频率选择表面的小型化设计与优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率选择表面(Frequency Selective Surface,FSS)是由相同的贴片或孔径单元按二维周期性排列构成的无限大平面结构,它对具有不同工作频率、极化状态和入射角度的电磁波具有频率选择特性,因而在电磁领域得到广泛应用。本文主要研究了实现频率选择表面单元尺寸减缩和剖面降低的方法,以及差分进化算法结合谱域法在频率选择表面优化设计中的应用。主要研究工作包括以下几个方面:
     (1)从研究几种基本单元形式的频率选择表面的频率响应出发,分析了尺寸参数变化和阵列结构变化对FSS性能的影响;然后研究了多种基于曲折型单元和交指型单元的单屏孔径型FSS的传输特性,分析了尺寸参数变化对FSS谐振频率和带宽的影响;设计了一款基于交指六边形环单元的单屏孔径型FSS,该FSS的阵列周期小于λ/30(λ为真空波长),电磁波法向入射时-3dB相对带宽达到63.4%,入射角度在0~60°范围内变化时,谐振频率的偏移小于1%。
     (2)对单元曲折和相邻单元交指这两种FSS单元尺寸减缩的方法从小型化程度、带宽和入射角度稳定性等方面进行了对比研究,并得出结论——交指型FSS的小型化程度更高,相对带宽更宽,对电磁波入射角度的稳定性更好;从孔径型FSS上等效磁流分布的角度给出了性能改善的物理解释;分别加工了单元形式为曲折型和交指型六边形环的双屏孔径型FSS的试验模型,并在微波暗室中对其传输系数进行了测试,测试结果验证了结论。
     (3)以基于天线-滤波器-天线阵列的频率选择表面(AFA-FSS)的设计方法为基础,分别设计了具有二阶、三阶带通响应和具有传输零点的AFA-FSS,分析了尺寸参数的变化对传输特性的影响;以二阶AFA-FSS为基本模块进行直接级联,设计出了具有高滚降特性的低剖面频率选择表面。
     (4)从分形FSS的设计与分析出发,将分形技术应用于AFA-FSS的设计中,从而对传统的AFA-FSS单元的横向尺寸实现了可观的减缩;分析了分形迭代阶数和分形迭代因子对FSS传输特性的影响;设计了一款基于二阶Minkowski分形贴片和十字分形缝隙的AFA-FSS,该分形AFA-FSS在通带内具有二阶频率响应,且剖面很低,单元周期相对于传统AFA-FSS有了较大改善;加工了二阶分形AFA-FSS的试验模型,利用波导测试系统测试了传输系数,测试结果与仿真结果的良好吻合验证了设计方法的有效性。
     (5)实现了利用谱域法来分析具有多层介质加载的多屏频率选择表面的数值计算方法,其中FSS为无限大平面结构。首先根据Floquet定理,将无限大FSS的计算区域限定在一个FSS单元,利用傅里叶变换在谱域内建立电场(或磁场)积分方程;然后利用谱域导纳法计算出多层各向同性媒质的谱域格林函数,并将未知电流(或等效磁流)用屋顶基函数展开;利用伽略金矩量法求解该积分方程从而得到贴片上的表面电流分布;再根据表面电流分布来计算空间任意位置处的散射场,并最终计算出FSS的反射和透射系数。
     (6)将差分进化算法与谱域法结合对频率选择表面的优化设计进行了研究。对单元形式为方环形的单屏贴片型FSS的尺寸参数进行优化,设计了一款单频段的带阻型FSS;对单元形式为双方环形的单屏贴片型FSS的尺寸参数进行优化,设计了一款三频段FSS;采用布尔差分进化算法对FSS单元形状进行优化,设计了一款具有任意单元形式的三频段FSS。
AFrequency Selective Surface (FSS) is basically composed of identical patch oraperture elements periodically arranged in two-dimension infinite array. The uniquespatial filtering characteristic of FSS to incident electromagnetic waves with differentpolarizations and angles of incidence activates its extensive use in electromagneticdomain. The study of this dissertation is concentrated on the realization of sizereduction and profile decrease for FSSs, and the application of Differential Evolutionin the optimization of FSSs. Investigations on the miniaturization and optimization ofFSSs have been carried out, and the main contributions of this thesis can besummarized as follows:
     (1) Started with the investigations on several FSSs with basic shapes, the effectsof parameters variations and changes of array configuration on the performances ofthese FSSs are analyzed. The transmission performances of some single-screenaperture FSSs with convoluted and interdigitated elements are studied, and theeffects of parameters variations on the resonant frequency and bandwidth of theseFSSs are also analyzed, with an emphasis on the number of convolution orinterdigitation. Asingle-screen aperture FSS with interdigitated haxagnal unit cells isdesigned, with its periodicity smaller than λ/30(where λ represents the wavelength infree space at resonance), a fractional bandwidth of63.4%for-3dB bandwidth atnormal incidence, and a shift of frequency less than1%for the incident angleranging from0to60degrees.
     (2) Comparision study has been carried out between two approaches of sizereduction of FSSs, i.e. element convolution and interdigitation, with respet to theextent of miniaturization and bandwidth. A conclusion has been drawn that theinterdigitated FSSs possess inherently the higher extent of miniaturization and widerbandwidth compared with the convoluted ones, and the physical interpretation ofimprovement has been presented from the viewpoint of equivalent magnetic currentswithin the slots. Prototypes of double-layered aperture FSSs with convoluted andinterdigitated hexagonal loops were fabricated. The transmission coefficients weretested in microwave chamber, and the measured results manifested the conclusionaforementioned.
     (3) Based on the design method of FSS composed of antenna-filter-antennaarrays (AFA-FSS), three AFA-FSSs have been designed, which exhibit transmission response of the second-order, the third-order and the third-order with transmission azero. Effects of parameter variation on the transmission reponse have beenconsidered. The AFA-FSS of the second order is selected as the building block todesign high-order AFA-FSSs with high roll-off characterisitic and low profile bydirectly cascading the modules.
     (4) The fractal technique is introduced into the design of AFA-FSS so as toachieve size reduction for the conventional AFA-FSS. The influences of iterationorder and iteration factors on the transmission performance are investigated. AfractalAFA-FSS of second order is designed, which adopts the Minkowski island andfractal cross as the patches and coupling slot, respectively. This proposed AFA-FSSexhibits a considerable size reduction and yields a two-pole frequency response inthe pass-band, while keeping a low profile. A prototype of second-order AFA-FSS isfabricated and measured using waveguide testing system, and the well agreementbetween measured and simulated results validate the effectness of design approach.
