内燃机故障诊断若干理论与相关技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机是工农业生产中的主要动力机械之一,它在石油钻井、船舶、汽车、铁路、农业、工程建筑等方面获得了广泛应用,其运行状态的好坏,直接影响到整个机组的工作状态。因此,对其状态监测和故障诊断,确保系统正常、安全运行,处于最佳运行工况,提高设备的维修质量和效率是十分必要的,并且也具有重要的经济意义。
     内燃机故障诊断技术是利用内燃机的状态信息和历史状况,通过分析和处理来定量识别其实时技术状态并预测异常故障未来技术状态的一门建立在多学科基础上的综合技术。本研究试图从工程应用的角度出发,以内燃机为研究对象,将经验模式分解、蚁群算法、支持向量机、混沌、模糊聚类、非线性振动、随机振动以及动力可靠性等先进理论和技术相结合,对内燃机振动信号降噪、故障特征信息提取、状态识别、状态预测、动力学特性以及可靠性评价等多个方面的问题进行了系统的研究。主要研究工作如下:
     (1)针对经验模式分解(Empirical Mode Decomposition,简称EMD)中存在的包络线拟合问题,提出一种改进三次样条插值算法,仿真实验表明,该方法较好地解决了三次样条插值算法容易引起的过冲和欠冲现象,将其与能够有效抑制端点效应的包络极值延拓法相结合,可以提高EMD在信号特征提取中的合理性和准确性。
     (2)支持向量机(Support Vector Machine,简称SVM)中参数的选择将直接影响分类和预测准确率,为避免传统的网格搜索参数带来的时间消耗和搜索范围难于确定问题,将具有良好优化性能的蚁群优化技术应用到支持向量机惩罚函数和核函数参数的优化,提出了蚁群支持向量机方法。通过蚁群参数优化和网格搜索参数优化的仿真实验表明:蚁群参数优化算法比网格搜索算法能更快更优的搜索到SVM的主要参数。
     (3)针对内燃机故障振动信号的非线性、非平稳特征以及内燃机故障诊断中难以获得大量典型故障样本的实际情况,提出基于固有模态混沌特征和SVM的内燃机故障诊断方法。实验结果表明,与直接从原始信号中提取混沌特征相比,固有模态混沌特征更能够有效描述原始信号的非线性、非平稳的特征,与SVM相结合,解决了内燃机故障诊断中难以获得大量典型故障样本的实际困难。
     (4)针对内燃机故障振动信号的非平稳性,同时考虑到对于同一类型的故障而言,故障状态的变化往往是一个渐变的过程,很难从特征量上直观地分辨出故障的变化程度,因此提出一种将固有模态能量比和模糊聚类相结合的内燃机故障诊断方法。实验结果表明,将固有模态函数的能量比作为故障诊断的特征量,能够反映各频带内隐含的故障特征信息,与改进的模糊C-均值聚类算法相结合,同时解决了具有模糊性的故障类型的辨识问题。
     (5)为了解决神经网络预测方法易陷入局部最小值、精度与泛化不可调和的矛盾,将SVM方法应用到内燃机状态预测;通过引入相空间重构的方法,解决了用于建立SVM预测模型所需输入矩阵构建的不合理性;采用EMD方法对原始信号进行降噪处理,不仅可以克服小波变换对小波基选取的依赖性,更重要的是为相空间重构过程中准确计算振动信号时间序列嵌入维数和时间延迟奠定基础,实验结果表明,该方法综合了现有方法各自的优点,能够比较准确地预测内燃机振动信号的变化趋势,性能优于传统的分析方法,对内燃机状态预警具有一定的参考意义。
     (6)考虑了轴系的质量偏心、变转动惯量、活塞与气缸间的非线性于摩擦和非线性弹性恢复力等因素,利用拉格朗日方程建立了内燃机轴系弯扭耦合非线性动力学模型,分别应用数值积分方法和解析方法对轴系的非线性动力学特性进行了仿真。结果表明:质量偏心、变转动惯量和活塞与气缸间的非线性干摩擦对轴系的非线性振动行为都有不同程度的影响。所得结论为改善系统动力学特性,保证内燃机安全稳定运行提供了理论依据。
     (7)综合考虑内燃机轴系激振力矩复杂、随机性的特点,引入精确高效的虚拟激励法,对内燃机轴系在非平稳随机激励作用下的动力特性进行了系统的研究,并基于首次超越破坏准则数学模型,分析了轴系在随机载荷作用下的动力可靠性问题。仿真结果表明:发火间隔角、随机激励的强度和传递路径对轴系动力可靠性都有一定影响,所得结论从定性的角度为降低轴系振动、延长使用寿命提供了参考。
Internal combustion engine(ICE) is one of the main power machinery in industrial and agricultural production, which is widely applied in oil drilling, marine, automotive, railway, agriculture, engineering and construction, etal. Its operation has a driect impact on working status of the entire unit. Therefore, its condition monitoring and fault diagnosis, to ensure the system operating normally, in the best conditions and improve the quality and efficiency of the maintenance of equipment is necessary, and also have important economic significance.
