但种群内个体间变异在其遗传变异中占主导地位,UPGMA聚类分析反映出水松种群遗传距离与地理距离存在正相关性。水松具有较低的遗传多样性水平,与其地理环境与气候变迁以及人为活动干扰密切相关。人工种群遗传多样性明显低于天然种群,种群间遗传分化不如天然种群强烈。4个天然种群的P、He、I平均值分别为39.32%、0.1499和0.2202,远远高于人工种群平均值26.98%、0.1113和0.1558,天然种群遗传分化系数及平均遗传距离(G_(ST) = 0.4513,D = 0.0301)明显高于人工种群(G_(ST) = 0.2836,D = 0.0192)。遗传多样性时空变异研究表明,在一定范围内,水松种群遗传多样性随年龄增长而增加,随海拔升高而增加。基于水松种群遗传学和生态学的研究结果,提出应加大对遗传多样性高的水松种群保护力度,加强水松种群间基因交流,以最大限度地保存水松资源的遗传多样性。
     (4)运用扦插繁殖技术,探讨不同激素种类、激素浓度、处理时间、不同扦插基质及插穗的选择等因素对水松扦插生根率及生根性状的影响,建立较好的水松扦插繁殖体系,为水松无性系规模化生产提供技术保障。总结出水松扦插繁殖的最佳技术组合:于3月初选择生长健壮、母株年龄相对小的水松植株,取枝条基部1 a生以上枝条制穗,去除下部叶片,并使切口平滑下斜且靠近节基部,插条长度约8~12 cm,保留顶芽及少量侧枝,随采随插随处理,剪好的插条要下部齐整捆好,放入0.3%的多菌灵药液中进行消毒,用浓度为150 mg/L的ATB1浓液浸泡插穗2 h;扦插于泥炭土∶珍珠岩(2∶1)混合基质,株行距为3 cm×4 cm,扦插深度以顶端留3~4 cm为准,插后及时浇水、防晒、杀毒、灭菌。采用本技术,水松扦插生根率可达39.89%。从繁殖过程中播种苗生长过程探讨水松幼苗生长规律,利用Logistic方程拟合水松播种苗苗高、地径生长节律,相关指数均在0.95以上。水松苗高生长量遵循“S”型规律,地径生长量变化与苗高呈现正相关。
     (5)通过宏观和微观方面综合研究,阐述水松濒危特征及生态适应性,揭示其濒危机制。水松濒危是各方面因素综合作用的结果,是时间和空间长期的渐变过程。从现象上看可能是人类活动造成的生境片断化,滥砍滥伐导致水松数量减少,实质上是其演化过程中气候剧烈变化、遗传多样性低下、生境破坏、生态因子胁迫和树种竞争等多因素综合结果。水松濒危原因表明,该物种的保护是一个复杂系统工程,应综合考虑各种因素对其造成的影响,全面系统地开展水松珍稀资源的保护与恢复工作。
Glyptostrobus pensilis(Staunt.)Koch,now unique in the Glyptostrobus,is at the risk of becoming extinct in the wild.It has been listed as a first-class threatened plant species,one of handful species of highest conservation concern in China.As a living fossil plant,G. pensilis was widely distributed in the Northern Hemisphere.After the Quaternary glaciation,because of natural geographical factors and human activities,majority populations have extincted except Southeast China.G. pensilis has important scientific value in many research fields such as the phylogenesis of family Taxodiaceae,paleobotany and the Quaternary glacial climate.Dues to the climatic change,human interference,habitat destruction,succession pressure and other factors,the distribution range of G. pensilis is still shrinking and become isolated and scattered.The population size are decreasing sharply,G. pensilis is in danger of extinction.How to protect rare gene resources,and expand population size of G. pensilis becomes an urgency matter.Therefor,research on conservation biology and recovery assessment of G. pensilis aims to provide necessary data for the establishment of scientific and effective conservation strategy for this endangered species.
     This study focus on nature geographic distribution,population quantitative characteristics,genetic diversity and cutting propagation technique of G. pensilis systematically and comprehensively from the views of population ecology,reproductive ecology and conservation genetics.Research on population ecology and quantitative characteristics could reveal population structure,dynamic law and trends of evolution of G. pensilis.ISSR markers was used to detect genetic diversity and genetic composition of wild and artificial G. pensilis populations to compare the differences of genetic diversity and genetic structure between wild and artificial G. pensilis populations,evaluate recovery genetic consequences of G. pensilis.The seedling growth rule was discussed through experiment of sowing,and the cuttage propagation techniques of G. pensilis was also explored by testing various factors.The endangered mechanism of G. pensilis was discussed and some suggestions on species recovery and conservation strategies were provided.The conclusions are as follows:
     (1)The relationship between geographical distribution and climate factors was discussed using relation index of vegetation and climate.In China,G. pensilis was disconnectedly distributed in Pearl River delta,the middle and lower reaches of Changjiang River and Minjiang River.It mainly distributed in north latitude 13°21'~37°36' and longitude 102°40'~121°29',in the altitude ranged from 25 m to 2000 m.It requires moist but well drained soil and a warm,sunny position,where annual mean temperature varied from 12.10℃~22.60℃,the annual mean precipitation varied from1199.60 mm~2231.00 mm,the annual mean relative humidity varied from 62.00%~82.00% and the annual average sunshine hours varied from 1589.20 h~2781.60 h.Low temperature,humidity,high temperature,sunlight and precipitation were the most important factors that affect the distribution of G. pensilis.
     (2)By using the principles and methods of population ecology,the population structure and dynamic law of G. pensilis were analyzed.
