黑河上游青海云杉林及亚高山草甸土壤呼吸研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从土壤中释放出的CO2被认为是地球碳循环中最大的通量之一,土壤呼吸的微小变化都将对大气中CO2浓度产生巨大的影响,导致全球气候发生变化加剧或减缓,同样的,减少土壤CO2释放量、增加土壤的碳储量可以降低大气中CO2的浓度。研究表明,高纬度和高海拔生态系统对温度升高的响应更为敏感和迅速。祁连山地处青藏、黄土两大高原和蒙新荒漠的交界处,高原生态系统十分脆弱并且对全球气候的变化十分敏感,其独特的陆地生态系统在全球气候和碳收支方面起着重要的作用。
     本文应用Li-8100土壤碳通量自动测量系统对祁连山青海云杉林下和亚高山草甸生长季CO2通量进行野外测定,研究两种不同植被类型通量的时间变化规律及和温湿度等其它环境因子的相关性。获得以下主要结论:
     青海云杉土壤呼吸日变化的结果显示,由于苔藓和枯落物的覆盖均使得地表释放出的CO2通量在土壤呼吸的基础上有所增加,并且在8月份地表向大气中释放的CO2量比6月份多50%左右。6月通量的最大值和近地气温有较好的一致性;在8月份生长季中期,苔鲜表面通量最大值表现出和土壤温度有较好的一致性。
     枯落物表而和去枯落物C02、苔藓表面和去苔藓CO2通量在7月下旬到8月上旬在整个生长季中达到通量的最大值,此时日均地面温度和土壤温度均达到最大值,土壤湿度在8月中旬达到整个生长季的最大值。
     无论是否去除苔藓或枯落物,所测得的CO2通量均与土壤温度和空气温度达到极显著水平,其中苔藓表面和去苔鲜CO2通量与土壤温度的相关性大于和近地气温的相关性,枯落物表面和去枯落物C02与空气温度和土壤温度均表现出较高的相关性,加入土壤含水量和土壤温度共同来解释土壤C02通量的变化,可以提高苔藓表面CO2通量和去苔藓土壤呼吸的变异程度。但是对枯落物表面CO2通量和去枯落物土壤呼吸没有显著影响。
     Van't Hoff模型可以很好地表达土壤CO2通量、CO2总通量和土壤温度和近气温之间的关系,可以解释50%-70%左右土壤呼吸变化。但是土壤湿度和碳通量之间通过线性模型、二次项模型、幂函数模型的模拟均没有显著关系。
     亚高山草甸日变化的结果显示无论是否去掉植物的地上部分,生态系统呼吸和土壤呼吸的最大值均与近气温有很好的同步性。土壤呼吸和生态系统呼吸的最大值在13:00-15:00左右。土壤温度的最大值和土壤湿度的最小值相比较土壤呼吸和生态系统呼吸的最大值有滞后现象。土壤含水量的最小值均出现在17:00左右。土壤呼吸的最小值均出现在凌晨5:00-7:00左右。
     月变化的结果显示:草甸在自然状态下释放出的CO2和刈割测得的土壤呼吸相比要多30%左右。与刈割地上部分的土壤呼吸测量的结果相比,土壤呼吸的最大值提前出现在7月底,平均比刈割的多出36.3%。土壤温度平均值为12.1℃,近地面空气温度平均为15.54℃,比刈割的分别降低1.8%和6.3%,土壤含水量在九月份之前变化不大,平均值为43.7%。比刈割后平均多出1.4%。
     土壤呼吸和空气温度用指数模型和多项式拟合均比较理想,和土壤温度用指数模型拟合若去掉晚上观测结果解释率能提高20%-30%, Q10值显示在生长季随着月份的增加,夜间相同的温度下土壤呼吸的量有增大的趋势。生态系统呼吸与空气温度和土壤温度有显著地相关性并且可以解释生态系统呼吸变异的60%左右,去除夜间观测的结果能提高拟合结果的精度。Q1o值显示升高相同的温度,生态系统放出的CO2的速率要比去除地上部分的土壤呼吸要多。
     土壤呼吸和土壤20cm-60cm的水热状况相关性相对较高,其次为和太阳辐射和由太阳辐射引起的大气状况变化;相对相关性较小的为土壤表层的水热状况因子;生态系统呼吸和太阳辐射及其由于太阳辐射引起的大气状况变化有非常明显的相关性,受到土壤20cm-60cm土壤水热状况的信息,10cm处土壤温度和5cm处土壤湿度土壤表层水热状况的信息的影响相比较不是很大。
Carbon dioxide released from the soil is considered to be one of the largest flux in the carbon cycle of the earth, slight changes of Soil respiration will have an enormous impact on the concentration of CO2in the atmosphere,, exacerbate or mitigate global climate change.Similarly, reducing soil CO2emission and increasing soil carbon storage can reduce the concentration of CO2in the atmosphere. Studies have shown that high-latitude and high-altitude ecosystem is more sensitive and rapid response to the temperature rise. Qilian Mountain is located at the junction of the Qinghai-Tibet Plateau and the Loess Plateau and desert in Inner Mongolia and Xinjiang, plateau ecosystem is fragile and sensitive to changes in the global climate, its unique terrestrial ecosystems play an important role in the global climate and the carbon budget.