     Fault diagnosis technology of ICE is an integrated technology based on a multidisciplinary basis, and the real-time and future technical status can be identified and forecasted quantitatively by analyzing and processing status information and historical conditions of ICE. The research regards ICE as the research object from the engineering application perspective, and vibation signal de-noising, faults feature extraction, pattern recognition, condition prediction, dynamic characteristics and reliability evaluation are systematically studied based on integrating some advanced theories and techniques such as the empirical mode decomposition, ant colony algorithm, support vector machine, chaos, fuzzy clustering, nonlinear vibration, random vibration and dynamic reliability. The main research works are as follows:
     (1) For the envelope fitting problem existing in empirical mode decomposition(EMD), a modified cubic spline interpolation algorithm was proposed. Simulation experiments showed that the method can solve the cubic spline interpolation algorithm easily resulting in the phenomena of overshoot and undershoot, and which can improve reasonableness and accuracy of EMD in the signal feature extraction by combined with extremum envelope extension method which can effectively inhibit end effect.
     (2) Parameters of support vector machine(SVM) will directly affect the classification and prediction accuracy, in order to avoid the traditional grid search parameters bringing the time consuming and determining research scope difficultly, an ant colony optimization was used to select parameters of SVM; and a novel algorithm "ant colony optimization support vector machine"(ACO-SVM) was put forward, and compared with grid search parameter optimization. Simulation experiments showed that ant colony optimization algorithm can search the main parameters of SVM faster and better than the grid search algorithm.
     (3) For the non-linear and non-stationary characteristics of fault vibration signals of ICE and the difficulty to obtain a large number of fault samples in practice, a fault diagnosis scheme for ICE was proposed by using SVM and chaos characteristics based on intrinsic mode function(IMF). Experimental results showed that compared with extracting the chaos characteristics directly from the original signal, the chaos characteristics of IMF are more able to effectively describe the non-linear and non-stationary characteristics of the original signals, and the practical difficulty to obtain a large typical number of fault samples is solved by combined with SVM.
     (4) For the non-stationary characteristics of fault vibration signals of ICE, while considering the fault status changing was often a gradual process for the same fault type, it was difficult to visually distinguish the changing degree of fault by the features. A new method was presented for the fault diagnosis of ICE based on the energy ratios of IMF and fuzzy clustering. Experimental results showed that taking the energy ratios of IMF as the characteristics for the fault diagnosis of ICE, which can reflect the underlying fault features in different bands, and identification problem of fuzzy fault type is solved by combined with improved fuzzy C-means clustering algorithm at the same time.
