发酵过程多目标协同优化控制方法及系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物发酵是生化工程和现代生物技术及其产业化的基础。随着现代生物技术的快速发展,发酵工业生产规模的不断扩大,迫切需要通过优化控制方法提高发酵过程的生产率和生产水平。早期的发酵过程单目标优化控制无法同时考虑发酵过程的产品产量、底物消耗、发酵时间等多个生产指标。发酵过程多目标优化控制是提高发酵过程生产水平和经济效益的有效途径。现有的基于线性加权的发酵过程多目标优化控制方法需人为设定目标权值,因人为因素影响优化效果,仅适用于不存在冲突关系的多目标问题。多目标进化算法(MOEA)基于较大尺寸种群寻优,且需较大进化代数,存在大量目标函数评估计算,难以处理包含大规模数据集的发酵过程多目标优化控制问题。此外,在发酵过程多目标优化控制中,多目标优化问题的求解包括产生近似Pareto前沿的多目标优化和选择偏好解的决策。已有的多目标优化与决策集成方法存在计算量大、运算时间长、易造成最优解遗漏等问题。因此,研究更为高效的多目标优化与决策集成方法,进而实现发酵过程的多目标协同优化控制,对于进一步提高发酵过程的生产水平具有重要的理论意义和应用价值。
     本文在详细分析发酵过程优化控制及多目标优化问题求解方法研究现状的基础上,对发酵过程多目标协同优化控制方法及系统进行研究。
     提出了一种基于交互式多目标优化与决策和多控制器协同控制的发酵过程多目标协同优化控制方法。通过Pareto前沿离散、连续近似和多属性决策的交互式调用,实现了在仅需较小计算量和较短运算时间的前提下,基于完整近似连续Pareto前沿产生具有较高精度的偏好解,并通过基于切换策略的发酵过程多控制器协同控制,有效地提高了发酵过程优化控制的控制精度、灵活性、适应性;在此基础上,给出了发酵过程多目标协同优化控制系统结构及各功能模块实现流程。
     提出了一种基于几何支持向量回归(GSVR)的Pareto前沿连续近似方法。首先,给出一种基于群能量守恒多目标粒子群优化(SEC-MOPSO)的Pareto前沿离散近似方法,通过引入群能量守恒机制提高种群的搜索能力,使小尺寸近似离散Pareto前沿具有较好的分布性和多样性;进而,通过建立小尺寸离散Pareto前沿的GSVR模型,实现了Pareto前沿的连续近似;结合Pareto最优点的分布特征,给出一种沿多轴平移的扩展训练样本集构建方法,解决了沿单轴平移无法获得可分扩展训练样本集问题。结合典型测试函数的实验结果表明,基于SEC-MOPSO的Pareto前沿离散近似方法能产生具有较好分布性和多样性的小尺寸近似离散Pareto前沿,基于GSVR的Pareto前沿连续近似方法能产生较为完整、精确的近似连续Pareto前沿。
     针对发酵过程的优化控制问题,结合发酵过程的时变性、不确定性,提出了一种基于预测切换策略的发酵过程多控制器协同控制方法。通过提出一种基于非线性二次高斯(NLQG)的发酵过程预测控制方法,将扩展Kalman滤波器(EKF)与非线性二次调节器(NLQR)串联构建NLQG控制器;根据控制性能指标预测多个控制器的切换规律,实现多控制器协同控制。结合典型非线性系统的实验结果表明,所提出的发酵过程预测控制方法对于设定值变化具有良好的跟踪效果,对不同噪声环境所引起的干扰具有较强的鲁棒性,采用多控制器协同控制方法可以有效地提高控制精度。
     结合工业酵母分批补料发酵过程和青霉素分批补料发酵过程,对发酵过程多目标协同优化控制方法及系统进行了实验研究。实验结果表明,本文所提出的发酵过程多目标协同优化控制方法解决了发酵过程多目标优化控制所存在的计算量大、运算时间长、易造成最优解遗漏等问题,实现了发酵过程多个生产指标的最优权衡,获得了良好的优化控制效果,在发酵过程优化控制领域有着广泛的应用前景。
Fermentation is the basis of bioengineering, modern biotechnology andtheir industrialization. With the rapid development of modern biotechnologyand the continually expanding of production scale of fermentation industry, itis urgent to improve the productivity and production quality of fermentationprocess by optimization control methods. The early single objectiveoptimization control for fermentation process can not deal with a number ofproduction indexes such as production output, substrate cost, fermentationtime in fermentation process at the same time. The Multi-ObjectiveOptimization (MOO) control for fermentation process is an effect way toimprove the production quality and benefits of fermentation process. Theexisting MOO control method for fermentation process based on linearweighted summation has the problem that the artificial weights of objectivesmay have negative impact on the results of optimization and only beappropriate for the case that the objectives are not competing with each other.Multi-Objective Evolutionary Algorithm (MOEA) applies large size population to search optimal solutions and needs a large number ofevolutionary generations, which lead to require substantial evaluations ofobjective functions and can not deal with MOO control problem which haslarge-scale data in fermentation process. Beside, in MOO control forfermentation process, the MOO which generates approximate Pareto front andthe Decision-Making (DM) which selects the preferred solution are two mainsub-tasks of solving MOO problem. However, the existing integrationmethods of MOO and DM have the problem of heavy computation burden,long running time and omitting optimal solutions. Therefore, the research ofmore efficient method for integrating MOO and DM in order to realize MOOcontrol for fermentation process has important theoretical significance andpractical applications value for further improving the production levels offermentation process.
     On the basis of analyzing the review and the current state of research inoptimization control for fermentation process and methods for solving MOOproblem, a multi-objective cooperative optimization control method andsystem for fermentation process is studied in this paper.