     In this paper, CO2flux was measured understory Picea crassifolia forest and sub-alpine meadow in Qilian Mountains using Li-8100Automated Soil CO2Flux System in growing season in the field, Study the temporal variation of the flux and the correlation with temperature and humidity and other environmental factors. For the following main conclusions:
     Diurnal variation of soil respiration in Picea crassifolia forest results show that, CO2flux released from the earth's surface increases on the basis of soil respiration due to the covering of moss and litter and the CO2flux released from the earth's surface into the atmosphere in August is more than50%than that in June.The max flux in June had better consistency with near-Earth temperature; in mid-August growing season, the maximum flux on moss surface had better consistency with soil temperature.
     CO2fluxes on litter surface and cleared litter surface, moss surface and de-moss surface reached the maximum in late July to early August throughout the growing season, at this time, the average near-Earth temperature and soil temperature reached maximum value. Soil moisture reached the maximum value in mid-August during the entire growing season.
     The measured CO2fluxes and soil temperature and air temperature reached a significant level whether or not to remove moss or litter, correlation between CO2flux on the moss surface de-moss surface and soil temperature greater than the temperature of near-Earth,CO2fluxes on litter surface and cleared litter surface showed a high correlation with air temperature and soil temperature. Using soil moisture and soil temperature to explain the changes in soil CO2fluxes common can improve the degree of explanation on moss surface and de-moss surface. But had no significant effect on the CO2flux on the litter surface and cleared litter surface.
     Van't Hoff model can better express the relationship between soil CO2flux, total CO2fluxes and soil temperature, near-Earth temperature, can explain about50%-70%soil respiration. But the simulation between soil moisture and carbon fluxes through the linear model, quadratic model, power function model showed no significant relationship.
     diurnal variation of Subalpine meadow results show whether or not to remove the above-ground parts of plants, the maximum value of ecosystem respiration and soil respiration had good synchronization with near-Earth temperature.Soil respiration and ecosystem respiration reached maximum at about13:00-15:00. Compare the maximum of soil respiration and ecosystem respiration, the minimum of the soil moisture and the maximum of the soil temperature had hysteresis. The minimum of soil moisture was around17:00. The minimum soil respiration was around5:00-7:00am.
     The monthly variation resulted:CO2released in the natural meadow state was30%more comparing with soil respiration which was mowed.Compared with the soil respiration which was removed the above-ground parts of plants, The maximum value of ecosystem respiration in advance at the end of July, with an average of36.3%more than mowing.The average of soil temperature was12.1℃. the average of near-earth air temperature was15.54℃,1.8%and6.3%lower than mowing. Little change in soil moisture before September, an average of43.7%.1.4%more than mowing.
     Index and polynomial model can better expressed the relationship between Soil respiration and air temperature, and the explain rate of soil temperature observations can be improved20%-30%if removed observations at nights when using exponential model.Q10value displayed in the growing season, with the month increased, The amount of soil respiration has a tendency to increase in the same night temperature.Ecosystem respiration have a significant correlation with near-earth air temperature and soil temperature and can be explained60%of the ecosystem respiration variation, removal of night-time observations can improve the fitting accuracy of the results.The Q10value shows that raising the same temperature, the CO2released rate of ecosystem respiration was larger than that of soil respiration.