     Several aspects were discussed about the wild populations.①Five probability models were applied to analyze the structure features on diameter distribution of main tree populations in G. pensilis forest.The results showed that normal distribution model was the best fitness to express the structure of diameter distributions of G. pensilis population,which suggested that the range of diameter distributions were wider and the number of mid-size wood was in the majority.The fitting effect of Weibull distribution model,Γdistribution model and lognormal distribution model were not so perfect.There was obvious linear relationship between the parameters of normal distribution and tree diameter,and the model was effective by using forest characters to forecast the parameter values of normal distribution.②The population age structure characteristic of G. pensilis was studied using space for time method.The result showed that populations had opposite pyramid age structure,which had abundant old trees,relatively few seedlings and young trees.The age structure of G. pensilis in the community was declining,and ability to resist disturbance and regenerate was weak.Biological characteristics and habitat conditions were the critical elements for the age structure of G. pensilis.③In order to determine the population state of G. pensilis,analyze its past population structure and pre-disturbance situation and forecast its future population dynamics,the population life table were analyzed by space deducing time method.The static life table,survivorship curve,mortality rate curve and danger rate were compiled using the diameter at breast height class to represent the age class structure and smooth out technique.The survival cure of the population belonged to the type of Deevey-Ⅲ,and the dynamics trend showed that the mortality rate of population was high in early age,while the accumulative mortality and livability had emerged after the former high-low trend.The death density function had emerged high on edges and low in the center.④Spectral analysis of the population dynamics was made to revel the renewal process and stability of G. pensilis.The natural renewal process of G. pensilis population could be represented by the fluctuation of trees number distribution in different age grades . The natural renewal of G. pensilis indicated harmonics superposition characteristics,which large cycle contains small cycle.Minor cycle was coincident with the periodic fluctuation of annual growth of G. pensilis.⑤The spatial distribution pattern of G. pensilis population was determined using for aggregate indices and Iwao’s equation,and the causes of the evolved pattern was also determined.The results showed that the spatial distribution of G. pensilis population presented an aggregating distribution,and the degree of diffusion was related to the different habitats.The effects of different scales showed the highest aggregating intensity when quadrat was 25 m~2.⑥The growth law of basic area of G. pensilis population was studied by the methods of Logistic model.And a new model was optimized from the modified simplex method.The optimized results showed that the Hong-Logistic model was more suitable than other models to simulate the actual growth trend of G. pensilis population.The residual sum of squares was 1.7831,and the intrinsic growth rate was 0.7604,and the Tr value was 1.3116 diameter class year.The highest growth rate of basal area was the eighth age classes,namely the phase when breast diameter was 48~54 cm,and the basal area reached 58.1991 m~2/hm~2.It was thus clear that the growth of G. pensilis population was retarded,and it needed long time to recover after suffering damages.⑦The competition of G. pensilis and its associated species were discussed with the Lotka-Volterrra equation.The result showed that dominant degree of G. pensilis and its associated species was 63396 cm~2·hm~(-2) and 15877 cm~2·hm~(-2),respectively.Interspecific competition modulus was 0.8231 by calculating importance value.The relative dominant degree of G. pensilis and associated species was 69.21% and 30.79% respectively when reaching their balance.The mixed trees could jointly dominate this community,and the whole community was controlled by G. pensilis population.But the number of G. pensilis would be constantly decline.⑧The method of R-cluster analysis was used to analyze the 25 quantitative traits cluster of G. pensilis population and the interaction of the quantitative traits.The quantitative traits’infection to growth,heredity and economic character of G. pensilis were also discussed.The results showed that the volume and tree height,crown length,diameter at breast height were significantly correlated.The growth traits were correlate with photosynthesis area,and tree height was the first element of volume,and the heredity was stable in tree shape and self-pruning.⑨The DBH and tree height mean growth of G. pensilis from different provenances were studied by combining geographical statistical methods with fractal theory.The fractal dimensions of DBH and tree height growth of G. pensilis were calculated in order to revealed the rule of spatial distribution variation.The results showed that the fractal dimensions of DBH and tree height were 1.635 and 1.824, respectively.The fractal dimensions of DBH was lower than fractal dimensions of tree height.The diameter breast height should be selected as evaluating indicator of different provenances.
     Several aspects were discussed about artificial population.
     ①Five probability models were applied to analysis the structure feature on chest height diameter distribution of G. pensilis-aged and pure plantation.The results showed that the majority were middle and small diameter class.The population was currently in the primary stage of forest development,the symmetrical distribution of diameter change within a certain range.Weibull distribution model was the best fitting model for the smaller error probability and more accurate fitting.The eigenvalue such as coefficient of variation,skewness,kurtosis consistent with the characteristics of the artificial aged and pure plantation.The artificial population embodied special law on diameter distribution compared to natural populations.It showed that the populations different in communities,density,average diameter and growth phase had differences in diameter struture feature.②The interrelated relation between competitive index and growth of breast-height diameter was analyzed with method of regression analysis.The competitive index reflecting objectively the competition and growth pattern of G. pensilis plantation was selected,and stand growing models were established.The results showed that the relationship between diameter growth and distance was very weak,the main key elements composing competition index were relative tree height,relative crown and rate of crown length.The individual tree growing models can fitting the grow rule of G. pensilis accurately.The factors such as average height,average breast diameter,growing stock of sub-compartment and basal area would be estimated by using the growth model and estimation methods.③The self thinning model of G. pensilis population was studied by regression analysis.The relationship between total stand basal area and population density,and the relationship between singleplant volume and population density were also studied.The accuracy of models were significantly high and had a good prospect in plantation management density control.④In order to forecast accurately height of each diameter class of G. pensilis,the height-diameter model was established.The Weibull function was chosen to develop height-diameter models.By verified,this equation might be applied to estimate the tree height growth of G. pensilis.⑤The community stability of G. pensilis was discussed and conservation strategy was suggested according to the protection status of G. pensilis artificial population in Doumen.
     (3)Samples from the main distribution regions of G. pensilis were analyzed by ISSR(Inter simple sequence repeats)molecular marker.10 ISSR primers were used to amplify 136 individuals of 8 populations,a total of 95 discernible DNA fragments were detected.Of these,37(P = 38.95%)were polymorphic loci , which indicated that very low level of genetic variation existed in the populations.The difference of the genetic diversity among all the populations was evident.The percentage of polymorphic loci(P),Nei’s gene index(He)and Shannon information index(I)were 33.56%、0.1078 and 0.1902,while those at the species level averaged 38.95%、0.1608 and 0.2360,respectively.Moreover,the genetic differential index(G_(ST) = 0. 3982)indicated that there was strong genetic differentiation among populations.The dendrograms of genetic relationships among populations was constructed based on Nei’s genetic distance.The mean genetic parameters of wild populations(P = 39.92%,He = 0.1499,I = 0.2202)were much higher than artificial populations(P = 26.98%,He = 0.1113,I = 0.1558).Coefficient of gene differentiation and genetic distance of wild populations(G_(ST) = 0.4513,D = 0.0301)were much higher than artificial populations(G_(ST) = 0.2836,D = 0.0192).The change of genetic diversity had obvious positive correlation with population age and elevation in specific limit.The results indicated that although the quantity has been successfully restored,the genetic diversity and genetic structure of G. pensilis have not recovered appropriately,given the loss of genetic variation and low genetic diversity in artificial populations.The combined results of the analysis of population genetic structure and community investigation suggested that establishing a conservation spot in the optimal habitat of G. pensilis,and to cross-transplant adult plants or seedlings mutually among populations in order to enhance the gene flow.By these means,the genetic diversity resources of the species can be preserved to the greatest extent.