     A multi-objective cooperative optimization control method forfermentation process combining interactive MOO and DM withmulti-controller cooperative control is proposed. The discrete, continuousapproximation of Pareto front and Multi-Attribute Decision-Making (MADM)are invoked interactively, then a preferred solution which has high accuracy can be generated based on complete approximate continuous Pareto front withsmall computation and short running time; the control precision, flexibilityand adaptability of optimization control for fermentation process is improvedby multi-controller cooperative control based on switch strategy. On that basis,the architecture and each function module’s realization of multi-objectivecooperative optimization control system are given.
     A method for continuous approximation of Pareto front based onGeometric Support Vector Regression (GSVR) is proposed. At first, a methodfor discrete approximation of Pareto front based on Swarm EnergyConservation Multi-Objective Particle Swarm Optimization (SEC-MOPSO) isgiven. The swarm energy conservation mechanism is introduced for boostingthe exploration capability of swarm and improving the distribution anddiversity of small size discrete Pareto front. Then the continuousapproximation of Pareto front is realized by establishing the GSVR model ofsmall size discrete Pareto front. Considering the distribution characteristic ofPareto optimal points, a method for generating the augmented training samplesets by shifting the original training samples along multiple coordinated axis isgiven to solve the problem of unable to generate separable augmented trainingsample sets by shifting original training samples only along single coordinatedaxis. The experiments are carried out to classical test functions, the resultsshow that the small size approximate discrete Pareto front generated bySEC-MOPSO has good distribution and diversity. The method for continuous approximation of Pareto front based on GSVR can generate complete andaccurate approximate continuous Pareto front.
     For the optimization control problem, considering the time variety anduncertainty of fermentation process, a multi-controller cooperative controlmethod for fermentation process based on a predictive switching strategy isproposed. A predictive control method for fermentation process based onNon-Linear Quadratic Gaussian (NLQG) is proposed, the NLQG controller iscomposed of a Extended Kalman Filter (EKF) and a Non-Linear QuadraticRegulator (NLQR) which are connected in series; the switched law of anumber of controllers is predicted according to a control performance indexand the multi-controller cooperative control can be realized. The experimentsare carried out to a classical non-linear system, the results show that theproposed fermentation process predictive control method has good trackingeffect for the change of set value and strong robustness in different noisyenvironment. The multi-controller cooperative control method forfermentation process can enhance the control precision effectively.
     An industrial fed-batch yeast fermentation process and a penicillinfed-batch fermentation process are introduced to carry out the experimentalresearch on the multi-objective cooperative optimization control method andsystem for fermentation process. The results show that, the proposedmulti-objective cooperative optimization control method for fermentationprocess can solve the problem of large computation amount, long running time, omitting optimal solutions. The method can realize the optimal tradeoff amonga number of production indexes in fermentation process, obtain good controleffect and has wide application prospects in optimization control forfermentation process.