     Relatively high correlation of soil respiration and the water and heat conditions of soil20cm-60cm layers, followed by solar radiation and atmospheric conditions caused by solar radiation; ecosystem respiration between solar radiation and atmospheric conditions caused by solar radiation have a very clear correlation, and have relatively less effects by the water and heat conditions of surface and20cm-60cm soil layers.
引文
1. 李东.基于CENTURY模型的高寒草甸土壤有机碳动态模拟研究.2011,南京农业大学.
    2. Raich, J. and W. Schlesinger. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus,1992.44B:p.81-99.
    3. Jenkinson, D., D. Adams, and A. Wild.Model estimates of CO2 emissions from soil in response to global warming. Nature,1991.351(6324):p.304-306.
    4. 赵传燕,冯兆东.祁连山区森林生态系统生态服务功能分析——以张掖地区为例.干旱区资源与环境,2002.16(001):p.66-70.
    5. 彭家中,常宗强,冯起.温度和土壤水分对祁连山青海云杉林土壤呼吸的影响.干旱区资源与环境,2008.22(3):p.165-169.
    6. 周华坤,周立,赵新全.青藏高原高寒草甸生态系统稳定性研究.科学通报,2006.51(1):p.63-69.
    7. 赵新全,高寒草甸生态系统与全球变化.2009:科学出版社.
    8. Eswaran, H., E. Van Den Berg, and P. Reich. Organic carbon in soils of the world. Soil science society of America journal,1993.57(1):p.192-194.
    9. Horwath W., K. Pregitzer, and E. Paul,14C allocation in tree-soil systems. Tree Physiol,1994.14:p.1163-1176.
    10. Jin Z., Y. Qi, D. Yunshe, et al. Seasonal patterns of soil respiration in three types of communities along grass-desert shrub transition in Inner Mongolia, China. Advances in Atmospheric Sciences,2009.26(3):p.503-512.
    11. Janssens, I., S. Dore, D. Epron, et al. Climatic influences on seasonal and spatial differences in soil CO2 efflux.2003.
    12. Raich, J. and W. Schlesinger, The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B,1992.44(2):p.81-99.
    13 Qi, Y., M. Xu, and J. Wu, Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget:nonlinearity begets surprises. Ecological Modelling,2002. 153(1):p.131-142.
    14. Sims, P.L. and J. Bradford, Carbon dioxide fluxes in a southern plains prairie. Agricultural and Forest Meteorology,2001.109(2):p.117-134.
    15. Frank A., Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains. Environmental Pollution,2002.116(3):p.397-403.
    16. Li L.H., X.G. Han, Q.B. Wang, et al. Correlations between plant biomass and soil respiration in a Leymus chinensis community in the Xilin River Basin of Inner Mongolia. Acta botanica sinica,2002.44(5):p.593-597.
    17. Scott-Denton L.E., K.L. Sparks, and R.K. Monson, Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry,2003. 35(4):p.525-534.
    18. Epron D., Y. Nouvellon, O. Roupsard, et al. Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. Forest Ecology and Management,2004. 202(1):p.149-160.
    19. Raich, J.W. and A. Tufekciogul, Vegetation and soil respiration:correlations and controls. Biogeochemistry,2000.48(1):p.71-90.
    20. Ohashi, M., K. Gyokusen, and A. Saito, Contribution of root respiration to total soil respiration in a Japanese cedar (Cryptomeria japonica D. Don) artificial forest. Ecological Research,2001.15(3):p.323-333.
    21. Kucera, C. and D.R. Kirkham, Soil respiration studies in tallgrass prairie in Missouri. Ecology,1971:p.912-915.
    22. Coleman, D.C., Soil carbon balance in a successional grassland. Oikos,1973:p.195-199.
    23. 严燕儿,赵斌,郭海强.生态系统碳通量估算中耦合涡度协方差与遥感技术研究进展.地球科学进展,2008.23(8):p.884-894.