     (5) The spectral domain approach (SDA), which can be used for the analysis ofinfinite sigle-layered and multi-layered FSSs based on multi-layered isotropic media,is deduced. On the basis of Floquet theorem, the calculation region is restrictedwithin only one unit cell, and then the Fourier transformation is adopted to build theelectric (or magnetic) field integral equation (EFIE or MFIE) in the spectral domain.The EFIE (or MFIE) is solved by using the method of moments so that the unkownelecreic current on the pathes (or the fictious magnetic current within the apertures)can be computed, where the spectral dyadic Green’s function is obtained by means ofthe spectral domain immitance approach and the unkown electric (or magnetic)current is as the combination of the roof-top basis function. The omputed electric (ormagnetic) current yields the scattering fields in space and finally leads to thecalculation of transmission or reflection coefficients.
     (6) The differential evolution (DE) algorithm is combined with the SDA tooptimize FSSs’ performance. A sigle-layered band-stop FSS with sinlge square loopelement is designed by optimizing the geometry parameters via DE and SDA. Asingle-layered tri-band FSS with doube square loops is further designed by means ofDE optimization. At last, the Boolean DE coupled with SDA is utilized to synthesizea tri-band FSS with unit cell of arbitrary shape.
引文
[1] B.A. Munk,“Frequency-selective surfaces: Theory and design,” Wiley, New York,2000.
    [2] T. K. Wu,“Frequency-selective surface and grid array,” Wiley, New York,1995.
    [3] J. C. Vardaxoglou,“Frequency-selective surfaces: Analysis and design,” ResearchStudies Press, Ltd., Taunton, UK,1997.
    [4] E. L. Pelton and B. A. Munk,“A Streamlined Metallic Radome,” IEEE Trans. onAntennas and Propagation, AP-22(6),799-803, Nov.1974.
    [5] M.Wahid,“The development of a conical frequency selective radome,” GEC J. Res.,vol.12, no.2, pp.95-96,1995.
    [6] Brett S. Haisty, Affordable stealth, Lockheed Martin,2000(11).
    [7] G. Gerini and L. Zappelli,“Multilayer array antennas with integrated frequencyselective surfaces conformal to a circular cylindrical surface,” IEEE Trans.Antennas Propag., vol.53, no.6, pp.2020–2030, Jun.2005.
    [8] Haiyan Chen, Xinyu Hou, and Longjiang Deng “Design of Frequency-SelectiveSurfaces Radome for a Planar Slotted Waveguide Antenna,” IEEE ANTENNASAND WIRELESS PROPAGATION LETTERS, VOL.8,2009.
    [9] Hang Zhou, Shaobo Qu, Baoqin Lin, Jiafu Wang, Hua Ma, Zhuo Xu, Weidong Peng,and Peng Bai “Filter-Antenna Consisting of Conical FSS Radome and MonopoleAntenna,” IEEE Trans. Antennas Propag., vol.60, no.6, pp.3040–3045, Jun.2012.
    [10]Agrawal, V. D. and Imbriale, W. A.,“Design of a dichroic Cassegrain subreflector,”IEEE Trans, onAntennas&Propagation, AP-27, pp.466-73,1979.
    [11]Lee, C. K. and Langley, R. J.,“Performance of a dual-band reflector antennaincorporating a frequency selective subreflector,” Intl J. Electronics,61, pp.607-16,1986.
    [12]Mok, T.S.; Allam, A.M.M.A.; Vardaxoglou, J.C.; Parker, E.A.“Curved and planefrequency selective surfaces: a study of two offset subreflectors,” Electronic andRadio Engineers, Journal of the Institution of, Volume:58, Issue:6,1988, Page(s):284–290.
    [13]Lee, C.K.; Langley, R.J.; Parker, E.A. Compound reflector antennas Microwaves,Antennas and Propagation, IEE Proceedings H, Volume:139, Issue:2PublicationYear:1992, Page(s):135–138
    [14]Ohtomo, I.; Kumazawa, H.; Itanami, T.; Ueno, K.; Kondo, A.; Yasaka, T.; Nakajima,K.; Kawakami, Y.; Misawa, M.“On-board multibeam deployable antennas usingKa, C, andS frequency bands,” IEEE TRANSACTIONS ON AEROSPACE ANDELECTRONIC SYSTEMS VOL.28, NO.4OCTOBER1992.
    [15]J Huang,T K Wu,S W Lee.Tri—band frequency selective surface with circularring elements.IEEE Transactions onAntennas and Propagation,1994,42(2):166-175.
    [16]T K Wu.Four-band frequency selective surface with double—suqare-loop patcheselements.IEEE Transactions onAntennas andPropagation,1994,42(12):1659-1663.
    [17]T K Wu, S W Lee. Multiband frequency surface with multiring patchelements.IEEE Transactions on Antennas and Propagation,1994,42(11):1484-1490.
    [18]G. S. Hickey and T. K. Wu. A four-frequency selective surface spacecraftsubreflector antenna. Microwave Journal. pp.240-252. May1996.
    [19]HUANG J., ENCINAR J.A.:‘Reflectarray antennas’(Wiley,2007)
    [20]D. M. Pozar, T. S. Targonsky, and H. D. Syrigos,“Design of millimeter wavemicrostrip reflectarrays,” IEEE Trans. Antennas Propag., vol.45, no.2, pp.287–295,1997.
    [21]Shaker, J.; Chaharmir, R.; Legay, H. Investigation of FSS-Backed ReflectarrayUsing Different Classes of Cell Elements Antennas and Propagation, IEEETransactions on Volume:56, Issue:12Publication Year:2008, Page(s):3700-3706
    [22]Chih-Chieh Cheng, Abbas Abbaspour-Tamijani “Evaluation of a Novel Topologyfor MEMS Programmable Reflectarray Antennas,” IEEE TRANSACTIONS ONMICROWAVE THEORY AND TECHNIQUES, VOL.57, NO.12, DECEMBER,2009.
    [23]Pozar, D.M.:‘Flat lens antenna concept using aperture coupled microstrip patches’,Electron. Lett.,1996,32, pp.2109–2111
    [24]R. Sauleau, Ph. Coquet, T. Matsui, et al. A new concept of focusing antennas usingplaneparallel Fabry-Perot cavities with nonuniform mirrors. IEEE Trans. AntennasPropag., Nov.2003,51(11):3171–3175.
    [25]Abbaspour-Tamijani, A., Sarabandi, K., and Rebeiz, G.M.:‘A millimetre-wavefilter-lens array using bandpass antenna-filter-antenna elements’, IEE Proc.,Microw.Antennas Propag.,2005.
    [26]C. C. Cheng, B. Lakshminarayanan, and A. Abbaspour-Tamijani,“Aprogrammablelens-array antenna with monolithically integrated MEMS switches,” IEEE Trans.Microw. Theory Tech., vol.57, no.8, pp.1874–1884, Aug.2009.