     (5) In order to solve the neural network prediction method easily falling into local minimum and the contradictions between the precision and generalization, SVM was applied into the ICE condition prediction; the problem that the required input matrix for building SVM prediction model was unreasonable can be solved based on phase-space reconstruction method; The EMD using the original signal de-noising can not only overcome the dependence on the wavelet basis in wavelet transform, and which can lay the foundation for accurately calculating embedding dimension and time-delay of vibration signals in the process of phase-space reconstruction. Experimental results showed that the method combines the advantages of the existing methods, and is able to accurately predict the trends of ICE vibration signals, the performance is superior to the traditional analysis methods, it has a certain reference significance for status early-warning of ICE.
     (6) A coupled bending-torsional nonlinear dynamic model for crankshaft system of ICE was established by considering mass eccentricity, varied inertia and nonlinear dry friction as well as nonlinear elasticity between piston and cylinder. The nonlinear dynamic characteristics of the shafting were simulated by numerical integration method and analytical method respectively, The results showed that the mass eccentricity varied inertia and nonlinear dry friction between piston and cylinder have some effects on the nonlinear vibration of the shafting. The conclusions provide a theoretical basis for improving the dynamic characteristics of the system and ensuring safe and stable operation of ICE.
     (7) For the complicated and random characteristics of the exciting torque on the shafting of ICE, the dynamic characteristics of the shafting subjected to the non-stationary random excitation were studied by the accurate and efficient pseudo-excitation method, and the dynamic reliability of the shafting subjected to random loads was analyzed based on first excursion failure criterion model. The simulation results showed that fire angle, intensity and transfer paths of excitations have effects on the dynamic reliability of the shafting, and the conclusions provide a qualitative reference for reducing shafting vibration and prolonging service life.
引文
1.伍学奎.基于信息融合的故障诊断理论与方法及其在内燃机中的应用[D],武汉:武汉交通科技大学,1998.
    2.陈怡然.现代信号处理技术在内燃机振动诊断中的应用[D],武汉:武汉交通科技大学,1998.
    3.黄文虎,夏松波,刘瑞炎.设备故障诊断原理、技术与应用[M],北京:科学出版社,1996,25-26.
    4. Hernqvist M. Main engine damage from insurer's point of view[C], CoPenhgaen: CIMAC Congress,1998:295-302.
    5.虞和济,韩庆大,李沈,等.设备故障诊断工程[M],北京:冶金工业出版社,2001,36-37.
    6.徐敏,黄昭毅.设备故障诊断手册——机械设备状态监测与故障诊断[M],西安:西安交通大学出版社,1998,41-43,
    7.梁价,雷拳忠.内燃机的振动问题[M],天津:天津大学出版社,1989,20-22.
    8. Jones N B, Li Y H. Review of condition monitoring and fault diagnosis for diesel engines[J]. Journal of Synthetic Lubrication and TriboTest,2000,6(3):267-292.
    9.斯坦尼斯拉夫斯基著,李新敏,张均享译.柴油机技术诊断[M],北京:国防工业出版社,1989,38-40.
    10.张建俊.汽车监测与故障诊断技术[M],北京:机械工业出版社,1999,12-15.
    11.徐章遂,房立清,王希武,等.故障信息诊断原理及应用[M],北京:国防工业出版社,2000,14-18.
    12.蔡畅,胡政,宋立军.柴油机状态监测与故障诊断系统[J],兵工自动化,2006(2):76-79.
    13.蔡畅,胡政,宋立军.柴油机状态监测与故障诊断系统[J],兵工自动化,2006(2):76-79.
    14.段礼祥,张来斌,王朝晖.柴油机状态监测与故障诊断特征参数研究[J],车用发动机,2007(1):76-79.
    15.肖建昆,郁飞.柴油机状态在线监测与故障诊断系统开发[J],江苏科技大学学报(自然科学版),2006,20(1):78-81.
    16.郭江华,侯馨光,陈国钧,等.船舶柴油机故障诊断技术研究[J],中国航海,2005(4):75-78.
    17.张依群,季陆强.船舶柴油机故障诊断专家系统不精确推理模型研究[J],船海工程,2004(2):16-18.
    18.于怒涛,宁乾冰,李宗立,等.船舶主机状态监测和故障诊断研究[J],柴油机, 2006,28(2):20-23.