    24. Subke, J.A. and J.D. Tenhunen, Direct measurements of CO2 flux below a spruce forest canopy. Agricultural and Forest Meteorology,2004.126(1):p.157-168.
    25. Liang, N., T. Nakadai, T. Hirano, et al., In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch forest. Agricultural and Forest Meteorology, 2004.123(1):p.97-117.
    26. Janssens, I.A., A.S. Kowalski, and R. Ceulemans, Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agricultural and Forest Meteorology,2001. 106(1):p.61-69.
    27. Raich, J. and W.H. Schlesinger, The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B,1992.44(2):p.81-99.
    28. Fan, S.-M., M. Goulden, J. Munger, et al. Environmental controls on the photosynthesis and respiration of a boreal lichen woodland:a growing season of whole-ecosystem exchange measurements by eddy correlation. Oecologia,1995.102(4):p.443-452.
    29. O'Connell, K.E., S.T. Gower, and J.M. Norman, Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems,2003.6(3):p.248-260.
    30. Chimner, R.A., Soil respiration rates of tropical peatlands in Micronesia and Hawaii. Wetlands,2004.24(1):p.51-56.
    31. Sanchez, M., M. Ozores, M. Lopez, et al., Soil CO2 fluxes beneath barley on the central Spanish plateau. Agricultural and Forest Meteorology,2003.118(1):p.85-95.
    32. Davidson, E., E. Belk, and R.D. Boone, Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology,1998.4(2):p.217-227.
    33. Buchmann, N., Biotic and abiotic factors controlling soil respiration rates in< i> Picea abies stands. Soil Biology and Biochemistry,2000.32(11):p.1625-1635.
    34. Pumpanen, J., P. Kolari, H. Ilvesniemi, et al. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology,2004.123(3):p. 159-176.
    35. Lloyd, J. and J. Taylor, On the temperature dependence of soil respiration. Functional ecology,1994:p.315-323.
    36. Thierron, V. and H. Laudelout, Contribution of root respiration to total CO2 efflux from the soil of a deciduous forest. Canadian Journal of Forest Research,1996.26(7):p. 1142-1148.
    37. Fang, C. and J. Moncrieff, The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry,2001.33(2):p.155-165.
    38. Jenkinson, M. and S. Smith, A global optimisation method for robust affine registration of brain images. Medical image analysis,2001.5(2):p.143-156.
    39. Rodeghiero, M. and A. Cescatti, Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology,2005.11(7):p. 1024-1041.
    40. Boone, R.D., K.J. Nadelhoffer, J.D. Canary, et al. Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature,1998.396(6711):p.570-572.
    41. Janssens, I.A. and K. Pilegaard, Large seasonal changes in Q10 of soil respiration in a beech forest. Global change biology,2003.9(6):p.911-918.
    42. Raich, J.W., C.S. Potter, and D. Bhagawati, Interannual variability in global soil respiration,1980-94. Global change biology,2002.8(8):p.800-812.
    43. 韩广轩,周广胜,许振柱.玉米地土壤呼吸作用对土壤温度和生物因子协同作用的响应.植物生态学报.2007.31(3):p.363-371.
    44. 李鸿博,史锟,徐德应.植物过程对土壤有机碳含量的影响.应用生态学报,2005.16(6):p.1163-1168.
    45. Lafleur, P.M., M.R. Skarupa, and D.L. Verseghy, Validation of the Canadian Land Surface Scheme (CLASS) for a subarctic open woodland. Atmosphere-Ocean,2000.38(1):p. 205-225.
    46. Liu, J., J. Chen, J. Cihlar, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote sensing of environment,1997.62(2):p.158-175.
    47. 毛留喜,孙艳玲,延晓冬.陆地生态系统碳循环模型研究概述.应用生态学报,2006.17(11):p.2189-2195.
    48. 王效科,白艳莹,欧阳志云.陆地生物地球化学模型的应用和发展.应用生态学报,2002.13(12):p.1703-1706.
    49. Simunek, J. and D.L. Suarez, Modeling of carbon dioxide transport and production in soil 1. Model development.1993.
    50. Suarez, D.L. and J. Simunek, Modeling of carbon dioxide transport and production in soil 2. Parameter selection, sensitivity analysis, and comparison of model predictions to field data.1993.