引文
[1] Betz G, Junker BP, Leuenberger H. Batch and continuous processing in the production ofpharmaceutical granules[J]. Pharmaceutical Development and Technology,2003,8(3):289-297.
    [2] Kumar R, Nanavati H, Noronha SB. A continuous process for the recovery of lactic acid byreactive distillation[J]. Journal of Chemical Technology and Biotechnology,2006,81(11):1767-1777.
    [3] Yuzgec U, Turker M, Hocalar A. On-line evolutionary optimization of an industrial fed-batch yeastfermentation process[J]. ISATransactions,2009,48(1):79-92.
    [4] Neeleman R. Biomass performance: Monitoring and control in biopharmaceutical production.[D].Netherlands: University of Wageningen,2002.
    [5] Kristensen N. Fed-batch process modeling for state estimation and optimal control[D]. Denmark:Technical University of Denmark,2002.
    [6] Schmidt FR. Optimization and scale up of industrial fermentation processes[J]. AppliedMicrobiology and Biotechnology,2005,68:425-435.
    [7] Chen YF, Wang FS. Crisp and fuzzy optimization of a fed-batch fermentation for ethanolproduction[J]. Ind Eng Chem Res,2003,42:6843-6850.
    [8] Chen LZ, Nguang SK, Chen XD, Li XM. Modelling and optimization of fed-batch fermentationprocesses using dynamic neural networks and genetic algorithms[J]. Biochemical EngineeringJournal,2004,22(1):51-61.
    [9] Desai KM, Akolkar SK, Badhe YP, Badhe SS, Lele SS. Optimization of fermentation media forexopolysaccharide production from Lactobacillus plantarum using artificial intelligence-basedtechniques[J]. Process Biochemistry,2006,41(8):1842-1848.
    [10] Zuo K, Wu WT. Semi-realtime optimization and control of a fed-batch fermentation system[J].Computers and Chemical Engineering,2000,24:1105-1109.
    [11] Lawrynczuk M. Online set-point optimisation cooperating with predictive control of a yeastfermentation process: A neural network approach[J]. Engineering Applications of ArtificialIntelligence,2011,24(6):968-982.
    [12] Andres-Toro B, Giron-Sierra JM, Fernandez-Blanco P, Lopez-Orozco JA, Besada-Portas E.Multi-objecitive optimization and multivariable control of the beer fermentation process with theuse of evolutionary algorithms[J]. Journal of Zhejiang University Science,2004,5(4):378-389.
    [13] Messac A. Physical programming: effective optimization for computational design[J]. AIAA J,1996,34(1):149-158.
    [14] Wang FS, Cheng WM. Simultaneous Optimization of Feeding Rate and Operation Parameters forFed-Batch Fermentation Processes[J]. BiotechnoProg,1999,15:949-952.
    [15] Yuzgec U. Performance comparison of differential evolution techniques on optimization offeeding profile for an industrial scale baker's yeast fermentation process [J]. ISA Transactions,2010,49(2010):167-176.
    [16] Vera J, Atauri P, Cascante M. Multicriteria optimization of biochemical systems by linearprogramming: application to production of ethanol by Saccharomyces cerevisiae[J]. BiotechnolBioeng,2003,83(3):335-343.
    [17] Sarkar D, Modak JM. Pareto-optimal solutions for multi-objective optimization of fed-batchbioreactors using nondominated sorting genetic algorithm[J]. Chemical Engineering Science,2005,60(2):481-492.
    [18] Halsall WH, Thibault J. MOO for chemical processes and controller design: Approximating andclassifying the Pareto domain[J]. ComputChemEng,2006,30(6-7):1155-1168.
    [19] Lee FC, Rangaiah GP, Ray AK. Multi-objective Optimization of an Industrial Penicillin VBioreactor Train Using Non-dominated Sorting Genetic Algorithm[J]. Biotechnology andBioengineering,2007,98(3):586-598.