    [27]T. Akalin, J. Danglot, O. Vanbesien, and Lippens,“High directive dipole antennaembedded in a Fabry-Perot type cavity,” IEEE Microw. Wireless Compon., vol.12,no.2, pp.48–50, Feb.2002.
    [28]Y. J. Lee, Junho Yeo, R. Mittra, et al. Design of a high-directivity electromagneticband gap (EBG) resonator antenna using a frequency-selective surface (FSS)superstrate. Microw. Opt. Tech. Lett., Dec.2004,43(6):462–467.
    [29]D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm,“Thedesign synthesis of multiband artificial magnetic conductors using high impedancefrequency selective surfaces,” IEEE Trans. Antennas Propag., vol.53, no.1, pp.8–17, Jan.2005.
    [30]M. Hajj, E. Rodes, and T. Monédière, Dual-Band EBG Sectoral Antenna Using aSingle-Layer FSS for UMTS Application, IEEE ANTENNAS AND WIRELESSPROPAGATION LETTERS, VOL.8,2009
    [31]S. Chakravarty, R. Mittra, and N. R.Williams,“Application of a microgeneticalgorithm (MGA) to the design of broadband microwave absorbers using multiplefrequency selective surface screens buried in dielectrics,” IEEE Trans. AntennasPropag., vol.50, no.3, pp.284–296, Mar.2002.
    [32]Mias, C. Varactor tunable frequency selective absorber Electronics Letters lume:39, Issue:142003.
    [33]A. Tennant and B Chambers, ASingle-Layer Tunable Microwave Absorber Usingan Active FSS, IEEE MICROWAVE AND WIRELESS COMPONENTSLETTERS, VOL.14, NO.1, JANUARY2004.
    [34]Grace H. H. Sung, K. W. Sowerby, M. J. Neve, et al. A frequency-selective wall forinterference reduction in wireless indoor environments. IEEE Antennas Propag.Mag., Oct.2006,48(5):29–37.
    [35]G. I. Kiani, A. R.Weily, K. P. Esselle. A novel absorb/transmit FSS for secureindoor wireless networks with reduced multipath fading. IEEE Microw. WirelessCompon. Lett., Jun.2006,16(6):378–380.
    [36]S. Monni, A. Neto, G. Gerini, et al. Frequency-selective surface to preventinterference between radar and SATCOM antennas. IEEE Antennas WirelessPropagat. Lett.,2009,8:220–223
    [37]Costa, F.; Monorchio, A.AFrequency Selective Radome With Wideband AbsorbingProperties Antennas and Propagation, IEEE Transactions on Volume:60, Issue:62012.
    [38]SHI W.M., ZHANG W.X., ZHAO M.G.:‘Novel frequency-selective twistpolarizer’, Electron. Lett.,1991,27,(23), pp.2110–2111
    [39]T. K. Wu,“Meander line polarizer for arbitrary rotation of linear polarization,”IEEE Microwave Guided Wave Lett., vol.4, pp.199–201, June1994.
    [40]H. Uchida, K. Sakurai, M. Ando, et al. A double-layer dipole array polarizer forplanar antenna. Electronics and Communications in Japan. Part1, Communications,1997,80(11):86–97.
    [41]K. M. K. H. Leong andW. A. Shiroma. Waffle-grid polarizer. Electron. Lett.,2002,38(22):1360–1361.
    [42]Karkkainen, K.; Stuchly, M. Frequency selective surface as a polarisationtransformer Microwaves, Antennas and Propagation, IEE Proceedings Volume:149, Issue:562002, Page(s):248-252
    [43]Euler, M.; Fusco, V.; Cahill, R.; Dickie, R. Comparison of frequency-selectivescreen-based linear to circular split-ring polarisation convertors Microwaves,Antennas&Propagation, IET Volume:4, Issue:112010, Page(s):1764–1772
    [44]R. J. Langley. A dual-frequency band waveguide using FSS. IEEE Microw. GuidedWave Lett., Jan.1993,3(1):9–10.
    [45]R. D. Seager, J. C.Vardaxoglou, and D. S. Lockyer,“Close coupled resonantaperture inserts for waveguide filtering applications,” IEEE Microw. WirelessCompon. Lett., vol.11, no.3, pp.112–114, Mar.2001.
    [46]Monorchio, A.; Manara, G.; Serra, U.; Marola, G.; Pagana, E. Design of WaveguideFilters by Using Genetically Optimized Frequency Selective Surfaces IEEEMICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL.15, NO.6,JUNE2005.
    [47]Ohira, M.; Deguchi, H.; Tsuji, M.; Shigesawa,“A Novel Waveguide Filters WithMultiple Attenuation Poles Using Dual-Behavior Resonance ofFrequency-Selective Surfaces,” IEEE TRANSACTIONS ON MICROWAVETHEORYAND TECHNIQUES, VOL.53, NO.11, NOVEMBER2005.
    [48]S. M. Amjadi and M. Soleimani. Design of band-pass waveguide filter usingfrequency selective surfaces loaded with surface mount capacitors based onsplit-field update FDTD method. Progress In Electromagnetics Research B,2008,3:271–281.
    [49]N. Engheta and R. W. Ziolkowski, Eds., Metamaterials: Physics and EngineeringExplorations. Hoboken, NJ: Wiley-IEEE Press,2006.
    [50]B. A. Munk. Metamaterials: critique and alternatives. New York: Wiley,2009.
    [51]F. Yang and Y. Rahmat-Samii, Electromagnetic Band-Gap Structures in AntennaEngineering,. The Cambridge RF and Microwave Engineering Series. Cambridge,U.K.: Cambridge Univ. Press,2008.
    [52]D. Sievenpiper, L. Zhang, F. J. Broas, N. G. Alexopulos, and E. Yablonovitch,“High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEETrans. Microw. Theory Tech., vol.47, no.11, pp.2059–2074, Nov.1999.
    [53]F. R. Yang, K. P. Ma, Y. Qian, et al. A novel TEM waveguide using uniplanarcompact photonic band gap (UC-PBG) structure. IEEE Trans. Microw. TheoryTech., Nov.1999,47(11):2092–2098.
    [54]D. J. Kern, D. H. Wemer, A. Monorchio, L. Lanuzza and M. K. Wilhelm. Thedesign synthesis of multiband artificial magnetic conductors using high impedancefrequency selective surfaces. IEEE Transactions on Antennas and Propagation,2005,53(1),8-17.
    [55]S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti,“A pole-zero matching methodfor EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,”IEEE Trans. Antennas Propag., vol.53, no.1, pp.70–81, Jan.2005.
    [56]G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou,“Tailoring the AMC and EBGcharacteristics of periodic metallic arrays printed on grounded dielectric substrate,”IEEE Trans. Antennas Propag., vol.54, no.1, pp.82–89, Jan.2006.