    19.苟军,熊静琪.灰色关联度在柴油机故障诊断中的应用与改进[J],车用发动机,2007(1):72-75.
    20.郭文勇,朴甲哲,张永祥.基于多信息的柴油机缸套磨损故障诊断研究[J],海军工程大学学报,2005,17(1):67-70.
    21.李小三,崔文彩.浅析分形理论在机械设备故障诊断中的应用[J],华北科技学院学报,2006,3(4):57-61.
    22.张维新,张俊峰.柴油机故障诊断技术趋向分析[J],天津航海,2005(2):16-18.
    23.程勒.利用噪声频谱进行风机故障诊断[J],无损检测,2002,24(4):162-163.
    24.李建平,魏宝钢.转子的声学特性及分形判别[J],农业工程学报,2006,22(3):15-18.
    25. Donoho D L. Adapting to unknown smoothness via wavelet shrink[J], Journal of the American Statistical Association,1995,90(432):1200-1224.
    26. Donoho D L. De-noising by soft-thresholding[J], IEEE Transaction on Information, 1995,41(3):613-627.
    27. Donoho D L, Johnstone I M. Wavelet shrinkage:asymptopia[J], Journal of Royal Statistical Soeiety,1995,57(2):301-369.
    28.刘世元,杜润生,杨叔子.利用转速波动信号在线识别内燃机气缸压力的研究[J],内燃机工程,2000,21(3):37-43.
    29. Wang J, Pu L, wang Z. Fault detection in a diesel engine by analyzing the instantaneous angular speed[J], Mechanical Systems and Signal Processing,2001, 15(3):549-564.
    30. Brown T S, Neill W S. Determination of engine cylinder pressures from crankshaft speed fluctuations[M], SAE,1992,102-104.
    31. Connoly F T, Rizzoni G. Real time estimation of engine to torque for the detection of engine misfires[J], ASME Journal of Dynamic Systems, Measurement and Control, 1994,17(1):20-30.
    32. Zhang L W, Liu W G, Zhang F, et al. Diagnosis of the working unevenness of each cylinder by the transient crankshaft Speed[M], SAE,1996,35-39.
    33.谭达明,秦萍,余欲为.柴油机工作过程故障诊断的基础研究[J],内燃机学报,1992,10(4):341-343.
    34.张海勇.一种新的非平稳信号分析方法—局域波分析[J],电子与信息学报,2003,25(10):1327-1332.
    35. Cetin A E. Signal recovery form wavelet transform maxima [M], IEEE Trans. SP, 1994,34-36.
    36. Mallat S, Zhong S. Characterization of signals form multi-scale edges[J], IEEE Transactions on Patiern Analysis and Machine Intelligence,1992,14 (7):710-732.
    37. Wu J D, Kuo J M. An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network[J], Expert Systems with Applications, 2009,36(6):9776-9783.
    38. Qi J T, Han J D. Application of wavelets transform to fault detection in rotorcraft UAV sensor failure[J], Journal of Bionic Engineering,2007,4(4):265-270.
    39. Richard B. An algorithm for the continuous Morlet wavelet transform[J], Mechanical Systems and Signal Processing,2007,21(8):2970-2979.
    40.夏勇,张振仁,商斌梁,等.基于小波分析与气缸压力的气门故障诊断[J],内燃机工程,2001,22(1):22-28.
    41.张海勇,马孝江,盖强.一种新的时频分析方法[J],火力与指挥控制,2000, 25(3):39-42.
    42. Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrumfor nonlinear and non-stationary time series analysis[J], Proceedings of the Royal Society of London,1998, (454):903-995.
    43. Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:the hilbert spectrum [J], Annual Review of Fluid Mechanics,1999,31:417-457.
    44.程军圣.基于Hilbert-Huang变换的旋转机械故障诊断的研究[D],长沙:湖南大学,2005.