    [20] Lee FC, Pandu RG, Lee DY. Modeling and optimization of a multi-product biosynthesis factoryfor multiple objectives[J]. Metabolic Engineering,2010,12(3):251-267.
    [21]牛大鹏,王福利.基于改进多目标差分进化算法的诺西肽发酵过程优化[J].控制理论与应用,2010,27(4):505-508.
    [22]李大字,宋天恒,靳其兵,谭天伟.分批补料发酵过程多目标优化的分布式强化学习策略[J].化工学报,2011,62(8):2243-2247.
    [23] Maiti SK, Lantz AE, Bhushan M, Wangikar PP. Multi-objective optimization of glycopeptideantibiotic production in batch and fed batch processes[J]. Bioresource Technology,2011,102(13):6951-6958.
    [24] Costa AC, Atala DIP, Maugeri F, Maciel R. Factorial design and simulation for the optimizationand determination of control structures for an extractive alcoholic fermentation[J]. ProcessBiochemistry,2001,37(2):125-137.
    [25] Miettinen KM. Nonlinear multiobjecitve optimization[M]. Boston: Kluwer,1999.
    [26] Blasco X, Herrero JM, Sanchis J, Martinez M. A new graphical visualization of n-dimensionalPareto front for decision-making in multiobjective optimization[J]. Information Sciences,2008,178(20):3908-3924.
    [27] Rosenberg RS. Simulation of genetic populations with biochemical properties[J]. MathematialBiosciences,1970,7(3-4):223-257.
    [28] Schaffer JD. Multiple objective optimization with vector evaluated genetic algorithms[D]:Vanderbilt University,1984.
    [29] Peabody D, Goldberg LR. Some determinants of factor structures form personality-traitdescriptors[J]. Journal of Personality and Social Psychology,1989,57(522-567).
    [30] Fonseca CM, Fleming PJ. Genetic algorithms for multiobjective optimization[A]: formulation,discussion and generalization: proceedings of the Fifth International Conference on GeneticAlgorithms[C], San Mateo, California, Morgan Kauffman Publishers,1993.
    [31] Srinivas N, Deb K. Multiobjective optimization using nondonminated sorting in geneticalgorithms[J]. Evolutionary Computation,1994,2(3):221-248.
    [32] Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic algorithm for multiobjectiveoptimization[A]: proceedings of the First IEEE Conference on Evolutionary Computation[C],Piscataway, New Jersey,1994. IEEE.
    [33] Husbands P. Distributed coevolutionary genetic algorithms for multi-criteria and multi-constraintoptimization[A]: proceedings of the Evolutionary Computing[C], Springer Verlag,1994.
    [34] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and thestrength Pareto approach[J]. IEEE Transaction On Evolutionary Computation,1999,3(4):257-271.
    [35] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionaryalgorithm[A]: proceedings of the Evolutionary Methods for Design, Optimization and ControlwithApplications to Industrial Problems[C], Athens, Greece, EUROGEN,2001.
    [36] Knowles JD, Corne DW. Approximating the nondominated front using the Pareto archivedevolution strategy[J]. Evolutionary Computation,2000,8(2):149-172.
    [37] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on evolutionary computation,2002,6(2):182-197.
    [38] Kasat RB, Gupta SK. Multi-objective optimization of an industrial fluidized-bed catalytic crackingunit(FCCU) using genetic algorithm(GA) with the jumping genes operator[J]. Computers&Chemical Engineering,2003,27(12):1785-1800.
    [39] Van DA, Veldhuizen, Lamont GB. Multiobjective optimization with messy genetic algorithm[A]:proceedings of the the2000ACM symposium on Applied Computing[C], NY, USA, ACM,2000.
    [40] Szollos A, Smid M, Hajek J. Aerodynamic optimization via multi-objective micro-geneticalgorithm with range adaptation, knowledge-based reinitialization, crowding and
    [epsilon]-dominance[J]. Advances in Engineering Software,2009,40(6):419-430.
    [41] Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle swarmoptimization[J]. IEEE Transactions on evolutionary computation,2004,8(3):256-279.
    [42] Varadharajan TK, Rajendran C. A multi-objective simulated-annealing algorithm for scheduling inflowshops to minimize the makespan and total flowtime of jobs[J]. European Journal ofOperational Research,2005,167(3):772-795.