    51. Fang, C. and J.B. Moncrieff, A model for soil CO2 production and transport 1::Model development. Agricultural and Forest Meteorology,1999.95(4):p.225-236.
    52. Moncrieff, J.B. and C. Fang, A model for soil CO2 production and transport 2: Application to a florida Pinus elliotte plantation. Agricultural and Forest Meteorology, 1999.95(4):p.237-256.
    53. 金钊,董云社,齐玉春.综论土壤呼吸各组分区分方法.地理科学进展,2006.25(4):p.22-33.
    54. Kuzyakov, Y. and A.A. Larionova, Root and rhizomicrobial respiration:A review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. Journal of Plant Nutrition and Soil Science,2005.168(4):p.503-520.
    55. Dixon, R., S. Brown, and R. Houghton, Carbon pools and flux of global forest ecosystem. science,1994.263:p.185-190.
    56.姜艳.亚热带林分土壤呼吸及其与土壤温度关系的模型模拟.应用生态学报,2010.21(7): p.164 1641-1648.
    57. 陆彬,王j淑华,毛子军.小兴安岭4种原始红松林群落类型生长季土壤呼吸特征.生态学报,2010(15):p.4065-4074.
    58. 施政,汀家社,何容.武夷山不同海拔土壤呼吸及其主要调控因子.生态学杂志,2008.27(4):p.563-568.
    59. 刘颖,韩士杰,胡艳玲.土壤温度和湿度对长白松林土壤呼吸速率的影响.应用生态学报,2005.16(9):p.1581-1585.
    60. 周存宇,周国逸,张德强.鼎湖山森林地表CO-2通量及其影响因子的研究.中国科学(D辑:地球科学),2004(S2):p.175-182.
    61. 罗龙发,王艺林.祁连山青海云杉林温度变化对土壤呼吸的影响.林业科学,2007.43(10):p.117-121.
    62. Bonan, G. and H. Shugart, Environmental factors and ecological processes in boreal forests. Annual Review of Ecology and Systematics,1989.20:p.1-28.
    63. 刘兴聪,青海云杉.1992,兰州:兰州大学出版社.
    64. 王明君,赵萌莉,崔国文.放牧对草甸草原植被和土壤的影响.草地学报,2010.18(6):p.758-762.
    65. 陈妮娜,关德新,金昌杰.科尔沁草甸草地土壤呼吸特征.中国草地学报,2011.33(5):p.82-87.
    66. Stark, S. and M.M. Kytoviita, Simulated grazer effects on microbial respiration in a subarctic meadow:Implications for nutrient competition between plants and soil microorganisms. Applied Soil Ecology,2006.31(1):p.20-31.
    67. Wohlfahrt, G., M Bahn, A. Haslwanter, et al. Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agricultural and Forest Meteorology,2005.130(1):p.13-25.
    68. 常宗强,冯起,司建华.祁连山高山草甸土壤CO2通龄的时空变化及其影响分析.环境科学,2007.28(10):p.2389-2395.
    69. Lin, X., Z. Zhang, S. Wang, et al. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agricultural and Forest Meteorology,2011.151(7):p.792-802.
    70. Li, G. and S. Sun, Plant clipping may cause overestimation of soil respiration in a Tibetan alpine meadow, southwest China. Ecological research,2011.26(3):p.497-504.
    71. 胡宗达,刘世荣,史作民.川西亚高山草甸土壤呼吸的昼夜变化及其季节动态.生态学报,2012.32(20):p.6376-6386.
    72. Zhang, P., Y. Tang, M. Hirota, et al., Use of a regression method to partition sources of ecosystem respiration in an alpine meadow. Soil Biology and Biochemistry,2009.41(4): p.663-670.
    73. Saito, M., T. Kato, and Y. Tang, Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology,2008.15(1): p.221-228.
    74. Gu, S., Y. Tang, M. Du. et al., Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical research,2003.108(D21):p.4670.
    75. Cao, G, Y. Tang, W. Mo. et al. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology and Biochemistry,2004.36(2):p.237-243.
