SU(2)线性非自治量子系统的互补混沌及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SU(2)线性非自治量子系统,就是指其哈密顿量为SU(2)生成子的线性泛函而其迭加系数与时间有关。它是具有重要实用价值的时间有关的量子系统。目前非线性科学最重要的成就之一就在于对混沌现象的认识。因此,讨论SU(2)线性非自治量子系统的混沌问题具有一定的理论意义和实用价值。
     利用SU(2)代数动力学方程讨论了SU(2)线性非自治量子系统中的混沌问题,并且发现了一个非常重要而有趣的结果:SU(2)线性非自治量子系统中存在着互补混沌,同时计算了分形图形的记盒维数。
     同时,在此基础上,利用SU(2)代数动力学方程研究了加速器中带自旋离子的极化对磁场的含时无规扰动的稳定性问题,发现:低度极化的系统对磁场无规扰动十分敏感,而高度极化的系统对磁场无规扰动十分稳定;自旋守恒导致自旋的纵向分量的无规涨落和横向分量的无规涨落存在着互补性。这一结果表明,在产生离子束极化的实验中,在离子束低度极化的前期阶段,磁场应具有较高的稳定性,而在离子束极化度较高的后期阶段,磁场的稳定性要求可以放松;自旋的纵向分量的无规涨落和横向分量的无规涨落的互补性有可能用来做成稳定离子极化的负反馈。
The linear SU(2) nonautonomous quantum system means its Hamiltonian is the linear function of SU(2) generators whose coefficients have relation with time. It is a time-dependent quantum system of important practical value. At present, one of the most important achievements of nonlinear sciences consists in the knowledge of chaos. Therefore, it is of certain theoretical significance and practical value to discuss the chaos problem of the linear SU(2) nonautonomous quantum system.
    Based on the equation of SU(2)algebra dynamic, the chaos problem is discussed in the linear SU(2) nonautonomous quantum system. And a very important and interesting result is found that the complementary chaos phenomenon exists in the system. Besides, the box dimension of fractal graph is calculated.
    At the same time, on the basis of above results, the stability problem of the polarization of particle self-spin is discussed in irregular magnetic field of accelerator. The discovery that the low degree polarization system is very sensitive to the irregular magnetic field while the high degree polarization system is very stable is found. The
    
    
    irregular fluctuation of the vertical ponderance is complementary to that of the horizontal ponderance due to the self-spin conservation. These results indicate that the magnetic field should have upper stability when the particle beam is low polarized while the requirement of the stability of the magnetic field can be lowered when the particle beam is high polarized in the experiment of producing the polarization of the particle beam. And the complementariness can be used as a negative feedback to stabilize the polarization of particle.
引文
[1] Binnig G, and Rohrer H, Rev. Mod. Phys. 1987,59: 615~625.
    [2] Paul W, Rev. Mod. Phys. 1990,62:531~540.
    [3] Chu S, Bjorkholm J E, Ashkin A,et al.Phys.Rev.Lett.1986,57:314~317;Raab A,Prentiss M, Cable A, et al. Phys. Rev. Lett. 1987,59:2631~2634; Davis K B,Mewes M-O, Andrews M R, et al. Phys.Rev. 1995,75:3996~3973.
    [4] Hinds E A, Cavity Quantum Electrodynamics,in Advances in Atomic,Molecular and Optical Physics, eds. by Bates D and Bederson B, New York: Academic, 1991; Shore B W and P L, J. Mod. Optics, 1993, 40(7): 1195~1238.
    [5] 阎守胜,甘子剑,《介观物理》,北京:北京大学出版社,1995:周义昌,李华钟,物理学进展,1993,13(3):423~440.
    [6] Deutsch D,Proc.R.Soc.London 1985,A400:97~117;1989,A425:73~90; Ekert A and Tozsa R, Rev.Mod.Phys.1996,68(3):733~753; Shor P W, in Proc.ofthe 35th Symposium on Foundation of Computing Sciences,eds. by Goldwasser S, CA,Los Alamitos: IEEE Computer Society, 1994, p124.
    [7] Brown L S,Phys.Rev.Lett. 1991,66:527~529.
    [8] Cheng C M and Fung P C W,J.Phys. 1988,A21:4115~4131.
    [9] Morales D A,J.Phys. 1988, A21: L889~892.
    [10] Ph.de Sousa Gerbert,Ann.Phys. 1989,189:155~173.