    [57]de Cos, M.E.; Las Heras, F.; Franco, M. Design of Planar Artificial MagneticConductor Ground Plane Using Frequency-Selective Surfaces for FrequenciesBelow1GHz Antennas and Wireless Propagation Letters, IEEE Volume:82009,Page(s):951-954
    [58]E. A. Parker and A. N. A. El Sheikh,"Convoluted array elements and reduced sizeunit cells for frequency-selective surfaces," Proc. Inst. Elect. Eng. Microw.,Antennas Propag., vol.138, pt. H, pp.19-22, Feb. l991.
    [59]Parker, E.A., El Sheikh, A.N.A., and Lima, A.C.:‘Convoluted frequency-selectivearray elements derived from linear and crossed dipoles’, Proc. IEE H,1993,40,(5),pp.378–380.
    [60]K. Sarabandi and N. Behdad,“A frequency selective surface with miniaturizedele-ments,” IEEE Trans. Antennas Propag., Vol.55, Issue.5, pp.1239-1245, May.2007.
    [61]J. Romeu and Y. Rahmat-Samii,“Fractal FSS: A novel dual-bandfrequencyselective surface,” IEEE Trans. Antennas Propag., vol.48, pp.1097–1105,Jul.2000.
    [62]Y. Ramat-Samii and E. Michielssen, Electromagnetic Optimization by GeneticAlgorithms Eds. New York: Wiley,1999.
    [63]R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics. Hoboken,NJ: Wiley, Apr.2007.
    [64]A. Qing and C. K. Lee, Differential Evolution in Electromagnetics, Berlin: Springer,2010.
    [65]R. L. Haupt,“An introduction to genetic algorithms for electromagnetics,” IEEEAntennas Propagat. Mag., vol.37, pp.7–15, Apr.1995.
    [66]J. M. Johnson and Y. Rahmat-Samii,“Genetic algorithms in engineeringelectromagnetics,” IEEE Antennas Propagat. Mag., vol.39, pp.7–25,Aug.1997.
    [67]D. S. Weile and E. Michielssen,“Genetic algorithm optimization applied toelectromagnetics: Areview,” IEEE Trans. Antennas Propagat., vol.45, pp.343–353,Mar.1997.
    [68]J. Robinson and Y. Rahmat-Samii,“Particle swarm optimization inelectromagnetics,” IEEE Trans. Antennas Propag., vol.52, no.2, pp.397–407, Feb.2004.
    [69]F. Campelo, F. G. Guimaraes, H. Igarashi, and J. A. Ramirez,“Aclonal selectionalgorithm for optimization in electromagnetics,” IEEE Trans. Magn., vol.41, no.5,pp.1736–1739, May2005.
    [70]A. Hoorfar,"Evolutionary programming in electromagnetic optimization: Areview," IEEE Trans. Antennas Propag., vol.55, no.3, pp.523-537, Mar.2007.
    [71]P. Rocca, G. Oliveri, and A. Massa,“Differential evolution as applied toelectromagnetics,” IEEE Antennas Propag. Mag., vol.53, no.1, pp.38-49, Feb.2011.
    [72]S Goudos, Siakavara, K. Samaras, T. Vafiadis, E.E. Sahalos, J.N. Self-AdaptiveDifferential Evolution Applied to Real-Valued Antenna and Microwave DesignProblems IEEE Trans. Antennas Propag., VOL.59, NO.4,APRIL2011.
    [73]G. Manara, A. Monorchio, and R. Mittra,“Frequency selective surface designbased on genetic algorithm,” Electron. Lett., vol.35, pp.1400–1401, Aug.1999.
    [74]M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa,“Multiband single-layerfrequency selective surface designed by combination of genetic algorithm andgeometry-refinement technique,” IEEE Trans. Antennas Propag., vol.52, no.11, pp.2925–2931,2004.
    [75]J.A.Bossard, D. H.Werner,T. S.Mayer, andR. P. Drupp,“A novel designmethodology for reconfigurable frequency selective surfaces using geneticalgorithms,” IEEE Trans. Antennas Propag., vol.53, no.4, pp.1390–1400, Apr.2005.
    [76]X. F. Luo, A. Qing and C. K. Lee,“On the Application of Differential EvolutionStrategy to the Design of Frequency Selective Surfaces”, Int. J. RF. Microw.2005,vol.15, no.2, pp.173-180.
    [77]Luo, X.F., Teo, P.T., Qing, A., Lee, C.K.: Design of double-square-loop frequencyselective surfaces using differential evolution strategy coupled with equivalentcircuit model. Microwave Optical Technology Letters44(2),159–162(2005)
    [78]S. Genovesi, R. Mittra, A. Monorchio, and G. Manara,“Particle SwarmOptimization for the Design of Frequency Selective Surfaces,” IEEE AntennasWirel. Propag. Lett.5,277(2006).
    [79]Bayraktar, Z., Bossard, J.A., Xiande Wang, Werner, D.H.“A Real-Valued ParallelClonal Selection Algorithm and Its Application to the Design Optimization ofMulti-Layered Frequency Selective Surfaces,” IEEE Trans. Antennas Propag., VOL.60, NO.4,APRIL2012.
    [80]D. Rittenhouse,“An optical problem, proposed by Mr. hopkinson, and solved byMr. Rittenhouse,” Trans. Amer. Phil. Soc., Vol.2,1786, pp201–206.
    [81]G. G. Macfarlance. Quasi-stationary field theory and its application to diaphragmsand junctions on transmission lines and waveguide. Proc. IEE,1946,93,part3a:703–719.
    [82]N. Marcuvitz. Waveguide handbook. New York: McGraw-Hill,1951.
    [83]R.B.Kieburtz and A. Ishimaru,"Scattering by a periodically aperture conductingscreen," IRE Trans.Antennas Propagat., vol.AP-9, pp.506-514, N ovember,1961.
    [84]E. A. Parker and S. M. A. Hamdy. Rings as elements for frequency selectivesurfaces. Electron. Lett.,Aug.1981,17(17):613–614.
    [85]E. A. Parker, S. M. A. Hamdy, and R. J. Langley. Arrays of concentric rings asfrequency selective surfaces. Electron. Lett., Nov.1981,17(23):613–614.
    [86]R. J. Langley and E. A. Parker. Equivalent circuit model for arrays of square loops.Electron. Lett., Apr.1982,18(7):294–296.
    [87]R. J. Langley and E. A. Parker,“Double square frequency selective surfaces andtheir equivalent circuit,” IET Electron. Lett., vol.19, pp.675–677,1983.
    [88]R. Cahill and E. A. Parker. Concentric ring and Jerusalum cross arrays as frequencyselective surface for a45_incidence diplexer. Electron. Lett., Apr.1982,18(8):313–314.