    [43] Reza TM, Alireza RV. A hybrid multi-objective immune algorithm for a flow shop schedulingproblem with bi-objectives: Weighted mean completion time and weighted mean tardiness[J].Information Sciences,2007,177(22):5072-5090.
    [44] Nor Shah MF, Abdullah SS, Faruq A. Multi-objective optimization of remotely operated vehiclecontrol system using surrogate modeling[A]: proceedings of the Control System, Computing andEngineering (ICCSCE)[C],2011IEEE International Conference on,25-27Nov.2011.
    [45] Dornberger R, Buche D, Stoll P. Multidisciplinary optimization in turbomachinery design[A]:proceedings of the Computational Methods in Applied Sciences and Engineering[C], Barcelona,2000.
    [46] Bramanti A, Di Barba P, Farina MB. Comgining response surfaces and evolutionary strategies formulti-objective Pareto-optimization in electromagnetics[J]. Int J Appl Electromagn Mech,2001,15:231-236.
    [47] Farina M, Sykulski JK. Comparative study of evolution strategies combined with approximationtechniques for practical electromagnetic optimization problems[J]. IEEE Trans Magn,2001,37(5):3216-3220.
    [48] Farina M, Di Barba P, Bramanti A. A GRS method for Pareto-optimal front identification inelectromagnetic multi-objective synthesis[J]. IEEE Proc Sci Manage Technol,2002,149(5):207-213.
    [49] Emmerich M, Giotis A, Ozdenir M. Metamodel-assisted evolution strategies, in: proceedings ofparallel problem solving from nature(PPSN VIII)[M]. Springer LNCS,2002:361-370.
    [50] Emmerich M, Giannakoglou K, Naujoks B. Single and multi-objective optimization assisted byGaussian random field metamodels[J]. IEEE Trans Evol Comput,2006,10(4):421-439.
    [51] Nain PKS, Deb K, A multi-objective optimization procedure with successive approximationmethods[R]. India: Kanpur GeneticAlgorithms Laboratroy,2005.
    [52] Knowles JD, Hughes EJ. Multiobjective optimization on a budget of250evaluations[A]:proceedings of the Evolutionary Multi-Criterion Optimization[C],2005.
    [53] Knowles JD. A hybird algorithm with on-line landscape approximation for expensivemulti-objective optimization problems[J]. IEEE Trans Evol Comput,2006,10(1):50-56.
    [54] Goel T, Vaidyanathan R, Haftka RT, Shyy W, Queipo NV, Tucker K. Response surfaceapproximation of Pareto optimal front in multi-objective optimization[J]. Computer Methods inApplied Mechanics and Engineering,2007,196(4-6):879-893.
    [55] Wilson B, Cappelleri DJ, Simpson TW. Efficient Pareto frontier exploration using surrogateapproximations[J]. OptimEngrg,2001,2(31-50).
    [56] Cappelleri DJ, Frecker MI, Simpson TW. A metamodel based approach for optimal design of aPZT bimorph actuator for minimally invasive surgery[J]. ASME JMechDes,2002,124(2):354-357.
    [57] Jin Y, Branke J. Evolutionary optimization in uncertain environments-a survey[J]. IEEE TransEvol Comput,2005,9(3):303-317.
    [58] Jensen MT. Generating robust and flexible job shop schedules using genetic algorithms[J]. IEEETrans Evol Comput,2003,7(3):275-288.
    [59] Anthony DK, Keane AJ. Robust-optimal design of a lightweight space structure using a geneticalgorithm[J]. AIAAJournal,2003,41(8):1601-1604.
    [60] Teich J. Pareto-front exploration with uncertain objectives[A]: proceedings of the the FirstInternational Conference on Evolutionary Multi-Criterion Optimization(EMO-01)[C],2001.
    [61] Hughes EJ. Evolutionary multi-objective ranking with uncertainty and noise[A]: proceedings ofthe the First International Conference on Evolutionary Multi-Criterion Optimization(EMO-01)[C],2001.
    [62] Deb K, Gupta H. Searching for robust Pareto-optimal solutions in multi-objective optimization:proceedings of the The Third International Conference on Evolutionary Multi-CriterionOptimization[C], Guanajuato,Mexico, Lecture Notes on Computer Science,2005.