     (4)The cuttage propagation techniques of G. pensilis was explored by testing various factors including hormone types,soaking time,medium and concentrations and cuttings.The best way for cottage of G. pensilis was that cuttings came from the top part of 1-years-old branch,cuttings soaked in ATB1 150 mg/L solution for 2 h before inserting in the medium with combination of peat∶pearlite = 2∶1,spacing 3 cm×4 cm.The depth of the cutting insert for 3~4 centimeters distance to the top.Water the cuttings in time and keep sunshine resistant,antisepsis,sterilization and so on.The rooting ratio of cutting under these treatments above could reach 39.89%.The tree height and ground diameter growth rhythms of G. pensilis sowing seedling were fitted using Logistic equation to study seedling growth rule.The correlation coefficients was above 0.95.The seedling growth pattern displayed“S”curves for height while ground diameter growth had positive correlation with height. (5)The endangered characteristics,ecological suitability and endangered mechanism of G. pensilis was discussed after macroscopic and microscopic analysis.It was the process of temporal and spatial change and had been resulted from different factors.On the surface,the habitat fragmentation that human activities caused and deforestation was important factors threatened this species.Essentially,it resulted from the comprehensive effects of human activities and natural factors,such as drastic climate changes , low genetic diversity , habitat destruction , ecological stress factors and species competition.The endangered reasons of G. pensilis indicated that species conservation was a complex and systematic project.It should consider all the various factors to carry out the relevant protection and population recovery of G. pensilis systematically and comprehensively.
引文
[1]朱大保.生物多样性与林木育种[J].生物多样性,1994,2(3):157-161.
    [2]王瑞波.中国特有植物南川百合(Lilium rosthornii)保护生物学研究[D].西南大学博士学位论文,2009.
    [3]季维智.保护生物学基础[M].北京:中国林业出版社,2000.
    [4]李晓红.濒危植物黄山梅的保护生物学研究[D].安徽师范大学硕士学位论文,2005.
    [5]洪德元,葛颂,张大明,等.植物濒危机制研究的原理和方法[M].北京:中国科学技术出版社,1995,125-133.
    [6]王伯荪,彭少麟.鼎潮山森林优势种群的数量动态[J].生态学报,1987,7(3):214-221.
    [7]江洪.云杉种群生态学[M].北京:中国林业出版社,1992:8-91.
    [8]吴榜华,藏润国,张启昌,等.东北红豆杉种群结构与空间分布型的分析[J].吉林林学院学报,1993,9(2):l-5.
    [9]张文辉,祖元刚,马克明.裂叶沙参与泡沙参种群分布格局分形特征的分析[J].植物生态学报,1999,12(1):56-58.
    [10]谢宗强,陈伟烈.濒危植物银杉的群落特征及其演替趋势[J].植物生态学报,1999,12(1):48-55.
    [11]洪伟,吴承祯,刘金福,等.闽江流域森林生态研究[M].厦门:厦门大学出版社,2000:50-57.
    [12]肖宜安,何平,李晓红,等.濒危植物长柄双花木自然种群数量动态[J].植物生态学报,2004,(2):252-257.
    [13]吴承祯,洪伟,闫淑君,等.珍稀濒危植物长苞铁杉群落物种多度分布模型研究[J].中国生态农业学报,2004,12(4):167-169.
    [14]郝朝运,张小平,张昱.濒危植物永瓣藤的种群生命表与动态分析[J].林业科学,2009,12(9):189-192.
    [15]李昂,葛颂.植物保护遗传学研究进展[J].生物多样性,2002,10(1):254-262.
    [16]葛永奇,邱英雄,丁炳扬.孑遗植物银杏群体遗传多样性的ISSR分析[J].生物多样性,2003,11(4):276-287.
    [17]李晓东,黄宏文,李建强,等.孑遗植物水杉的遗传多样性研究[J].生物多样性,2003,11(2):100-108.
    [18]王艇,苏应娟,叶华谷.中国特有极度濒危植物猪血木的保护遗传学研究[J].中山大学学报(自然科学版),2005,12(1):304-308.
    [19] Cheng J M,Wang Q F.Genetic variation within the endangered quillwort Caldesia grandis in China as evidenced by ISSR analysis.Aquatic Botany,2005,81(5):22-26.
    [20]哀建国,邱英雄,余久华,等.百山祖冷杉的ISSR分析优化和遗传多样性初步研究[J].浙江大学学报(农业与生命科学版),2005,11(3):101-107.
    [21]穆立蔷,刘赢男.不同地理分布区紫椴种群的遗传多样性变化[J].植物生态学报,2007,31(6):1190-1198.
    [22]樊汝汶,叶建国,尹增芳.鹅掌楸种子和胚胎发育的研究[J].植物学报,1992,4(6):437-442.
    [23]孙凡,章钟成.植物繁殖生态学[J].科学(中文版),1997,8(3):59-62.
    [24]邓自发,谢晓玲,周兴民,等.高寒草甸小嵩草种群繁殖生态学研究[J].西北植物学报,2002,22(2):344-349.
    [25]张大勇.植物生活史进化与繁殖生态学[M].北京:科学出版社,2004.
    [26]孙海芹,李昂,班炜.濒危植物独花兰的形态变异及其适应意义[J].生物多样性,20005,13(5):376-386.
    [27]张文标.濒危植物夏蜡梅(Sinocalycanthus chinensis)繁殖生态与遗传分化研究[D].西南大学硕士学位论文,2007.
    [28]苏建荣.云南红豆杉种群生物学研究[D].中国林业科学研究院博士学位论文,2006.
    [29]于永福.杉科植物的起源、演化及其分布[J].植物分类学报,1995,33(4):362-389.
    [30]于永福,傅立国.杉科植物的系统发育分析[J].植物分类学报,1996,34(2):121-141.
    [31]郑万均.中国植物志(第七卷)[M].北京:科学出版社.1978:299-303.
    [32]李博.水松无性繁殖技术研究[D].南京林业大学博士学位论文,2007.
    [33]呈明川,水松,广西植物,1981,1(3):51-52.
    [34]李发根,夏念和.水松地理分布及其濒危原因[J].热带亚热带植物学报,2004,12(1):13-20.
    [35]傅立国.中国植物红皮书[M].北京:科学出版社,1991:148-149.
    [36] IUCN ISSC Conifers Specialist Group.Conifers status survey and conversation Action Plan [M].Gland,Switzerland and Cambridge,UK:IUCN,1999:102-114.
    [37]徐祥皓.水松的生态及地理分布[J].华南师范学报,1989,32-35.
    [38]韩丽娟,胡玉熹.中国特有植物水松林的生物学特性及其保护[J].长春师范学报,1996,3(2):29-35.
    [39]韩丽娟,胡玉熹,林金星,等.水松生物学特性及保护综述[J].亚热带植物通讯,1997,26(1):43-47.
    [40]王伏雄.水松后期胚胎的发育[J].植物学报,1953,1(2):470-475.
    [41]喻成鸿.水松的苗端结构[J].植物学报,1965,13(1):39-42.
    [42]李林初.水松的细胞学研究[J].广西植物,1987,7(2):101-106.
    [43]王明雷.番荔枝科植物囊瓣木和中国特有植物水松化学成分[D].中国协和医科大学博士学位论文,2000.