    [89]S. M. A. Hamdy and E. A. Parker. Comparison of modal analysis and equivalentcircuit representation of E-plane arm of the Jerusalum cross. Electron. Lett., Jan.1982,18(2):94–95.
    [90]P. W. B. Au, L. Musa, E. A. Parker, et al. Parametric study of tripole and tripoleloop arrays as frequency selective surfaces. IEE Proc. Pt. H, Oct.1990,137(5):263–268.
    [91]A. D. Chuprin, E. A. Parker and J. C. Batchelor. Resonant frequencies of open andclosed loop frequency selective surface arrays. Electron. Lett., Sep.2000,36(19):1601–1603.
    [92]S. Savia and E. A. Parker. Equivalent circuit model for superdense linear dipoleFSS. IEE Proc. Microw. Antennas Propag., Feb.2003,150(1):37–42.
    [93]E. A. Parker and A. N. A. El Sheikh. Convoluted dipole array elements. Electron.Lett., Feb.1991,27(4):322–323.
    [94]E. A. Parker, J. B. Robertson, B. S. Izquierdo, and J. C. Batchelor,“Minimal sizeFSS for long wavelength operation,” Electron. Lett., vol.44, no.6, pp.394–395,Mar.2008.
    [95]Izquierdo, B.S., Parker, E.A., Robertson, J.B., and Batchelor, J.C.:“Singly and dualpolarized convoluted frequency selective structures,” IEEE Trans. AntennasPropag.,2010,58,(3), pp.690–696
    [96]A. C. de C. Lima and E. A. Parker. Fabry-perot approach to the design of doublelayer FSS. IEE Proc. Microw. Antennas Propag., Apr.1996,143(2):157–162.
    [97]C. Antonopoulos and E. A. Parker. Design procedure for FSS with widetransmission band and rapid rolloff. IEE Proc. Microw. Antennas Propag., Dec.1998,145(6):508–510.
    [98]Savia, S.B., and Parker, E.A.:‘Superdense FSS with wide reflection band and rapidrolloff’, Electron. Lett.,2002,38,(25), pp.1688–1689
    [99]F. Huang, J. C. Batchelor, and E. A. Parker,“Interwoven convoluted elementfrequency selective surfaces with wide bandwidths,” IEE Electron. Lett., vol.42, pp.788–790, Jul.14,2006.
    [100] T. K. Chang, R. J. Langley, and E. A. Parker. An active square loop frequencyselective surface. IEEE Microw. Guided Wave Lett., Oct.1993,3(10):387–388.
    [101] A. C. de C. Lima and E. A. Parker. Tunable frequency selective surface usingliquid substrates. Electron. Lett., Feb.1994,30(4):281–282.
    [102] B. Philips, E. A. Parker, and R. J. Langley. Active FSS in an experimental hornantenna switchable between two beamwidths. Electron. Lett., Jan.1995,31(1):1–2.
    [103] T. K. Chang, R. J. Langley, and E. A. Parker,“Active frequency selectivesurfaces,” IEE Proc., Part H, vol.143, pp.62–66,1996.
    [104] B. M. Cahill and E. A. Parker,“Field switching in an enclosure with active FSSscreen,” Electron. Lett., vol.37, no.4,15, pp.244–245, Feb.2001.
    [105] B. Sanz-Izquierdo, E. A. Parker, J. B. Robertson, and J. C. Batchelor,“Tuningtechnique for active FSS arrays,” Electron. Lett., vol.45, no.22, pp.1107–1109,Oct.22,2009.
    [106] ALLAM, A. M. M. A., and PARKER, E. A.:‘Application of Pocklington’sequation to analysis of dipole frequency-selective surfaces of finite size’, IEE Proc.H,1987,134, pp.521-526.
    [107] M. M. Mokhtar and E. A. Parker. Iterative computation of currents infrequency-selective surfaces of finite size. Electron. Lett., Feb.1989,25(3):221–222.
    [108] B. Philips, E. A. Parker and R. J. Langley. Finite curved frequency selectivesurfaces. Electron. Lett., May1993,29(10):883–884.
    [109] B. Philips, E. A. Parker, and R. J. Langley. Ray tracing analysis of thetransmission performance of curved FSS. IEE Proc. Microw. Antennas Propag., Jun.1995,142(3):193–200.
    [110] S. B. Savia, E. A. Parker, and B. Philips, Finite Planar-andCurved-Ring-Element Frequency-Selective Surfaces, IEE Proc.-Microw. AntennasPropag., Vol.146, No.6, pp.401-406, December1999.
    [111] DUBROVKA R., VAZQUEZ J., PARINI C., MOORE D.:‘New equivalentcircuit method for analysis and synthesis of frequency selective surfaces’, IEE Proc.Microw.Antennas Propag.,2006,153,(3), pp.213–220
    [112] R. Dubrovka, J. Vazquez, C. Parini e D. Moore,“Multi-frequency andmulti-layer frequency selective surface analysis using modal decompositionequivalent circuit method”, IET Microw. Antennas Propag.,30(3),492–500,(2009).
    [113] C. C. Chen. Scattering by a two-dimensional periodic array of conductingplates. IEEE Trans. Antennas Propag., Sep.1970,18(5):660–665.
    [114] C. C. Chen. Transmission through a conducting screen perforated periodicallywith apertures. IEEETrans. Microw. Theory Tech., Sep.1970,18(9):627–632.
    [115] J. R. Montgomery. Scattering by an infinite periodic array of thin conductorson a dielectric sheet. IEEE Trans. Antennas Propag., Jan.1975,23(1):70–75.
    [116] R. J. Luebbers and B. A. Munk. Some effects of dielectric loading on periodicslot arrays. IEEE Trans. Antennas Propag., Jul.1978,26(4):536–542.
    [117] P. Callaghan, E.A. Parker, and R.J. Langley. Influence of supporting dielectriclayers on the transmissionproperties of frequency selective surfaces. IEE Proc.-H.,Oct.1991,138(5):448–454.
    [118] VARDAXOGLOU, J.C., and LOCKYER, D.S.:‘Modified FSS response fromtwo sided and closely coupled arrays’, Electron. Lett.,1994,30,(22), pp.1818-1819.
    [119] R. D. Seager, J. C.Vardaxoglou, and D. S. Lockyer,“Close coupled resonantaperture inserts for waveguide filtering applications,” IEEE Microw. Compon. Lett.,vol.11, no.3, pp.112–114, Mar.2001.
    [120] D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin,“Complementaryfrequency selective surfaces,” IEE Proceedings on Microwaves, Antennas andPropagation, vol.147, no.6, pp.501–507, Dec.2000.