    45.胡劲松,杨世锡,吴昭同,等.基于EMD的旋转机械振动信号Winger分布分析[J].机床与液压,2003,(5):237-238.
    46.胡劲松,杨世锡.基于HHT的转子冲临界过程分析[J],汽轮机技术,2004,46(3):196-198.
    47.杨世锡,胡劲松,吴昭同,等.旋转机械振动信号基于EMD的希尔伯特变换和小波变换的时频分析比较[J],中国机电工程学报,2003,23(6):102-107.
    48.范荫,王学合,孟昭昕.柴油机工作过程故障灰色诊断专家系统[J],内燃机工程,2000,(2):5-10.
    49.王学合,黄震,范荫.柴油机故障灰色诊断系统研究[J],柴油机,2000,(5):31-35.
    50.孙颖楷,陈海.基于灰色系统理论的内燃机故障诊断[J],贵州工业大学学报(自然科学版),2000,29(5),80-83.
    51.杨广,吴晓平.基于模糊综合评价法的舰船柴油机故障诊断研究[J],舰船科学技术,2004,26(6):25-28.
    52. Kalaba R, Tesfatsion L. Solving nonlinear equations by adaptive homotopy continuation [J], Appl.Math.Comput,1991,41:99-115.
    53.王毅兵,张强,刘晓东.AFS结构分解算法及其在复杂系统故障诊断中的应用[J],模糊系统与数学,2005(3):134-140.
    54. Logan D, Mathew J. Using the correlation dimension for vibration fault diagnosis of rolling element bearings——I. Basic Concepts [J], Mechanical Systems and Signal Processing,1996,10(3):241-250.
    55. Liu L, Li L, Shen Y H. Vibration analysis of diesel's combustion based on fractal theory[J], Journal of University of Science and Technology Beijing,1996,3(2): 103-106.
    56. Martinez-Lopez F, Cabrerizo-Vilchez M A, Hidalgo-Alvarez R. An improved method to estimate the fractal dimension of physical fractals based on the hausdoff definition[J], Physica A:Statistical Mechanics and its Applications,2001,298(3): 387-399.
    57.廖明,石博强,张文明,等.分形在柴油机燃油系统故障诊断中的应用[J],北京科技大学学报,1998,20(5):417-420.
    58.张克辉,黄荣华,欧阳光耀,等.分形学在柴油机燃油系统故障诊断中的应用[J],华中科技大学学报,2002,30(2):40-42.
    59.夏勇,张振仁,商斌梁.内燃机振动信号的混沌分形特性研究[J],振动与冲击,2001,20(2):64-66.
    60.夏勇,张振仁,商斌梁,等.多重分形维数谱及其在内燃机故障诊断中的应用[J],机械,2000,27(S1):37-42.
    61.王悦民,魏强,潜伟建.神经网络在柴油机故障诊断中的应用研究[J],系统工程理论与实践,2001,(10):52-57.
    62. Gu F,Jacob P J,Ball A D. A RBF neural network model for cylinder pressure reconstruction in internal combustion engines[C], IEE Colloquium on Modelling and Signal Processing for Fault Diagnosis,1996,1-11.
    63. Du H, Zhang L, Shi X. Reconstructing cylinder perssurer from vibration signals based on radial basis function newtorks[J], Proceedings of Institution of Mechanical Engineers, Part D:Jounral of Automobile Engineering 2001,215(6):761-767.
    64. Lucas A, Duran A, Carmona M. Modeling diesel particulate emissions with neural networks[J], Fuel Science,2001,80(4):539-548.
    65.张来斌,刘守道,王朝晖.基于神经网络的柴油机燃烧系统故障诊断[J],内燃机学报,2000,13(4):370-374.
    66. Efron B. Computers and the theory of statistics:thinking the unthinkable[J], SIAM Review,1979(4):460-480.
    67.余世林,朱国宝,邓军,等.基于规则推理的船艇柴油机故障诊断专家系统[J],船海工程,2005(2):40-42.