    [44]向瑛,郑庆安,张灿奎.水松叶黄酮化合物的研究[J].中草药,2001,32(7):588-589.
    [45] Vikulin S V,Ma Q W,Zhilin S G.On cuticular compressions of Glyptostrobus europaeus(Taxodiaceae)from kaydagul formation(lower miocene)of the central Kazakhstan[J].Acta Botanica Sinica,2003,45(6):673-680.
    [46]斯缨,王炜,龚复俊.水松叶的总黄酮含量研究[J].武汉植物学研究,2003,21(6):547-549.
    [47] Peirce A S.Anatomical interrelationships of the Taxodiaceae and Cupressaceae[J].New Haven,1936.
    [48] Dogra P D.Embryogeny of the Taxodiaceae[J].Phytomorphology,1966,16:125-141.
    [49] Gadek P A,Quinn C J.An analysis of relationships within the Cupresssceae semsu stricto based on rbcL sequences[J].Ann Missouri Bot Gard,1993,80:581-586.
    [50] Tsumura Y,Yoshimura K,Tomaru N.Molecular phylogeny of conifers RFLP analysis of PCR-amplified specific chloroplast genes[J].Theoretical and Applied Genetics,1995,91:1222-1236.
    [51]韩丽娟,胡玉熹,林金星,等.水松的次生韧皮部解剖及其系统位置的讨论[J].植物分类学报,1997,35(6):527-532.
    [52]李春香,杨群.杉科、柏科的系统发生关系研究进展[J].生命科学研究,2002,12(1):432-434.
    [53]徐英宝,余醒.珠江三角洲的水松生长调查[J].华南农学院学报,1980,1(4):107-110.
    [54]庄雪影,彭逸生,何奕雄,等.珠海水松群落及分布现状研究[J].广东林业科技,2006,22(4):13-16.
    [55]李平日,谭惠忠,刘禹,等.广东韶关南华寺水松的年代及生境初步研究[J].热带地理,2004,24(4):321-325.
    [56]吴则焰,刘金福,洪伟.孑遗植物屏南水松种群空间分布格局[J].亚热带农业研究,2008,4(1):36-40.
    [57]吴则焰,刘金福,洪伟.屏南水松天然林主要种群直径分布规律研究[J].林业勘察设计,2008,1:4-8.
    [58]郑世群,刘金福,吴则焰,等.屏南水松天然林主要种群的种间竞争[J].福建林学院学报,2008,28(3):216-219.
    [59]刘金福,洪伟,吴则焰,等.孑遗植物水松(Glyptostrobus pensilis)种群生命表和谱分析[J].武汉植物学研究,2008,26(3):259-263.
    [60]吴则焰,刘金福,洪伟,等.孑遗植物水松(Glyptostrobus pensilis)数量性状间的相关聚类分析[J].北华大学学报(自然科学版),2009,10(4):358-361.
    [61]吴则焰,刘金福,洪伟,等.孑遗植物水松(Glyptostrobus pensilis)种群优势度增长规律研究[J].武汉植物学研究,2009,27(4):387-390.
    [62]欧阳均浩,陈远生,梁荣华.水松栽培技术和防护效能的研究[J].广东林业科技,1991,(3):45-49.
    [63]戴慧堂,李培学,戴天澍,等.水松引种栽培试验初报[J].河南林业科技,1992,(4):9-10.
    [64]茹永强,戴慧堂,乔国壮.珍稀树种水松引种栽培试验研究[J].河南林业科技,1999,19(3):32-33.
    [65]崔艳秋,崔心红.水松种子在受控条件下基质对萌发的影响[J].林业科技,2002,27(5):1-3.
    [66]鲁胜平,张应团,姜高明.鄂西南水松与池杉引种试验初报[J].林业科技,2004,29(1)1-3.
    [67]肖祖钦.水松大田育苗试验[J].林业科技开发,2007,21(1):82-83.
    [68]李博,李火根,王光萍.水松的组织培养与植株再生[J].植物生理学通讯,2006,42(6):1136-1138.
    [69]李昌晓,钟章成.模拟三峡库区消落带土壤水分变化条件下水松幼苗的光合生理响应[J].北京林业大学学报,2007,29(3):23-28.
    [70]史骥清,滕士元,周玉珍.耐水湿树种水松容器育苗技术[J].林业科技开发,2008,22(3):105-106.
    [71]刘金福.格氏栲(Castanopsis Kawakamii Hayata)种群结构与动态规律研究[D].北京林业大学博士学位论文,2004.
    [72]贺庆棠,袁嘉祖,陈志泊.气候变化对马尾松和云南松分布的可能影响[J].北京林业大学学报,1996,18(1):22-28.
    [73]郭泉水,徐德应,阎洪.气候变化对油松地理分布影响的研究[J].林业科学,1995,31(5):393-402.
    [74]倪健,宋永昌.中国青冈的地理分布与气候的关系[J].植物学报,1997,39(5):451-460.
    [75]张清华,郭泉水,徐德应.气候变化对我国珍稀濒危树种珙桐地理分布的影响研究[J].林业科学,2000,36(2):47-52.
    [76]苏建荣.云南红豆杉种群生物学研究[D].中国林业科学研究院博士学位论文,2006.
    [77]向巧萍.中国的几种珍稀濒危冷杉属植物及其地理分布成因的探讨[J].广西植物,2001,21(2):113-117.
    [78] Kira T.On the altitudinal arrangement of climatic zone in Japan[J].Kanti-Nougaku,1984,2:143-147.
    [79]徐文铎.吉良的热量指标及其在中国植被中的应用[J].生态学杂志,1985,3:35-39.
    [80]丁岩钦.昆虫种群数学生态学原理与应用[M].北京:科学出版社,1980:84-124.
    [81]王仁忠,刘晓强,马克平.中国植物生态学研究进展Ⅰ:近十年来中国植物种群生态学研究[J].植物学报,2003,45(增刊):64-66.
    [82]彭少麟,王伯荪.鼎湖山森林群落分析[J].热带亚热带森林生态系统研究,l984,第2集.
    [83]周纪纶,郑师章,杨持,等.植物种群生态学[M].北京:高等教育出版社,1993.
    [84]王伯荪,李鸣光,彭少麟.植物种群学[M].北京:高等教育出版社,1995.
    [85]杜道林,刘玉成,苏杰.茂兰喀斯特山地广东松种群结构和动态初步研究[J].植物生态学报,1996,2:159-166.
    [86]吴承祯,洪伟,蓝斌,等.万木林群落生态学研究Ⅱ:万木林中亚热带常绿阔叶林主要种群生态位研究[J].江西农业大学学报,1996,3:34-37.
    [87]藏润国.林隙动态与森林生物多样性[M].北京:中国林业出版社,1999.
    [88]谢宗强,陈伟,路鹏,等.濒危植物银杉的种群统计与年龄结构[J].生态学报,1999,19(4):523-528.