    [63] Barrico C, Antunes CH. Robustness analysis in evolutionary multi-objective optimization-with acase study in electrical distribution networks[A]: proceedings of the the European-Latin-AmericanWorkshop on Engineering Systems[C], Porto, Portugal,2006.
    [64] Luo B, Zheng JH. Efficient MOEAs with an adaptive sampling technique in searching robustoptimal solutions[A]: proceedings of the the7th World Congress on Intelligent Control andAutomation(WCICA7)[C], Chongqing, China,2008.
    [65] Luo B, Zheng JH. A new methodology for searching robust Pareto optimal solutions withMOEAs[A]: proceedings of the Evolutionary Computation[C],2008CEC2008(IEEE WorldCongress on Computational Intelligence) IEEE Congress on,1-6June,2008.
    [66] Parreiras RO, Vasconcelos JA. Decision making in multiobjective optimization aided by themulticriteria tournament decision method[J]. Nonlinear Analysis: Theory, Methods&Applications,2009,71:191-198.
    [67] Fan ZP, Xiao SH, Hu GF. An optimization method for integrating two kinds of preferenceinformation in group decision-making[J]. Computers&Industrial Engineering,2004,46(2):329-335.
    [68] Hwang CL, Yoon K. Multiple Attribute Decision Making Methods and applications: A state-of-artsurvey[M]. NewYork: Springer-Verlag,1981.
    [69] Olcer AI, Tuzcu C, Turan O. An integrated multi-objective optimisation and fuzzymulti-attributive group decision-making technique for subdivision arrangement of Ro-Rovessels[J]. Applied Soft Computing,2006,6(3):221-243.
    [70] Fu GT. Afuzzy optimization method for multicriteria decision making: An application to reservoirflood control operation[J]. Expert Systems with Applications,2008,34(1):145-149.
    [71] Li XB. Study of multi-objective optimization and multi-attribute decision-making for economicand environmental power dispatch[J]. Electric Power Systems Research,2009,79(5):789-795.
    [72] Kollat JB, Reed P. A framework for Visually Interactive Decision-making and Design usingEvolutionary Multi-objective Optimization (VIDEO)[J]. Environmental Modelling&Software,2007,22(12):1691-1704.
    [73] Chaudhuri S, Deb K. An interactive evolutionary multi-objective optimization and decisionmaking procedure[J]. Applied Soft Computing,2010,10(2):496-511.
    [74] Fonseca CM, Fleming PJ. Multiobjective optimization and multiple constraint handling withevolutionary algorithms.Part II. Application example[J]. IEEE Transaction On Systems, Man andCybernetics-Part A: Systems and Humans,1998,28(1):38-47.
    [75] Tan KC, Lee TH, Khoo D. A multiobjective evolutionary algorithm toolbox for computer-aidedmultiobjective optimization[J]. IEEE Transaction On Systems, Man and Cybernetics-Part B:Cybernetics,2001,31(4):537-556.
    [76] Brintrup AM, Ramsden J, Takagi H. Ergonomic chair design by fusing qualitative and quantitativecriteria using interactive genetic algorithms[J]. IEEE Transaction On Evolutionary Computation,2008,12(3):343-354.
    [77] Wuppalapati S, Belegundu AD, Aziz A, Agarwala V. Multicriteria decision making with parallelclusters in structural topology optimization[J]. Advances in Engineering Software,2008,39(5):416-421.
    [78] Shayeghi H, Safari A, Shayanfar HA. PSS and TCSC damping controller coordinated design usingPSO in multi-machine power system[J]. Energy Conversion and Management,2010,51(1):2930-2937.
    [79] Zhang L, Ye B, Jiang Q, Cao YJ. Coordinated Design of FACTS Controllers for Transient StabilityImprovement Based on Multi-Objective Evolutionary Programming[A]: proceedings of theComputational Intelligence and Security[C],2006International Conference on,3-6Nov.,2006.
    [80] Kennedy J, Eberhart R. Particle Swarm Optimization[A]: proceedings of the Proc IEEE Int ConfNeural Networks[C],1995.