    [11] Bose S K and Dutta-Roy B,Phys.Rev. 1991, A43:3217~3220.
    [12] Bittrich W and Reuter M,Phys.Lett. 1991, A 155:94~98.
    [13] Boskoutas S,Jannussis A and Miggnani R,Phys. Lett. 1992,A164:17~22.
    [14] Li F L, Wang S J, Weiguny A, et aI.J.Phys. 1994,A27:985~992.
    [15] Wang S J, Zuo W, Weiguny A, Li F L, Phys. Lett. 1994, A196: 7~12; 物理学报, 1995, 44(8); 1184~1191.
    [16] Wang S J and Zuo W, Phys. Lett. 1994, A 196: 13~17;物理学报, 1995, 44(8): 1177~1183.
    
    
    [17] Jaynes E T and Cummings F W, Proc. IEEE 1963, 51: 89.
    [18] Yoo H L and Eberly J H, Phys. Rep. 1985, 118: 239~337.
    [19] Shore B W and Knight P L, J. Mod. Optics, 1993, 40(7): 1195~1328.
    [20] Jie Q L, Wang S J, and Wei L F, J. Phys. 1997, A30: 6147~6154.
    [21] Wang S J, Phys. Rev. 1990, A42: 5107~5110.
    [22] Wang S J, Z.Phys. 1994, B96: 97~103.
    [23] Abdalla M S, Phys. Rev. 1991, A44: 2040~2047.
    [24] Baseia B, Mizrahi S S, and Moussa M H Y, Phys. Rev. 1992, A46: 5885~5889.
    [25] Ying Z J, Wang S J, and Zhang C H, Chin. Phys. Lett. 1999, 16(6): 391~393.
    [26] Negele J W, Rev. Mod. Phys. 1982, 54: 913~1015.
    [27] 张文忠,王顺金,物理学报,1997, 46(2): 209~226.
    [28] Wang S J, Li F L, and Weiguny A, Phys. Lett. 1993, A180: 189~196.
    [29] Wang S J and Jie Q L,Algebraic dynamics and its applications in physics, in Proc. of the 21st-22nd Hopkins Symposium on Particle Physics and Field Theory, Singapore: World Scientific, 1999.
    [30] Bohm A, Ne'eman Y, and Barut A, eds, Dynamical Groups and Spectrum Generating Algebras, Singapore: World Scientific, 1988.
    [31] Elliott J P, Proc. R. Soc.London,Ser. 1958,A245:1254.
    [32] Gell-Mann M and Ne'eman Y, The Eightfold Way, New York: Benjamin, 1964.
    [33] Arima A and Iachello F, Phys. Rev. Lett.1975, 35:1069~1072; Ann.Phys.(N.Y.) 1976, 99: 253~319; 1978,111:201~238;. 1978,115:325~366; 1979,123:468~492.
    [34] Corwell J F, Group theary in Physics I, London:Academic, 1984; cho Y M ed. Proc. of the 14th International Colloquium on Group Thearetical Method In Physics, Seoul,1985, Singapore: World Scientific,1986.
    [35] Dattoli G, Gallardo J C, and Torre A, La Rivista Del Nuovo Cimento, 1988, Vol. 11, Serie 3 No. 11: 1~79.
    [36] Li F L, Lin D L, George F, et al, Phys. Rev.1989, A40(3): 1394~1401; Li F L, Li X S, Lin D L,et al. Phys.Rev. 1989,A40:5129~5134; 1990,A41:2712~2717.
    
    
    [37] Drinfel'd V G, Quantum Group, in Proc. of the International Conference of Mathematics, 1986, Berkeley, California, USA. 中译本见《数学译林》, 1991, Vol, 10, No. 1-2, pp101, 185.
    [38] Drinfel'd V G, Hopf Algebras and the Quantum Yang-Baxter Equation, SovietMath. Dokl. 1985,Vol.32,No. 1.
    [39] 马中骐,《杨-巴克斯特方程和量子包络代数》,北京:科学出版社,1993.
    [40] Goldstein H, Classical Mechanics, 2nd ed. MA: Andison-Wesley, Reading, 1980.
    [41] Dirac P A M, Principle of Quantum Mechanics, 4th ed. Oxford: Clarendon, 1958.
    [42] Wybourne B G, Classical Groups For Physicists,New York:Wiley, 1974.
    [43] Chen J Q, Group Representation Theory For Physicsists, Singapore: World Scientific, 1988.