    [89]朱学雷,安树青,张立新,等.海南五指山热带山地雨林土要种群结构特征分析[J].应用生态学报,1999, 10(6):641-644.
    [90]张文辉,祝元刚,刘国彬.十种濒危植物的种群生态学特征及致危因索分析[J].生态学报,2002,22:1511-1520.
    [91]张跃西,钟章成.亚热带次生常绿阔叶林优势种间的竞争效应与竞争反应[J].应用与环境生物学报,2003,9(4):333-335.
    [92]刘金福.格氏栲(Castanopsis Kawakamii Hayata)种群结构与动态规律研究[D].北京林业大学博士学位论文,2004.
    [93]赵常明,陈庆恒,乔永康.青藏高原东缘岷江冷杉天然群落的种群结构和空间分布格局[J].植物生态学报,2004,28(3):341-350.
    [94]茹文明.濒危植物南方红豆杉生态学研究[D].山西大学博士学位论文,2006.
    [95]杨小林,王秋菊,兰小中.濒危植物大花黄牡丹(Paeonia ludlowii)种群数量动态[J].生态学报,2007,(3):1242-1247.
    [96] Zehren F.The application of the batafuncation for best fit of stem diameter-distributions in inventories of tropical forests Mitt.Bundesforsch.anst[J].Forests-u.Hlozwirtsch. Reinbek,1999,2(4):279-293.
    [97] Bailey R L,Dell T R.Quantifying diameter distributions with the weibull function[J].Forest Science,1973,19:97-107.
    [98] Divid M,Hyink.A generalized framework for projecting forest yield and structure using diameter distributions[J].Forest Science,1983,29(1):85-94.
    [99] Nagelv J,Bining G S.Schatzung der parameter der weibull function zur Generierung[J].Forest Science,1995,9-10.
    [100]孟宪宇.使用Weibull分布对人工油松林直径分布的研究[J].北京林学院学报,1985,1(1):30-39.
    [101] Susan NL.Weibull diameter distributionsfor mixed stands of westenconifer[J].Canada Journal forestry reservation,1983,(13):85-88.
    [102]刘金福,洪伟,樊后保,等.中国珍稀格氏栲林的数量特征[J].应用与环境生物学报,2002,8(1):14-19.
    [103]刘金福,洪伟,林升学,等.格氏栲天然林主要种群直径分布结构特征[J].福建林学院学报,2001,21(4):325-32.
    [104]刘金福,洪伟.格氏栲种群空间格局分布的Weibull模型研究[J].福建林学院学报,1999,19(3):213-215.
    [105]刘金福,江希钿.闽东柳杉人工林直径分布的研究[J].林业勘探设计,1997,12(14):30-35.
    [106]吴承祯,洪伟,陈辉,等.珍稀濒危植物青钩栲种群数量特征研究[J].应用生态学报,2000,11(2):173-176.
    [107] Frost I,Rydn H.Spatial pattern and size distribution of the animal-dispersed Quercus rubur in two spruce dominated forest.Ecological science,2002,7:38-44.
    [108]王立龙,王广林,黄永杰,等.黄山濒危植物小花木兰生态位与年龄结构研究[J].生态学报,2006,26(6):1862-1871.
    [109]汪殿蓓,暨淑仪,陈飞鹏,等.仙湖苏铁种群年龄判断及年龄结构特征[J].应用生态学报,2007,l8(3):476-480.
    [110]张靖媛,李钢铁,崔利强.浑善达克沙地沙地榆种群年龄结构研究[J].安徽农业科学,2009,37(11):5214-5217.
    [111]史小华,刘毅,彭佳龙,等.秦岭冷杉和巴山冷杉种群年龄结构及动态的比较分析[J].东北林业大学学报,2009,37(1):10-14.
    [112]徐学红,于明坚,胡正华,等.浙江古田山自然保护区甜槠种群结构与动态[J].生态学报,2005.25(3):645-653.
    [113]高贤明,王巍,杜晓军,等.北京山区辽东栎林的径级结构、种群起源及生态学意义[J].植物生态学报,2001.25(6):673-678.
    [114] Stewart G H,Rose A B.The significance of life history strategies in the developmental history of mixed beech forest,New Zealand[J].Vegetation,1990,87:101-114.
    [115] Skoglund J,Verwijst T.Age structure of woody apecies population in relation to seed rain,germination and establishment along the river Dalaven,Sweden[J].Vegetation,1989,82:25-34.
    [116] Wretten S.Field and Laboratory Exercises in Ecology[M].London:Edward Arnad Publishers Limited,1980:85-98.
    [117]吴作明,刘文萃.栓皮栎种群数量动态的谱分析与稳定性[J].生态学杂志,2000,19(4):23-26.
    [118]伍业钢,韩进轩.阔叶红松林红松种群动态的谱分析[J].生态学杂志,1988,7(1):19-23.
    [119]洪伟,王新功,吴承祯,等.濒危植物南方红豆杉种群生命表及谱分析[J].应用生态学报,2004,15(6):1109-1112.
    [120]陈远征,马祥庆,冯丽贞,等.濒危植物沉水樟的种群生命表和谱分析[J].生态学报,2006,26(12):4267-4272.
    [121]闫淑君,洪伟,吴承祯,等.丝栗栲种群生命过程及谱分析[J].应用与环境生物学报,2002,8(4)351-355.
    [122] Armesto J J,Casassa I,Dollenx O.Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park,Chile[J].Vegetation,1992,98:13-22.
    [123]张文辉,许晓波,周建云,等.濒危植物秦岭冷杉种群空间分布格局及动态[J].西北植物学报,2005,25(9):1840-1847.
    [124]汤孟平,周国模,施拥军,等.天目山常绿阔叶林优势种群及其空间分布格局[J].植物生态学报,2006, 30(5):743-752.
    [125]吴承祯,洪伟,吴继林,等.珍稀濒危植物长苞铁杉的分布格局[J].植物资源与环境学报,2000,9(1):31-34.
    [126]谢宗强,陈伟烈.银杉种群的空间分布格局[J].植物学报,1999,41(1):95-101.
    [127]刘金福,洪伟.格氏栲种群生态学研究:格氏栲种群空间格局及其动态的研究[J].福建林学院学报,1999,19(2):118-123.
    [128]封磊,洪伟,吴承祯,等.武夷山黄山松群落物种多样性与种群空间格局的研究[J].中国生态农业学报,2004,12(3):16-18.
    [129]蔡冰玲,范海兰,宋萍,等.梅花山自然保护区拟赤杨的空间分布格局[J].亚热带农业研究,2007,3(1):44-48.
    [130] Silvertown JW,Deborah C.简明植物种群生物学[M].李博,董慧琴,陆建忠,译.北京:高等教育出版社,2000:105-172.
    [131]李新运,赵善伦,尤作亮.一种自适应的种群增长模型及参数估计[J].生态学报,1997,17(3):311-316.