    68.范金宇,黄加亮.神经网络技术在船舶柴油机故障在线诊断中的应用研究[J],中国修船,2006(6):49-52.
    69.张贺,申东日,陈义俊,等.一种改进的同伦BP算法及其在故障诊断中的应用研究[J],计算机测量与控制,2005(3):235-236.
    70.朱志宇,刘维亭.基于支持向量机的船舶柴油机故障诊断[J],船舶工程,2006(5):31-33.
    71.梁锋,杨林,谭文春,等.高压共轨式电控柴油机故障诊断策略仿真研究[J],内燃机学报,2004(6):532-537.
    72.李玩幽,张志谊,华宏星.利用载荷识别技术诊断柴油机熄火故障[J],上海交通大学学报,2005(2):186-189.
    73.盖强,马孝江,张海勇,等.一种消除局域波法中边界效应的新方法[J],大连理工大学学报,2002,42(1):115-117.
    74.张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题[J],自然科学进展,2003,13(10):1054-1059.
    75.邓拥军,王伟,钱成春.EMD方法及Hilbert变换中边界问题的处理[J],科学通报,2001,46(3):257-263.
    76.陈忠,郑时雄.EMD信号分析方法边缘效应的分析[J],数据采集与处理,2003,18(1):114-118.
    77.黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点延拓[J],海洋学报,2003,25(1):1-11.
    78.颜根廷,李传江,马广富.基于混合遗传算法的支持向量机参数选择[J],哈尔滨工业大学学报,2008,40(5):688-691.
    79.曹成涛,徐建闽.基于PSO-SVM的短期交通流预测方法[J],计算机工程与应用,2007,43(15):12-14.
    80. Cristianini N, Taylor J S支持向量机导论(第1版)[M].李国正译.北京:电子工业出版社,2004,25-35.
    81. Haykin S. Neural Network,A Comprehensive Foundation(第2版)[M].叶世伟,史忠植译.北京:机械工业出版社,2004,50-52.
    82. Scholkopf B, Mika S, Burges C J C, et al. Input space versus feature space in kernel-based methods[J], IEEE Trans on Neural Networks.1999,10(5):1000-1017.
    83. Boser B E, Guyon I M, Vapnik V N. "A training algorithm for optimal margin classifiers," in Proceedings of the Fifth Annual Workshop on Computational Learning Theory[C], Pittsburgh, Pennsylvania, United States:ACM Press,1992:144-152.
    84. Smola A J, Scholkopf B. A tutorial on support vector regression[J].Statistics and Computing,2004,14(3):199-222.
    85. Keerthi K, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J], Neural Computation,2003,15(3):1667-1689.
    86. Lin H, Lin C J. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods[EB/OL], Department of Computer Science, National Taiwan University,2003. http://www.csie.ntu.edu.tw/-cjlin/papers.html
    87. Chuang C C, Su S F. Robust support vector regression networks for function approximation with outliers[J], IEEE Transaction on Neural Networks,2002,13(6): 1322-1330.
    88.袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J],控制与决策,2006,21(1),111-113.
    89.吴斌,赵燕伟.蚁群算法的研究现状[J],自动化仪表,2004,25(1):1-4.
    90.吴启迪,汪镭.智能蚁群算法及应用[M],上海:上海科技教育出版社,2004,32-38.
    91. Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vector machines[J], Machine Learning,2002,46(1):131-160.
    92.宋红英.基于蚁群神经网络的发动机故障诊断的专家系统的研究[D],北京:中国农业大学,2005.
    93.李京林.基于蚁群算法的改进神经网络在变压器故障辨识中的应用研究[D],南京:南京理工大学,2007.
    94. Newman D, Hettich S, Blake C, et al. UCI repository of machine learning databases. Dept of information and computer sciences[EB/OL], University of California, Irvine, 1998. http://www.ics.uci.edu/-mlearn/MLRepository.html
    95. Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification. Technical report[EB/OL], Department of Computer Science, National Taiwan University,2003. http://www.csie.ntu.edu.tw/-cjlin/
    96.刘世元.基于瞬时转速与缸盖振动信号的内燃机故障诊断方法研究[D],武汉:华中理工大学,1998.