    [81] Ozcan E, Mohan C. Analysis of a simple particle swarm optimization system[J]. IntelligentEngineering Systems ThroughArtificial Neural Networks,1998,8:253-258.
    [82] Van den bergh F. An analysis of particle swarmoptimizers[D]. South Africa: University of Pretoria,2002.
    [83] Clerc M, Kennedy J. The particle swarm: explosion, stability and convergence in a complexspace[J]. IEEE Transaction On Evolutionary Computation,2002,6(1):58-73.
    [84] Trelea IC. The particle swarm optimization algorithm: convergence analysis and parameterselection[J]. Information Processing Letters,2003,85(6):317-325.
    [85] Brits R, Engelbrecht AP, Van den bergh F. Locating multiple optima using particle swarmoptimization[J]. Applied Mathematics and Computation,2007,189(2):1859-1883.
    [86] Coello CAC, Lechuga MS. MOPSO: A Proposal for Multiple Objective Particle SwarmOptimization[A]: proceedings of the World Congress on Computational Intelligence[C],2002.
    [87] Hu X, Eberhart R. Multiobjective optimization using dynamic neighborhood particle swarmoptimization[A]: proceedings of the World Congress on Computational Intelligence[C],2002.
    [88] Fieldsend JE, Singh S. A multi-objective algortihm based upon particle swarm optimization, anefficient data structure and trubulence[A]: proceedings of the Proceedings of UK Workshop onComputational Intelligence[C], Bermingham, UK,2002.
    [89] Wang J, Xue Y, Yu T, Zhao LQ. Run-to-run Optimization for Fed-batch Fermentation Process withSwarm Energy Conservation Particle Swarm Optimization Algorithm[J]. Chinese Journal ofChemical Engineering,2010,18(5):787-794.
    [90] Jury EI. Theory and application of the z-transform method[M]. NewYork: Wiley,1964.
    [91] Vapnik VN. The Nature of Statistical Learning Theory[M]. NewYork: Springer,1995.
    [92] Vapnik VN. Statistical learning theory[M]. NewYork: Wiley,1998.
    [93] Burges CJC. A Tutorial on Support Vector Machines for Patten Recognition[J]. Data mining andknowledge discovery,1998,2:121-167.
    [94] Wang JL, Yu T, Jin CY. On-line Estimation of Biomass in Fermentation Process Using SupportVector Machine[J]. Chinese Journal of Chemical Engineering,2006,14(3):383-388.
    [95] Wang X, Chen J, Liu C, Pan F. Hybrid modeling of penicillin fermentation process based on leastsquare support vector machine[J]. Chemical Engineering Research and Design,2010,88(4):415-420.
    [96] Smola AJ, Schoelkopf B. A tutorial on support vector regression[J]. Statistics and computing,1998,14(3):199-222.
    [97] Peng X. Efficient geometric algorithms for support vector machine classifier[J]. NaturalComputation,2010,2(10-12Aug.2010):875-879.
    [98] Vapnik VN. Estimation of dependences based on empirial data[M]. New York: Springer, Verlag,1982.
    [99] Osuna E, Freund R, Girosi F. Improved training algorithm for support vector machines[A]:proceedings of the IEEE NNSP'97[C], Amelia Island,1997.
    [100] Platt JC. Fast training of SVMs using sequential minimal optimization[M]. Cambrige: MIT Press,1999.
    [101] Mavroforakis ME, Sdralis M, Theodoridis S. A geometric nearest point algorithm for the efficientsolution of the SVM classification task[J]. IEEE Transactions on neural networks,2007,18(5):1545-1549.
    [102] Tao Q, Wu GW, Wang JL. A generalized S-K algorithm for learning v-SVM classifiers[J]. PatternRecognition Letters,2004,25(10):1165-1171.
    [103]Bennett KP, Bredensteiner EJ. Geometry in Learning[A]: proceedings of the Geometry at work[C],Washingtong, DC, MathematicalAssociation ofAmerica,1998.
    [104] Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK. AFast Iterative Nearest Point Algorithmfor Support Vector Machine Classifier Design[J]. IEEE Transactions on neural networks,2001,11(1):124-136.
    [105] Crisp DJ, Burges CJC. Ageometric interpretation of v-SVM classifiers[J]. NIPS,2000.