    [132]郑元润.红花尔基沙地樟子松种群优势度增长动态及自疏规律的研究[J].武汉植物学研究,1999,17(4):339-344.
    [133]陈存及,陈新芳,董建文,等.半天然杉阔混交林优势种群的增长规律[J].热带亚热带植物学报,2002,10(3):253-257.
    [134] Smith P E.Population dynamic in Daphina and a new model for population growth[J].Ecology,1963,44:651-663.
    [135] Silvertown J W.Introdution to plant population ecology[M].London:Longman,1982,24-97.
    [136]洪伟,吴承祯,林成来,等.龙栖山黄山松种群优势度增长规律研究[J].福建林学院学报,1997,17(2): 97-101.
    [137]张大勇,赵松龄.森林自疏过程中密度变化规律的研究[J].林业科学,1985,21(4):369-373.
    [138]吴承祯,洪伟.用改进单纯型法拟合Logistic曲线的研究[J].生物数学学报,1999,14(1):117-121.
    [139]刘金福,洪伟,李家和,等.格氏栲种群生态学研究Ⅲ:格氏栲种群优势度增长动态规律的研究[J].应用生态学报,1998,9(5):453-457.
    [140]刘金福,洪伟.格氏栲种群优势度增长改进模型的研究[J].植物生态学报,2001,25(2):225-229.
    [141]洪伟,吴承祯,闫淑君.对种群增长模型的改进[J].应用与环境生物学报,2004,10(1):23-26.
    [142]洪伟,吴承祯.马尾松人工林经营模式及其应用[M].北京:中国林业出版社,1999.
    [143]王伯孙.植物群落学[M].北京:高等教育出版社,1987,66-80.
    [144]王伯孙.鼎湖山森林优势种群数量动态[J].生态学报,1987,7(3):214-221.
    [145]赵学农.哀牢山木果石栎林种群调节与竞争的初步研究[J].植物生态学与地植物学学报,1991,15(2):183-189.
    [146]刘金福,洪伟.格氏栲群落生态学研究Ⅱ:格氏栲林主要种群的竞争研究[J].福建林学院学报,1998,18(1):24-27.
    [147]蔡庆明,刘天泉,陈辉,等.闽北次生常绿阔叶林优势种竞争的研究[J].福建林学院学报,1994,14(2):133-137.
    [148]吴承祯,洪伟.长苞铁杉群落种间竞争的研究[J].西北植物学报,2001,21(1):154-158.
    [149] Bi H.Competition in mixed stands of Pinus radiata and Eucalyptus obliqa [J ].Journal of Applied Ecology,1996,33(1):87- 99.
    [150]吴承祯,洪伟,陈辉,等.珍稀濒危植物青钩栲种群数量特征研究[J].应用生态学报,2000,11(2):173-176.
    [151]李顺文,徐东生.池杉数量性状间的相关聚类分析[J].湖北林业科技,1996,1:16-19.
    [152]鲁旭东,李顺文,徐东生,等.水杉数量性状间的相关聚类分析[J].四川林业科技,1997,18(1):47-50.
    [153]梁一池.福建柏数量性状间的相关聚类[J].林业科技通讯,2002,11(4):14-17.
    [154]洪伟,吴承祯.杉木种源胸径生长地理变异规律的研究[J].植物生态学报,1998,22 (2):186-192.
    [155]吴承祯,洪伟.杉木数量经营学引论[M].北京:中国林业出版社,2000:100-114.
    [156]洪伟,吴承祯.杉木种源高径生长空间变异及其分形特征[J].福建林学院学报,2001,21(2):97- 100.
    [157]刘金福,洪伟,吴承祯.中亚热带几种珍贵树种林分土壤团粒结构的分维特征[J].生态学报,2002,22(2):197-205.
    [158]林成来,洪伟,吴承祯.马尾松人工林生长模型的研究[J].福建林学院学报,2000,20(3):227-230.
    [159]江希钿,杨主泉.闽北天然阔叶林生长模型的研制及应用[J].武汉植物学研究,2003,21(3):221-225.
    [160]黄家荣.马尾松人工林单木竞争指标及生长模型研究[J].林业科技,2001,26(3):1-4.
    [161]邵国凡.红松人工林单木生长模型的研究[J].东北林业大学学报,1985,13(3):38-46.
    [162]吴承祯,洪伟.杉木林自疏过程密度调节规律的研究[J].热带亚热带植物学报,2000,8(1):28-34.
    [163] Yoda K,Kira T.Self-thinning in overcrowded pure stands under cultivated and natural conditions[J].J.Biol Osaka City University,1963,14:107-129.
    [164]曾德慧,姜凤岐,范志平,等.沙地樟子松人工林自然稀疏规律[J].生态学报,2000,20(2):235-242.
    [165] Reineke L H.Perfecting a stand-density index for even-aged forests[J].J Agri Res,1933,46:627-638.
    [166]吴承祯,洪伟.用遗传算法改进约束条件下造林规划设计的研究[J].林业科学,1997,32(2):1332-1411.
    [167]马友平.日本落叶松人工林林分结构与生长量预测研究一一以长岭岗林场为例[D].北京林业大学博士学位论文,2007.
    [168]曾翀,雷相东,刘宪钊落叶松云冷杉林单木树高曲线的研究林业科学研究2009,22(2):182-189.
    [169]孟宪宇.测树学[M].北京:中国林业出版社,2004,12:41-244.
    [170]盛炜彤.人工林的生物学稳定性与可持续经营[J].世界林业研究,2001,14(6):14-21.
    [171]黄建辉,韩兴国.生物多样性和生态系统稳定性[J].生物多样性,1995,3(1):31-37.
    [172]王国宏.再论生物多样性与生态系统的稳定性[J].生物多样性,2002,10(1):126-134.
    [173]冯耀宗.物种多样性与人工生态系统稳定性探讨[J].应用生态学报,2003,14(6):853-857.
    [174]刘增文,王乃江,李雅素,等.森林生态系统稳定性的养分原理[J].西北农林科技大学学报(自然科学版),2006,34(12):129-134.
    [175]曾德慧,姜凤岐,范志平,等.樟子松人工固沙林稳定性的研究[J].应用生态学报,1996,7(4):337-343.
    [176]于宁楼.关于大面积营造集约经营人工林病虫害影响的探讨[J].林业资源管理,1997,5:46-52.
    [177]余波,李守剑,李贤伟.人工林地力衰退研究[J].四川林勘设计,2005,2:6-12.
    [178]李文军等译.保护世界的生物多样性,《生物多样性译丛(一)》(中国科学院生物多样性委员会)[M],中国科学技术出版社,1992,1-199.
    [179]相宁,洪焰.扩增片段长度多态性技术及其在植物研究中的应用[J].植物生理学通讯,2000,36(3):236-240.