    [121] LOCKYER, D.S., MOORE, C.M., SEAGER, R., SIMPKIN, R., andVARDAXOGLOU, J.C.:‘Coupled dipole arrays as reconfigurable frequencyselective surfaces’, Electron. Lett.,1994,30,(16), pp.1258-1259
    [122] LOCKYER, D.S., and VARDAXOGLOU, J.C.:‘Reconfigurable FSS from twolayers of slotted dipole arrays’, Electron. Lett.,1996,32,(6), pp.512-513
    [123] ORTA, R., TASCONE, R., TRINCHERO, D., LOUKOS, G., andVARDAXOGLOU, J.C.:‘Dispersion curves and modal fields of a waveguide withFSS inserts’, Electron. Lett.,1995,30, pp.1072-1075
    [124] R. Mittra, C.H. Chan, and T. Cwik. Techniques for analyzing frequencyselective surfaces-a review. Proc. IEEE, Dec.1988,76(12):1593–1615.
    [125] C. H. Tsao and R. Mittra. Aspectral-iteration approach for analyzing scatteringfrom frequency selective surfaces. IEEE Trans. Antennas Propag., Mar.1982,30(2):303–308.
    [126] J.-F. Ma, R. Mittra, and N.T. Huang. Analysis of multiple FSS screens ofunequal periodicity using an efficient cascading technique. IEEE Trans. AntennasPropag.,Apr.2005,53(4):1401–1414.
    [127] R. Kastner and R. Mittra. Iterative analysis of finite-sized planar frequencyselective surfaces with rectangular patches or perforations. IEEE Trans. AntennasPropag.,Apr.1987,35(4):372–377.
    [128] C. H. Chan and R. Mittra,“On the analysis of frequency selective surfacesusing subdomain basis functions,” IEEE Trans. Antennas Propag., vol.38, no.1, pp.40–50, Jan.1990.
    [129] W. L. Ko and R. Mittra,“Scattering by a truncated periodic array,” IEEE Trans.Antennas Propagat., vol.36, pp.496–503, Apr.1988.
    [130] B. Munk, R. Kouyoumjian, and L. Peters Jr.,“Reflection properties of periodicsurfaces of loaded dipoles,” IEEE Trans. Antennas Propag., vol. AP-19, pp.612–617, Sep.1971.
    [131] B. A. Munk, R. J. Luebbers, and R. D. Fulton,“Transmission through atwo-layer array of loaded slots,” IEEE Trans. Antennas Propag., vol. AP-22, no.6,pp.804–807, Nov.1974.
    [132] B. A. Munk and R. J. Luebbers,“Reflection of two-layer dipole arrays,” IEEETrans. Ant. Propagat., vol. AP-22, no.6, pp.766–773, Nov.1974.
    [133] Luebbers, R. Cross polarization losses in periodic arrays of loaded slots IEEETrans. Antennas Propagat., vol.23, no.2, p.159-164, Mar.1975.
    [134] E. L. Pelton and B. A. Munk,“Scattering from periodic arrays of cross dipoles,”IEEE Trans. Antennas Propagat., vol. AP-27, pp.323–330, Mar.1979.
    [135] R. J. Luebbers and B. A. Munk,“Mode matching analysis of biplanar slotarrays,” IEEE Trans. Antennas Propag., vol.273, no.3, pp.441–443, May1979.
    [136] Larson, C., and Munk, B.:‘The broad-band scattering response of periodicarrays’, IEEE Trans. Antennas Propag.,1983,31, pp.261–267
    [137] S. W. Schneider and B. A. Munk,“The scattering properties of ‘super dense’arrays of dipoles,” IEEE Trans. Antennas Propagat., vol.42, p.463, Apr.1994.
    [138] J. M. Usoff and B. A. Munk,“Edge effects of truncated periodic surfaces ofthin wire elements,” IEEE Trans. Antennas Propagat., vol.42, pp.946–953, July1994.
    [139] R. A. Hill and B. A. Munk,“The effect of perturbating a frequency selectivesurfaces and its relation to the design of a dual-band surface,” IEEE Trans.Antennas Propag., vol. AP-44, no.3, pp.368–374, Mar.1996.
    [140] B. A. Munk, D. S. Janning, J. B. Pryor, and D. J. Marhefka,“Scattering fromsurface waves on finite FSS,” IEEE Trans. Antennas Propag., vol.49, no.12, pp.1782–1793, Dec.2001.
    [141] D. S. Janning and B. A. Munk,“Effects of surface waves on the currents oftruncated periodic arrays,” IEEE Trans. Antennas Propagat., vol.50, pp.1254–1265,Sept.2002.
    [142] J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka,“Ohmic loss infrequency-selective surfaces,” J. App. Phys., vol.93, no.9, pp.5346–5358, May2003.
    [143] B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman,“Infraredfrequency selective surface based on circuit-analog square loop design,” IEEETrans. Antennas Propag., vol.53, no.2, pp.745–752, Feb.2005.
    [144] B. A. Munk, Finite Antenna Arrays and FSS. NewYork: Wiley,2003.
    [145] E. A. Parker, A. D. Chuprin, and R. J. Langley. Finite element analysis ofelectromagnetic wave diffraction from buildings incorporating frequency selectivewalls. IEE Proc. Microw. Antennas Propagat., Oct.1999,146(5):319–323.
    [146] I. Bardi, R. Remski, D. Perry, Z. et al. Plane wave scattering fromfrequency-selective surfaces by the finite-element method. IEEE Trans. Magnetics,Mar.2002,38(2):641–644.
    [147] P. Harms, R. Mittra, and Wai Ko;. Implementation of the periodic boundarycondition in the finitedifference time-domain algorithm for FSS structures. IEEETrans. Antennas Propag., Sep.1994,42(9):1317–1324.
    [148] E. A. Navarro, B. Gimeno, and J. L. Cruz. Modelling of periodic structuresusing the finite difference time domain method combined with the Floquet theorem.Electron. Lett., Mar.1993,29(5):446–447.
    [149] M. K. Karkkainen and P. M. T. Ikonen. Finite-difference time-domainmodeling of frequency selective surfaces using impedance sheet conditions. IEEETrans. Antennas Propagat., Sep.2005,53(9):2928–2937.
    [150] ElMahgoub, K.; Fan Yang; Elsherbeni, A.Z.FDTD/GSM Analysis ofMultilayered Periodic Structures With Arbitrary Skewed Grid IEEE Trans. Microw.Theory Tech., vol.59, no.12, pp.3264-3271, Dec.2011.
    [151] J. Romeu and Y. Rahmat-Samii,“Dual band FSS with fractal elements,”Electron. Lett., vol.35, no.9, pp.702–703,Apr.29,1999.