    [44] Zhang V M, Feng D H, Yuan J M, Wang S J, Phys.Rev.1989,A40(1):438~447; Zhang W M, Feng D H, and Gilmore R, Rev.Mod. Phys. 1990,62:867~927.
    [45] Ayik S and Noerenberg W, Z. Phys. 1982, A309: 121~134.
    [46] Berry M V, Proc.R.Soc.London, 1984,ser.A392:51~57.
    [47] Simon B,Phys.Rev.Lett. 1983,51:2167~2170.
    [48] Wilczek F and Zee A,Phys.Rev.Lett. 1984,52:2111~2114.
    [49] Aharonov Y and Anadan J, Phys. Rev. Lett. 1987, 58: 1593~1596.
    [50] 戴元本,《相互作用的规范理论》,北京:科学出版社,1987.
    [51] 卢侃,孙建华编译.混沌学传奇.上海:上海翻译出版公司,1991.
    [52] Lorenz E N. Deterministic nonperiodic flow. J. Atoms. Sci. 20, 1963.
    [53] 林振山.长期预报的相空间理论和模式.北京:气象出版社,1993.
    [54] 沈小峰.混沌初开.北京:北京师范大学出版社,1993.
    [55] 尼科里斯,普利高津.探索复杂性.罗久里,陈奎宁译.成都:四川教育出版社,1986.
    [56] 美国科学、工程和公共政策委员会编,科学技术的前沿学科展望.北京:科学出版社,1986.
    [57] Browand F K. The structure of the turbulent mixing layer. Physics 18D, 1986.
    [58] 康德.宇宙发展史概论.上海:上海人民出版社,1972.
    [59] 普利高津,斯唐热。从混沌到有序.上海:上海译文出版社.1987.
    [60] Casati G, Ford J (eds.). Stochastic behavior in Classical and Quantum Hamiltonian Systems. Lecture Notes in Physics, 93, 1979.
    
    
    [61] Henon M, Heiles C. A two-dimentional mappling with a strange attractor, Astron. J.,69,1964.
    [62] Ruelle D, Takens F. On the nature of tubulence. Commum. Math. Phys.,20(1), 1971.
    [63] Li T Y, Yorke J A. Period three implies chaos. Amer. Math. Monthly,82,197.
    [64] May R.Simple mathematical models with very complicated dynamics. Nature, 261, 1976.
    [65] Feigenbaum M J. Quantitative universality for a class of nonlinear transformations. J. Star. Phys., 19(1), 1978; The universal metric properties of nonlinear transformations. J. Stat Phys., 21(6), 1979.
    [66] Grassberger P. Generalized dimension of strange attractors, Phys. Lett., 97, 1987.
    [67] 陈式刚.映象与混沌.北京:国防工业出版社,1992.
    [68] 郝柏林.从抛物线谈起—混沌动力学引论.上海:上海科技教育出版社,1993,
    [69] 钱伟长.非线性力学的新发展—稳定性、分岔、突变、浑沌.武汉:华中理工大学出版社,1988.
    [70] 胡岗.随机力与非线性系统.上海:上海科学教育出版社,1994.
    [71] 孙博文,张本祥.上证指数的分形结构及其盒维数测量的研究.哈尔滨理工大学学报Vol.6 No.6 Sum No.33 2001/6.
    [72] Falconer K. Fractal Geometry.曾文曲,刘世耀译.分形几何[M],东北工学院出版社,1991.42.
    [73] 王顺金.人造量子系统的理论研究与代数动力学.物理学进展.Vol.19,No.4,1999.
    [74] 黄润生.混沌及其应用.武汉:武汉大学出版社,2000年版.
    [75] Wang S J, Li L F, Weiguny A.Algebraic dynamic and timedependent dynamical symmetry of nonautonomous systems[J]. Phys Lett A, 1994, 180(1); 189.
    [76] Wand S J. Nonadiabatic Berry's phase for a spin particle in a rotating magnetic field[J]. Phys Rev A, 1990, 42(9): 5107~5110.
    [77] 郭袁俊等.SU(2)线性非自治量子系统的互补混沌[J].四川师大学报(自然科学版),2003,26(2):165~168.
    [78] 王顺金,郭袁俊.加速器中带自旋离子的极化对磁场无规扰动的稳定性,已投稿于《高能物理与核物理》.
    [79] G.A.Leander,RArve,T.Bengtsson and J.Y.Zhang, Nucl. Phys. A400,(1983)97c.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700