    97.周轶尘,彭勇.发动机缸盖系统振动特性研究[J],内燃机学报,1988,6(1):49-56.
    98.周春林.基于浑沌特征的柴油机状态振动监测[J],振动与冲击,2000,19(2):46-51.
    99.王祝平.基于EMD、关联维数及神经网络的内燃机故障诊断系统的研究[D],武汉:华中农业大学,2007.
    100.张学工.关于统计学习理论与支持向量机[J],自动化学报,2000,26(1):32-42.
    101. Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series[J], Phys.Rev.Lett,1980,45:712-716.
    102.Grassberger P, Procaccia I. Measuring the strangeness of strange attractors [M], Physica D:Nonlinear Phenomena,1983,31-36.
    103. Wolf A. Quantifying chaos with Lyapunov exponents. In:chaos[M], Manchester University Press,1986,52-55.
    104.杨志红,姚琼荟.混沌系统最大Lyapunov指数估计新方法研究[J],计算技术与自动化,2005,(2):31-32.
    105.Takens F. Determting strange attractors in turbulence[C]. Lecture notes in Math, 1981,898:361-381.
    106.吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M],武汉:武汉大学出 版社,2002,59-71.
    107. Grassberger P, Procaccia I. Characterization of strange attractors[J], Phys. Rev. Lett, 1983,50(5):346-349.
    108.赵贵兵,石炎福,段文锋,等.从混沌时间序列同时计算关联维和Kolmogorov熵[J],计算物理,1999,16(3):309-315.
    109.Rosenstein M T, Collins J J, De luca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J], Physica D,1993,65:117-134.
    110. Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J], Physica D,1985,16 (3):285-317.
    111.邱影.柴油机基于振动分析方法的状态识别[D],沈阳:东北大学,2005.
    112.刘世元,杜润生,杨叔子.内燃机缸盖振动信号的特性与诊断应用研究[J],华中理工大学学报,1999,27(7):48-50.
    113. Weisbin C R, Saussure G, Barhen J, et al. Minimal cut-set methodology for artificial intelligence applications[C], Conference on Artificial Intelligence Applications, USA,1984,1-5.
    114.Narayanan N H, Viswanadham N. A methodology for knowledge acquisition and reasoning in failure analysis of systems[J], IEEE Transactions on System, Man and Cybernetics,1987,17(2):274-288.
    115.1verson D L, Patterson H F A. A diagnosis system using object-oriented fault tree models[C], Fifth Conference on Artificial Intelligence for Space Applications, USA,1990:341-349.
    116. Walker I D, Cavallaro J R. Failure mode analysis for a hazardous waste clean-up manipulator [J], Reliability Engineering and System Safety,1996,53:277-290.
    117.Khodabandehlehloo A. Analyses of robot systems using fault and event tree, case studies[J], Reliability Engineering and System Safety,1996,53:247-264.
    118.姜周曙,胡亚才,屠传经.FTA在溴化锂吸收式制冷机故障诊断中的应用[J],浙江大学学报(工学版),2001,35(2):209-213.
    119.潘昊,陈杰,钟珞.BP神经网络结构与样本训练参数选取的初步探讨[J],湖北工学院学报,1997,12(3):1-4.
    120.张雨.关联维分形与模糊聚类在柴油机工作状态监测中的应用[J],内燃机学报,1998,16(2):208-213.
    121.王清.基于模糊聚类和灰色理论的齿轮箱故障诊断研究[D],太原:中北大学,2006.
    122.曹谢东.模糊信息处理及应用[M],北京:科学技术出版社,2003,34-38.
    123.陈小玄.发电机转子绕组匝间短路及转子支承轴系故障诊断方法的研究[D],长沙:中南大学,2007.
    124.Sabin M J. Convergence and consistency of fuzzy c-means//ISODAITA algorithms[J]. IEEE Trans.PAMI,1987,9(5):661-668.