    [152] Gianvittorio, J.P., Romeu, J., Blanch, S., and Rahmat-Samii, Y.:‘Self-similarprefractal frequency selective surfaces for multiband and dual-polarizedapplications’, IEEE Trans. Antennas Propag.,2003,51,(11), pp.3088–3096
    [153] R. Pous and D. M. Pozar,“A frequency-selective surface using aperturecouples microstrip patches,” IEEE Trans. Antennas Propagat., vol.39,pp.1763–1769, Dec.1991.
    [154] A. Abbaspour-Tamijani, K. Sarabandi, and G. M. Rebeiz,“Antenna–filter–antenna arrays as a class of bandpass frequency selective surfaces,” IEEE Trans.Microw. Theory Tech., vol.52, no.8, pp.1781–1789, Aug.2004.
    [155] Farhad Bayatpur,“Metamaterial-Inspired Frequency-Selective Surfaces,” Ph.Dthesis, University of Michigan,2009.
    [156] F. Bayatpur, K. Sarabandi,“Single-layer, high-order, miniaturized-elementfrequency selective surfaces,” IEEE Trans. Microw. Theory Tech., vol.56, issue4,pp.774-781, April2008.
    [157] F. Bayatpur, K. Sarabandi,“Multipole spatial filters using metamaterial-basedminiaturized-element frequency-selective surfaces,” IEEE Trans. Microw. TheoryTech., vol.56, issue12, pp.2742-2748, Dec.2009.
    [158] F. Bayatpur, K. Sarabandi,“Atunable metamaterial frequency-selective surfacewith variable modes of operation," IEEE Trans. Microw. Theory Tech., vol.57,issue6, pp.1433-1438, June2009.
    [159] F. Bayatpur, K. Sarabandi,“Design and analysis of a tunableminiaturized-element frequency-selective surface without bias network," submittedfor review to IEEE Trans. Antennas Propag.,2009.
    [160] M. Al-Joumayly and N. Behdad,“A generalized method for synthesizinglow-profile, band-pass frequency selective surfaces with nonresonant constitutingelements,” IEEE Trans. Antennas Propag., vol.58, no.12, pp.4033–4041, Dec.2010.
    [161] Meng Li; Behdad, N.A Third-Order Bandpass Frequency Selective SurfaceWith a Tunable Transmission Null IEEE Trans. Antennas Propag., vol.60, no.4,pp.2109-2113, APRIL2012.
    [162]罗国清,“基片集成频率选择表面的研究,”东南大学博士学位论文,2006.
    [163] Luo, G.Q., Hong, W., Hao, Z.C., Liu, B., Li, W.D., Chen, J.X., Zhou, H.X., andWu, K.:‘Theory and experiment of novel frequency selective surface based onsubstrate integrated waveguide technology’, IEEE Trans. Antennas Propag.,2005,53,(12),pp.4035–4043
    [164] G. Q. Luo, W. Hong, Q. H. Lai, K. Wu, and L. L. Sun,“Design andexperimental verification of compact frequency-selective surface with quasi-ellipticbandpass response,” IEEE Trans. Microw. Theory Tech., vol.55, pp.2481–2487,2007.
    [165] G. Q. Luo, W. Hong, H. J. Tang, and K. Wu,“High performance frequencyselective surface using cascading substrate integrated waveguide cavity,” IEEEMicrow. Wireless Compon. Lett., vol.16, no.12, pp.648–650, Dec.2006.
    [166] G. Q. Luo, W. Hong, H. J. Tang, J. X. Chen, and K.Wu,“Dualbandfrequency-selective surfaces using substrate-integrated waveguide technology,” IETProc. Microwaves Antenna Propag., vol.1, no.2, pp.408–413, Jan.2007.
    [167] G. Q. Luo, W. Hong, H. J. Tang, J. X. Chen, and L. L. Sun,“Triband frequencyselective surface with periodic cell perturbation,” IEEE Microw. Wireless Comp.Lett., vol.17, no.6, p.436, Jun.2007.
    [168] S. A. Winkler, W. Hong, M. Bozzi, and K. Wu,“Polarization rotating frequencyselective surface based on substrate integrated waveguide technology,” IEEE Trans.Antennas Propag., vol.58, no.4, pp.1202–1213,2010.
    [169] Holland, J.H., Genetic Algorithms and the Optimal Allocation of Trials, SIAMJournal on Computing,1973.
    [170] Kennedy, J., Eberhart, R., Particle Swarm Optimization, IEEE InternationalConference on Neural Networks (Perth, Australia), IEEE Service Center,Piscataway, NJ, IV,19951942-1948.
    [171] Storn R., Price K., Differential evolution-a simple and efficient adaptivescheme for global optimization over continuous space [J], Technical Report,International Computer Science Institute, Berkley,1995,(18),22-25.
    [172]李京鸣,章文勋,用谱域法分析含介质衬底的频率选择表面,微波学报,1989年04期.
    [173]史为民,章文勋,准三维频率选择表面的矢量模式分析,东南大学学报,1990年06期.
    [174]沈忠祥,华荣喜,多层频率选择表面的分析,电子学报1992年06期.
    [175]洪伟,空间滤波表面电磁散射特性的直线法分析,应用科学学报,1994年01期.
    [176]冯林,阮颖铮,介质层中频率选择表面散射特性分析,航空学报,1994年09期.
    [177]陈彬,方大纲,周璧华, FD-TD在分析FSS中的应用,微波学报,1995年02期.
    [178]马金平,陈国瑞,李春晖,“十”字环形缝隙阵频率选择表面的频率特性研究,电子学报,1997年04期.
    [179]马金平,焦永昌,毛乃宏,陈国瑞,圆环单元频率选择表面的优化设计研究,西安电子科技大学学报,1999年06期.
    [180]侯新宇,万伟,佟明安,万国宾,带有多层介质衬底FSS的损耗和带宽特性分析,微波学报,1999年04期.
    [181]侯新宇,“复杂介质加载频率选择表面的特性分析及雷达罩应用研究,”西北工业大学博士学位论文,1999.
    [182]杨利,徐善驾,介质周期结构频率选择特性的多模网络分析,电子学报,1999年03期.
    [183]王季立,频率选择表面(FSS)在天线隐身技术中的应用,南京航空航天大学学报,1992年06期.
    [184]冯林陆丛笑,新型宽频带吸波涂层研究,电子科学学刊,1992年06期.
    [185]冯林,阮颖铮,雷平,低RCS选频滤波反射面天线技术,电子科学学刊,1993年05期.
    [186]卢俊,张靓,孙连春, Y形和Y环形单元特性的实验对比研究,光学精密工程,2005年02期.
    [187]贾宏燕,高劲松,冯晓国,孙连春,一种性能稳定的新单元频率选择表面,物理学报,2009年01期.
    [188]侯新宇,张澎,卢俊,万伟,孙连春,孙品良,一种双曲率雷达罩的频率选择表面分片设计,弹箭与制导学报,2006年01期.