    [180] Martin J,Lechowicz T,Graham B.The ecology and genetics of fitness in forest plantsⅡ:Microspatial heterogeneity of the edaphic environment[J].Journal of Ecology,1991,79:687-696.
    [181]陈灵芝.中国的生物多样性现状及其保护对策.北京:科学出版社,1993.
    [182]苗作云.濒危植物沉水樟及其近缘种的遗传多样性分析[D].福建农林大学硕士学位论文,2006.
    [183]周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005.
    [184]张德水,董伟.用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记遗传连锁框架图[J].科学通报,1997,42(12):1326-1330.
    [185] Kojima T,Nagaoka T,Noda K,et al.Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers[J].Theoretical and Applied Genetics,1998,96(1):37-45.
    [186] Sanka A A,Moore G A.Evaluation of inter-simple sequence repeat analysis for mapping in Ctrus and extension of the genetic linkage map[J].Theoretical and Applied Genetics,2001,102(2):206-214.
    [187]易克,徐向利,卢向阳,等.利用SSR和ISSR标记技术构建西瓜分子遗传连锁图谱[J].湖南农业大学学报(自然科学版),2003,29(4):333-337.
    [188] Ratnaparkhe M B,Tekeoglu M,Muehlbauer F J.Inter-simple-sequence-repeat(ISSR)polymorphisms are useful for finding markers associated with disease resistance gene cluters[J].Theoretical and Applied Genetics,1998,97(4):515-519.
    [189] Fang D Q,Krueger R R,Roose M L.Phylogenetic relationship among selected Citrus germplasm accessions revealed by inter-simple sequence repeat(ISSR)markers[J].J Amer Soc Hort Sci,1998,123(4):612-617.
    [190] Prevost A,Wilkinson M J.A new system of comparing PCR primers applied to ISSR fingerprinting of patato cultivars[J].Theoretical and Applied Genetics,1999,98:107-112.
    [191]邱英雄,傅承新,何云芳.乐昌含笑不同类型鉴定的ISSR-PCR分析[J].林业科学,2002,38(6):49-52.
    [192]宣继萍,章镇.苹果品种ISSR指纹图谱的构建[J].果树学报,2002,19(6):421-423.
    [193]李进波,牟同敏,方宣均.12个水稻光温敏核不育系的ISSR标记鉴定及遗传分析[J].科学通报,2002,18(1):6-9.
    [194]孙岳,李景鹏,金元昌,等.南、北五味子ISSR鉴别研究[J].中医药学报,2003,31(1):29-30.
    [195] Scarano M T,Abbate L,Ferrante S.ISSR-PCR technique:a useful method for characterizing new alloteteraploid somatic hybids of mandarin[J].Plant Cell Reports,2004,20(12):1162-1166.
    [196] Wolfe A D , Xiang Q Y , Kephart S . Diploid hybrid speciation in Penstemon (Scrophularianceae)[J].Proc Natl Acad Sci USA,1998,95:5112-5115.
    [197] Eiadrhong W,Yonemori K,Sugiura A,et al.Identification of mango cultivars of Thailan and evaluation of their variation using the amplified frangments by simple sequence repeat(SSR)-anchored primers[J].Sci Hort,1999,82:57-66.
    [198] Lanham P G,Korycinska A,Brennan R M.Genetic diversity within a secondary gene pool for Ribes nigrum L. revealed by RAPD and ISSR markers[J].J Hort Sci Bioych,2000,75(4):371-375.
    [199] Olemons G.Diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers[J].Journal of the American Society for Horticultural science,2001,126(3):309-317.
    [200]邱英雄,傅承新.杨梅不同品种的ISSR分析[J].农业生物技术学报,2002,10(4):343-345.
    [201] Ayala F J,Kiger J A.Modern Genetics[M].Menlo Park:Benjamin-Cummings,1984.
    [202]李巧明.龙脑香科两种濒危植物的保护遗传学研究[D].中国科学院研究生院博士学位论文,2002.
    [203]李媛媛.水杉的系统发育地位及恢复评价[D].华东师范大学博士学位论文,2006.
    [204] Agostini G,Echeverrigaray S,Chies T S.Genetic relationships among South American species of Cunila D. Royen ex L. based on ISSR[J].Plant Systematics and Evolution,274(3):135-141.
    [205]李英豪.福建香蕉种质资源遗传多样性的RAPD分析[D].福建农林大学硕士学位论文,2007.
    [206]沈永宝,施季森,赵洪亮.利用ISSR DNA标记鉴定主要银杏栽培品种[J].林业科学,2005,41(1):202-204.
    [207]彭云滔,唐绍清,李伯林,等.野生罗汉果遗传多样性的ISSR分析[J].生物多样性,2005,13(1):36-42.
    [208] Kojma T,Nagaoka T,Noda K.Genetic linkage map of ISSR and RAPD markers in Einkom wheat in relation to that of RFLP markers[J].Theor Appl Genet,1998,96:37-45.
    [209] Yeh E C,Yang R C,Boyle T B,et al.Popgene,the user-friendly shareware for population genetic analysis[M].Molecular Biology and Biotechnology Center,University of Alberta,Edmonton,Alberta,Canada,1997.
    [210]张德全,杨永平.几种常见分子标记遗传多样性参数的统计分析[J].云南植物研究,2008,30(2):159-167.
    [211]张玉荣,罗菊春,喻锦秀.资源冷杉遗传多样性的ISSR分析[J].北京林业大学学报,2007,29(6):41-46.
    [212] Ge Y Q,Qiu Y X,Ding B Y,et al.An ISSR analysis on population genetic diversity of the relict plant Ginkgo biloba [J].Biodiversity Science,2003,11(4):276-287.
    [213]张宏意,陈月琴,廖文波.南方红豆杉不同居群遗传多样性的RAPD研究[J].西北植物学报,2003,23(11):1994-1997.
    [214]王燕,唐绍清,李先琨.濒危植物元宝山冷杉的遗传多样性研究[J].生物多样性,2004,12(2):269-273.
    [215] Tian S,Luo L C,Ge S.Clear genetic structure of Pinus kwangtungensis(Pinaceae)revealed by a plastid DNA fragment with a novel minisatellite[J].Ann Bot,2008,102(1):69-78.
    [216]王峥峰,彭少麟,任海.小种群的遗传变异与自交衰退[J].植物遗传资源学报,2005,6(1):101-107.
    [217] Nybom H,Bartish I.Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants [J].Perspectives in Plant Ecology,Evolution and Systematics,2000,3(2):93-114.
    [218] Li F G,Xia N H.Population structure and genetic diversity of an endangered species,Glyptostrobus pensilis(Cupressaceae).Botanical Bulletin of Academia Sinica(Taipei),2005,46,155-162.
    [219] Hutchison D W,Templeton A R.Correlation of pairwise genetic and geographic distance measures:inferring the relative influences of gene flow and drift on the distribution of genetic variability[J].Evolution,1999,53(6):1898-1914.