    76. 刘喾梅,黄元仿.应用激光粒度仪分析土壤机械组成的实验研究.土壤通报,2005.36(4):p.579-582.
    77.1下彬,郑粉莉,安娟.激光衍射法与吸管法对东北黑土区土壤粒径分布测定的差异性研究.水十保持通报,2009(002).
    78. 王德,傅伯杰,陈利顶.不同土地利用类巧型下土壤粒径分形分析——以黄土丘陵沟壑区为例.生态学报,2007.27(7):p.3081-3089.
    79. 姜摇艳.亚热带林分土壤呼吸及其与土壤温湿度关系的模型模拟.Chinese Journal of Applied Ecology,2010.21(7):p.1641-1648.
    80. Luo, Y., S. Wan, D. Hui, et al., Acclimatization of soil respiration to warming in a tall grass prairie. Nature,2001.413(6856):p.622-625.
    81. Wan, S. and Y. Luo, Substrate regulation of soil respiration in a tallgrass prairie:results of a clipping and shading experiment. Global biogeochemical cycles,2003.17(2):p.1054.
    82. Hui, D. and Y. Luo, Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach. Global biogeochemical cycles,2004.18(4):p. GB4029.
    83. Gulledge, J. and J.P. Schimel, Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska. Ecosystems,2000.3(3):p.269-282.
    84. Widen, B. and H. Majdi, Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation. Canadian Journal of Forest Research, 2001.31(5):p.786-796.
    85. Van't Hoff, J.H., Etudes de dynamique chimique.1884:F. Muller & Company.
    86. 陈述悦,李俊,陆佩玲.华北平原麦田土壤呼吸特征.应用生态学报,2004.15(9):p.1552-1560.
    87. 冯文婷,邹晓明,沙丽清.哀牢山中山湿性常绿阔叶林土壤呼吸季节和昼夜变化特征及影响因子比较.植物生态学报,2008.32(1):p.31-39.
    88. 卢宁,李晋川,郭春燕.露天煤矿复垦地土壤呼吸的日变化研究——以平朔安太堡露天煤矿排土场为例.山西农业科学,2010.38(004):p.52-54.
    89. 马秀梅,朱波,韩广轩.土壤呼吸研究进展.地球科学进展,2004.19:p.491-495.
    90. 曹建华,宋林华,姜光辉.路南石地区土壤呼吸及碳稳定同位素日动态特征.中国岩溶,2005.
    91. 炅玉环,黄国宏,高谦.苔藓植物对环境变化的响应及适应性研究进展.应用生态学报,2001.12(6):p.943-946.
    92. 施定基,吴鹏程.苔鲜植物光合作用荧光光谱和动力学荧光的比较.植物分类学报,1992.30(004):p.320-330.
    93. Jin, Z., Y.-c. Qi, and Y.-s. Dong, Diurnal and seasonal dynamics of soil respiration in desert shrubland of Artemisia Ordosica on Ordos Plateau of Inner Mongolia, China. Journal of Forestry research,2007.18(3):p.231-235.
    94.黄湘,李卫红,陈亚宁.塔里木河下游荒漠河岸林群落土壤呼吸及其影响因子.生态学报,2007.5.
    95.于贵瑞,温学发,李庆康.中国亚热带和洲带典型森林生态系统呼吸的季节模式及环境响应特征.
    96. 刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温的影响.生态学报,1997.17(5):p. 469-476.
    97. Maier, M., H. Schack-Kirchner, E. Hildebrand, et al. Soil CO2 efflux vs. soil respiration: Implications for flux models. Agricultural and Forest Meteorology,2011.151(12):p. 1723-1730.
    98. Raich, J.W. and C.S. Potter, Global patterns of carbon dioxide emissions from soils. Global biogeochemical cycles,1995.9(1):p.23-36.
    99. Xu, M. and Y. Qi, Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology,2001. 7(6):p.667-677.
    100. Hendriks, D., J. Van Huissteden, and A. Dolman, Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agricultural and Forest Meteorology,2010.150(6):p.757-774.
    101. Riveros-Iregui, D.A., R.E. Emanuel, D.J. Muth, et al. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content. Geophysical Research Letters,2007.34(17).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700