    [189]卢俊,孙贯成,蔡红星,远红外频率选择表面的传输特性分析,光电工程,2006年06期.
    [190]高强,闫敦豹,袁乃昌,付云起,加载频率选择表面的特性研究,电波科学学报,2006年03期
    [191]童创明,袁乃昌,付云起,张国华, FSS电磁散射方向特性的快速计算,应用科学学报,2003年01期.
    [192]符道临,章文勋,顾莹莹,葛志晨,两种改进的Fabry-Perot谐振器印刷天线,电波科学学报2008年02期
    [193]武振波,武哲,吕明云,频率选择表面结构中Floquet模的传播特性分析,系统工程与电子技术,2005年05期
    [194]方维海,徐善驾,由左手媒质构成的新的频率选择表面,红外与毫米波学报,2007年02期
    [195]李绪平,刘昊,史小卫, Y分形单元多频段FSS设计研究,微波学报,2006年S1期
    [196]吕明云,王焕青,武哲,工艺参数对频率选择表面传输特性试验研究,北京航空航天大学学报,2006年06期
    [197]武振波,FSS隐身雷达罩电性能理论分析的基本问题研究,北京航空航天大学博士学位论文,2004.
    [198]林宝勤,微波光子晶体电磁特性研究,国防科学技术大学博士学位论文,2006.
    [199]高强,无源电磁周期结构及其应用研究,国防科学技术大学博士学位论文,2006.
    [200]许戎戎,基于集总元件加载和分形结构的多频频率选择表面研究,南京理工大学博士学位论文,2009.
    [201]张建成,多层平面周期结构的电磁特性研究,西安电子科技大学博士学位论文,2009.
    [202] N. Amitay, and V. Galindo,‘The analysis of circular waveguide phased arrays,”Bell Syst. Tech. J., vol.47, pp.1903-1932, Nov.1968.
    [203] JS Yee, Frequency selective surface (FSS), US Patent5,208,603,1993.
    [204] B. B. Madelbrot, The Fractal Geometry of Nature. New York: Freeman,1983.
    [205] Kenneth Falconer, Fractal Geometry: Mathematical Foundations andApplications, New York, John Wiley&Sons,1990.
    [206] H. N. Kritikos and D. L. Jaggard, Recent Advances in Electromagnetic Theory,New York, Springer-Verlag,1990.
    [207] Douglas H. Wemer and Raj Mittra, Frontiers in Electromagnetics, New York,IEEE Press,2000.
    [208] D.H. Werner, R.L. Haupt, and P.L. Werner, Fractal antenna engineering: Thetheory and design of fractal antennas arrays, IEEE Antennas Propag Mag41(1999),37–59.
    [209] J.P. Gianvittorio and Y. Rahmat-Samii, An overview of fractal antennaengineering research, IEEE Antennas Propag Mag44(2002),20-36.
    [210] Douglas Werner H, and Suman Ganguly, An Overview of Fractal AntennaEngineering Research, IEEE Antennas Propag Mag,2003, pp.38-57.
    [211] K. J. Vinoy, J. K. Abraham, and V. K. Varadan,“On the relationship betweenfractal dimension and the performance of multi-resonant dipole antennas usingkochcurv es,” IEEE Trans. Antennas Propagat., vol.51, pp.2296–2303, Sept.2003.
    [212]陈宝林,最优化理论与算法,清华大学出版社,2005年.
    [213] K. Y. Lee and M. A. El-Sharkawi, Eds., Modern Heuristic OptimizationTechniques with Applications to Power Systems: IEEE Power Engineering Society(02TP160),2002.
    [214] Vesterstrom J., Thomsen R., A comparative study of differential evolution,Particle swam optimization and evolutionary algorithms on numerical benchmarkProblems [A], Congress on Evolutionary Computation [C],2004,1980-1987.
    [215] T. Itoh,“Spectral domain immitance approach for dispersion characteristics ofgeneralized printed transmission lines,” IEEE Trans. Microw. Theory Tech., vol.28,no.7, pp.733–736, Jul.1980.
    [216] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A PracticalApproach to Global Optimization (Natural Computing Series),1st ed. New York:Springer,2005, ISBN:3540209506.
    [217] U. K. Chakraborty, Advances Differential Evolution, Heidelberg, Germany:Springer-Verlag,2008.
    [218] J. Brest and M. S. Mauèec,“Population size reduction for the differentialevolution algorithm,” Appl. Intell., vol.29, no.3, pp.228–247, Dec.2008.
    [219] J. Teo,“Exploring dynamic self-adaptive populations in differential evolution,”Soft Comput. A Fusion Found. Methodol. Applicat., vol.10, no.8, pp.673–686,2006.
    [220] J. Liu and J. Lampinen,“A fuzzy adaptive differential evolution algorithm,”Soft Comput. A Fusion Founda. Methodol. Applicat., vol.9, no.6, pp.448–462,2005.
    [221] A. K. Qin, V. L. Huang, and P. N. Suganthan,“Differential evolution algorithmwith strategy adaptation for global numerical optimization,” IEEE Trans. Evol.Comput., vol.13, no.2, pp.398–417, Apr.2009.
    [222]高岳林,刘俊芳,自适应差分进化算法.河北工程大学学报(自然科学版),2008,12,25(4),107-109.
    [223]颜学峰,余娟,钱峰等,基于改进差分进化算法的超临界水氧化动力学参数估计,华东理工大学学报(自然科学版),2006,01,23(1),94-97.
    [224]吴亮红,王耀南,袁小方等,自适应二次变异差分进化算法,控制与决策,2006,08,21(8),898-902.
    [225]邓泽喜,曹敦虔,刘晓冀等,一种新的差分进化算法,计算机工程与应用,2008,44(24),40-42.
    [226] A. Engelbrecht,and G. Pamparfi,Binary differential evolutionstrategies.Proceedings of the IEEE Congress on Evolutionary Computation,Singapore,PP.1942-1947,2007.
    [227] G.W.Greenwood,Using differential evolution for a subclass of graph theoryproblems,IEEE Trans.Ev01.Comput.,v01.13,PP.190-1192,2009.
    [228] Zhang, L., Y.-C. Jiao, Z.-B. Weng, and F.-S. Zhang,"Design of planar thinnedarrays using a boolean differential evolution algorithm," IET Microwaves,Antennas&Propagation, Vol.4,2172-2178,2010.
    [229] Hang Zhou, Shaobo Qu, Zhuo Xu, Jiafu Wang, Hua Ma, Weidong Peng,Baoqin Lin, and Peng Bai,“A Triband Second-Order Frequency Selective Surface,”IEEE Antennas Wirel. Propag. Lett. VOL.10,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700