    [220] Li Y Y,Chen X Y,Zhang X,et al.Genetic differences between wild and artificial populations of Metasequoia glyptostroboides[J].Conservation Biology,2005,19(1):224-231.
    [221] Gomory D.Effects of stand origin on the genetic diversity of Norway spruce(Picea abies Karst)populations[J].Forest Ecology and Management,1999,54:215-223.
    [222] Rajora O P.Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce[J].Theoretical and Applied Genetics,1999,99:954-961.
    [223] Fan X X,Shen L,Zhang X.Assessing genetic diversity of Ginkgo biloba L.(Ginkgoaceae)population from China by RAPD markers[J].Biochemical Genetics,2004,42:269-278.
    [224] Williams S L,Davis C A.Population genetic analyses of transplanted eelgrass(Zostera marina)reveal reduced genetic diversity in south California[J].Restoration Ecology,1996,4:163-180.
    [225]陈小勇.生态恢复过程中的种群遗传学考虑[J].长江流域资源与环境,2000,9:313-319.
    [226] Ledig F T.Founder effects and the genetic structure of Coulter pine[J].Journal of Heredity,2000,(1):89-91.
    [227] Gugerli F,Sperisen C,Buchler U.Haplotype variation in a mitochndrial tandem repeat of Norway spruce(Picea abies)populations suggests a serious founder effect during postglacial re-colonization of the western Alps[J].Molecular Ecology,2001,10:1255-1263.
    [228] Levin D A,Kerster H W.Gene flow in seed plants[J].Evolutionary Biology,1974,7:139-220.
    [229] Epperson B K . Recent advances in correlation studier of spatial patterns of geneticvariation[J].Evolutionary Biology,1993,27:95-115.
    [230]李巧明.龙脑香科两种濒危植物的保护遗传学研究[D].中国科学院研究生院博士学位论文,2002.
    [231]李作洲,龚俊杰,王瑛.水杉孑遗居群AFLP遗传变异的空间分布[J].生物多样性,2003,11(4):265-275.
    [232]刘亚令,李作洲,张鹏飞.猕猴桃自然居群SSR遗传变异的空间自相关分析[J].生物多样性,2006,14(5):421-434.
    [233]穆立蔷,刘赢男.不同地理分布区紫椴种群的遗传多样性变化[J].植物生态学报,2007,31(6):1190-1198.
    [234]李秀玲,陈健,王刚.西北地区红砂种群ISSR遗传变异的空间自相关分析[J].中国沙漠,2008,28(3):468-472.
    [235]王伯荪,李鸣光,彭少麟.植物种群学[M].广州:高等教育出版社,1995.
    [236]高三红,王峥峰,张军丽.鼎湖山厚壳桂(Cryptocarya chinensis)种群遗传多样性[J].中山大学学报(自然科版),2005,44:209-212.
    [237]李建辉,金则新,李钧敏.濒危植物长叶榧不同年龄级遗传多样性的RAPD和ISSR分析[J].浙江大学学报(理学版),2010,3(1):104-111.
    [238]金则新,李钧敏,蔡琰琳.不同海拔高度木荷种群遗传多样性的ISSR分析[J].生态学杂志,2007,26(8):1143-1147.
    [239]李进,陈可咏,李渤生.不同海拔高度川滇高山栎群体遗传多样性的变化规律研究[J].植物学报,1998,40:761-767.
    [240]森下义朗,大山浪雄著,李云森译.植物扦插理论与技术[M].北京:中国林业出版社,1988:380.
    [241]陈辉,刘玉宝,陈福甫.南方红豆杉扦插基质配方优化的研究[J].福建林学院学报,1999,19(4):292-295.
    [242]王广东,李谦盛,吴震,等.不同基质对矮牵牛插穗离体生根的影响[J].植物资源与环境学报,2005,14(2):35-37.
    [243]宋胭脂,王彩虹,何卫国,等.不同扦插基质对番茄成苗的影响[J].北方园艺,2005,12(1):39-42.
    [244]胡琼梅.不同扦插基质对尾叶桉生根的影响[J].西南林学院学报,2006,26(3):76-78.
    [245]赵国锦.不同扦插基质对火棘插穗生根的影响[J].北方园艺,2009(4):191-192.
    [246]兰明.不同基质类型对马尾松扦插生根的影响[J].林业勘察设计,2009,2:124-124.
    [247]姜岳忠,杜华兵,王卫东,等.杨树不同插穗规格及采穗部位育苗试验[J].山东林业科技,2005,156(1):13.
    [248]李永进,丁贵杰,全红梅,等.插穗直径和洗脱处理对马尾松插穗生根的影响[J].中南林业科技大学学报,2008,28(1):104-107.
    [249]董丽芬,程飞,贾彩霞,等.油松插穗母株质量对扦插繁殖的影响[J].西北林学院学报,2008,23(1):96-99.
    [250]敖红,王昆,陈一凌,等.长白落叶松插穗内的营养物质及其对插穗生根的影响[J].植物研究,2002,22(3):301-304.
    [251]傅瑞树,黄琦,孙晓冬,等.南方红豆杉扦插繁殖技术研究Ⅳ:促根剂对扦插穗条生根的影响[J].中国农业生态学报,2005,13(3):179-180.
    [252]王建华,孙晓梅,王笑山,等.母株年龄、激素种类及其浓度对日本落叶松扦插生根的影响[J].林业科学研究,2006,19(1):102-108.
    [253]祁德富,马明呈,李军.4种植物生长激素对大果沙棘温室扦插成活率的影响[J].中国农学通报,2007,23(1):234-236.
    [254] Mumtaz M,Khan M A,Mughal A H.Vegetative propagation of Aesculus indica through stem cuttings treated with plant growth regulators[J].Journal of Forestry Research,2009,20(2):171-173.
    [255]初立业,宏波邵.植物激素在松树离体快繁中的作用[J].生物技术通报,1995,1:6-10.
    [256] Ritchie G A.The commercial use of conifer rooted cuttings in forest:a word overview[J].New Forest,1991,5:247-275.
    [257]祖元刚,张文辉,阎秀峰,等.濒危植物裂叶沙参保护生物学[M].北京:科学出版社,125.
    [258]贺善安,郝日明,汤诗杰.鹅掌揪致濒的生态因素研究[J].植物资源与环境,5(1):l-8.
    [259]陈芳清,谢宗强,熊高明,等.三峡濒危植物疏花水柏枝的回归引种和种群重建生态学报,2006,25(7):1811-1817.
    [260]廖绍忠,周万良.水杉种子萌发试验[J].四川林业科技,1989,10(1):71-74.
    [261]颜海飞,王小兰,胡启明,等.鄂报春亲缘地理学的初步研究[J].热带亚热带植物学报,2005,13(6):526-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700