    [106] Gilbert EG. Minimizing the quadratic form on a convex set[J]. SIAM J Control,1966,4:61-79.
    [107] Mitchell BF, Demyanov VF, Malozemov VN. Finding the point of a polyhedron closet to theorigin[J]. SIAM J Control,1974,12:19-26.
    [108] Franc V, Halvac V. An iterative algorithm learning the maximal margin classifier[J]. PatternRecognition,2003,36:1985-1996.
    [109] Bi J, Bennett K, P. A geometric approach to support vector regression[J]. Neurocomputing,2003,55:79-108.
    [110] Deb K. Multi-objective genetic algorithms:problem difficulties and construction of testproblems[J]. Evolutionary Computation,1999,7:205-230.
    [111] Linsker R. Neural network learning of optimal kalman prediction and control[J]. Neural Networks,2008,21:1328-1343.
    [112] Matveev AS, Savkin AV. The problem of LQG optimal control via a limited capacitycommunication channel[J]. Systems& Control Letters,2004,53(1):51-64.
    [113] Liu YF, Wang LY, Sun DH. The LQG controller design for micromachined tunneling gyroscope:proceedings of the Nano/Micro Engineered and Molecular Systems (NEMS),20105th IEEEInternational Conference on,20-23Jan.2010.
    [114] Jong P, de, Penzer J. The ARMA model in state space form[J]. Statistics&Probability Letters,2004,70(2004):119-125.
    [115] Xiong R, Wissmann PJ, Gallivan MA. An extended Kalman filter for in situ sensing ofyttria-stabilized zirconia in chemical vapor deposition[J]. Computers&Chemical Engineering,2006,30(10-12):1657-1669.
    [116] Ge ZX, Yang YM, Hu Z. A new UKF based fault detection method in non-linear systems[J].International journal of Plant Engineering and Management,2006,11(3):179-183.
    [117] Montazeri A, Poshtan J, Choobdar A. Performance and robust stability trade-off in minimax LQGcontrol of vibrations in flexible structures[J]. Engineering Structures,2009,31(10):2407-2413.
    [118] Huang B, Shah SL, Kwok EK. Good, bad or optimal? Performance assessment of MIMOprocesses[J].Automatica,1997,33(6):1175-1183.
    [119] McNabb CA, Qin S, J. Projection based MIMO control performance monitoring-I.Covariancemonitoring in state space[J]. JProcCont,2003,13(8):739-757.
    [120] Qin SJ, Yu J. Recent developments in multivariable controller performance monitoring[J]. ProcessControl,2007,17(2007):221-227.
    [121] Daafouz J, Bernussou J. Parameter dependent Lyapunov functions for discrete time systems withtime varying parametric uncertainties[J]. Systems&Control Letters,2001,43(5):355-359.
    [122] Grune L. Input-to-state dynamical stability and its Lyapunov function characterization[J]. IEEETransAutomatControl,2002,47(9):1499-1504.
    [123] Daafouz J, Riedinger P, Iung C. Stability analysis and control synthesis for switched systems: aswitched Lyapunov function approach[J]. Automatica Control,2002,47(11):1883-1887.
    [124] Kavaklioglu K. Modeling and prediction of Turkey's electricity consumption using Support VectorRegression[J]. Applied Energy,2011,88(1):368-375.
    [125] Sonnleitnert B, Kappeli O. Growth of saccharomyces cerevisiae is controlled by its limitedrespiratory capacity:formulation and verification of a hypothesis[J]. Biotechnology andBioengineering,1986,28(6):927-937.
    [126] Birol G, Undey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillinproduction[J]. Computers and Chemical Engineering,2002,26(2002):1553-1565.
    [127] Karakuzu C, Turker M, Ozturk S. Modelling, on-line state estimation and fuzzy control ofproduction scale fed-batch baker's yeast fermentation[J]. Control Engineering Practice,2006,14(8):959-974.
    [128] Arauzo-Bravo M, Cano-Izquierdo J, Gomez-Sanchez E. Automatization of a penicillin productionprocess with soft sensors and an adaptive controller based on neuro fuzzy systems[J]. ControlEngineering Practice,2004,12(9):1073-1090.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700