    125.Nikhil R P, James C B. One cluster validity for fuzzy c-means model[J], IEEE Trans. FS.1995,13(3):370-379.
    126.高新波,裴继红,谢维信.模糊c均值聚类算法中加权指数m的研究[J],电子学报,2000,28(4):80-83.
    127.杨忠.内江电业局变压器绝缘故障模糊聚类诊断技术及应用研究[D],重庆:重庆大学,2004.
    128.林瑞霖,周平.基于EMD和神经网络的气阀机构故障诊断研究[J],海军工程大 学学报,2008,20(2):48-52.
    129. Tay F E H, Cao L J. Application of support vector machines in financial forecasting[J]. Omega,2001,9(4):309-317.
    130. Lv G Y, Cheng H Z, Zhai H B, et al. Fault diagnosis of power transformer based on multi-layer SVM classifier [J], Electric Power Systems Research,2005,75(1):9-15.
    131. Yang Y, Yu D J, Cheng J S. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM[J], Measurement,2007,40(9-10):943-950.
    132. Widodo A, Yang B S. Support vector machine in machine condition monitoring and fault diagnosis[J], Mechanical Systems and Signal Processing,2007,21(6): 2560-2574.
    133.杜京义,候媛彬.基于最小风险的SVM及其在故障诊断中的应用[J],振动、测试与诊断,2006,26(2):108-111.
    134.吴德会.一种基于支持向量机的齿轮箱故障诊断方法[J],振动、测试与诊断,2008,28(4):338-342.
    135.侯澍旻,李友荣,刘光临.基于支持向量机的设备振动信号趋势预测[J],湖北工业大学学报,2006,21(3):12-17.
    136.王革丽,杨培才,毛宇清.基于支持向量机方法对非平稳时间序列的预测[J],物理学报,2008,57(2):714-719.
    137.王红军,张建民,徐小力.基于支持向量机的机械系统状态组合预测模型研究[J],振动工程学报,2006,19(2):242-245.
    138.王洪波,朱启兵.基于EMD和LS-SVM的非平稳振动信号趋势预测[J],计算机工程与应用,2008,44(6):157-159.
    139.张亮,杜海平,史习智.基于小波分析的柴油机振动信号降噪处理[J],数据采集与处理,2000,15(4):521-524.
    140.邢丽华,鄂加强,禚爰红,等.基于EMD方法的柴油机振动信号去噪声处理[J],能源技术,2008,29(1):12-15.
    141.胡红英.局域波分解方法、特征剖析及应用研究[D],大连:大连理工大学,2006.
    142.舒歌群,吕兴才.高速柴油机曲轴扭转—纵向耦合振动的研究[J],兵工学报,2002,23(1):1-5.
    143.史百战,孙启国.内燃机曲轴的弯扭耦合非线性振动分析[J],兰州交通大学学报(自然科学版),2005,24(6):5-9.
    144.吴明赞,陈森发.柴油机曲轴运转的非线性振动与混沌[J],船舶工程,2002,20(1):10-13.
    145.陈予恕.非线性振动[M],北京:高等教育出版社,2002,30-31.
    146.朱向哲,袁惠群.柴油机曲轴轴系非线性振动特性的数值研究[J],内燃机工程,2009,30(3):65-69.
    147.史百战,孙启国.内燃机曲轴的弯扭耦合非线性振动分析[J],兰州交通大学学报(自然科学版),2005,24(6):5-9.
    148.辛宇辉CY4102BZQ柴油机轴系动态特性研究及有限元分析[D],天津:天津大学,2003.
    149.储德文,王元丰.精细直接积分法的积分方法选择[J],工程力学,2002,19(6):115-119.
    150.钟万勰.结构动力方程的精细时程积分法[J],大连理工大学学报,1994,34(2):131-136.
    151.李桂青,曹宏,李秋胜,等.结构动力可靠性理论及其应用[M],北京:地震出 版社,1993,63-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700