公交网络时刻表编制的理论建模及可靠性控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“公交优先”已成为当前城市交通发展的主题。在大力发展城市公交过程中,我们也清晰地看到公交系统的吸引力不够,公交分担率依然较低,距离我们的期望值还有较大差距。这是由于公交运营系统的可靠性一直没有得到根本提高和有效保障导致的。公交运营系统中,运行时间不稳定,编制的行车时刻表与实际运营效果相差较大,给乘客、公交企业和管理部门都带来巨大的成本损失。为了履行“公交优先”政策,通过提高计划的可靠性来应对现实中很多不确定因素的影响,使得公交运营能够在计划的预期和有效控制范围内进行,以此来提高公交分担率,就必须在公交网络运营优化环节中,深入研究城市公交网络行车时刻表编制的理论方法及可靠性问题。
     本论文主要从影响公交网络行车时刻表可靠性的时空二维因素的角度出发,利用优化理论、可靠性理论、复杂网络理论和时间窗等理论方法,结合公交网络协同发车的行车时刻表自身特点,研究了城市公交网络行车时刻表编制的理论方法及可靠性的关键问题。具体来讲,本论文主要工作和研究成果有如下几个方面:
     (1)从多个角度和利用多种方法对公交车运行时间的特性进行了详尽的剖析,包括:公交车运行时段,运行车辆,最大上/下车乘客数,运行时间比例,运行总体数值及其分布。部分重要的结论是:总停站时间一般占总运行时间的比例RDT为20%-40%,各线路到达站点的总运行时间均具有马太效应的现象,不同班次随着站点序号递增,总运行时间的差距越来越大,并且总运行时间都服从正态分布N(μ,σ2)等等。
     (2)研究了公交车运行时间可靠性模型及可靠性控制方法。提出了一种新的公交线路运行时间可靠性模型和公交网络运行时间可靠性模型;提出了带有Hub点的公交车运行时间可靠性的弹性冗余设计控制方法,据此提出了“大间隔所有站点法”和“大间隔Hub点法”这两种方法对应的公交线路和网络运行时间可靠性模型;对所提的模型和控制方法进行了实证检验:分析马太效应检验、非参数检验和可靠度对比检验这三方面的检验结果。
     (3)利用复杂网络理论分析公交网络复杂特性。从城市公交网络运营角度出发,提出了两种新的公交网络描述方法以及网络Hub点的确定方法;通过实证分析,证明广州市公交网络属于无标度网络,并列举出部分Hub点;提出了线路关联度概念和模型;然后还提出基于时刻表的公交网络Hub点演化模型构造算法,最后提出改进的有向沙堆模型来研究网络相继故障对公交网络运营可靠性的影响,发现不管线路是否进行协同发车,网络Hub点一旦受到蓄意攻击,整个公交网络的运营可靠性都会受到巨大影响。
     (4)提出了两套区域运营思路下的公交网络协同发车行车时刻表编制的理论模型:①考虑到站时间差的合作与竞争条件下公交网络行车时刻表优化模型(等间隔发车);②考虑乘客等车时间(换乘等车时间和非换乘等车时间)的多线组合公共交通网络发车行车时刻表模型(非等间隔发车)。所提模型都能给出Hub点时刻表,其中第二套模型方法还引入了多模式和多线路双重组合的区域运营思路。实例分析表明:两套模型都能够保障乘客需求和公交企业供给之间的平衡,以及最大限度减少双方的成本。
     (5)最后提出了公交网络行车时刻表可靠性双层规划模型。首先分析时间窗与Hub点时刻表的内在联系,接着提出了带时间窗和Hub点时刻表的公交网络行车时刻表可靠性的双层规划模型,下层模型为追求公交网络乘客总等车时间最小的行车时刻表模型,上层模型为追求可靠度最大的运行时间可靠性模型,提出嵌入式粒子群算法求解双层规划模型。最后,将成果应用到广州大学城多条公交线路组成的实例网络中,结果表明:非等间隔发车的行车时刻表在客流变化明显时段具有更好效果,所提模型能够给定可靠性较高的各线路在始发站和网络Hub点的行车时刻表。
Bus priority has become the subject of urban traffic development. When urban public transit is developed vigorously, we clearly see that the attractiveness of public transit system is not enough, and the bus share rate remains low, where there is a large gap from the expected value. It is because that the reliability of public transit system has not been fundamentally improved and effective protected. In the bus operating system, the instability of running time and the large gap between timetable and actual preparation make the passengers, bus companies and management with a huge loss. In order to fulfill bus priority policy, it improves the reliability of plan to deal with the uncertain fators and makes the bus running under the plan and the control, to impove the public transit share rate, so we must study the theories, methods and issues of creating bus timetable and its reliability.
     This dissertation, from the point of spatiotemporal affect factors to reliability bus timetable, uses the optimization theory, reliability theory, complex network theory and time windows theory to study the the theories, methods and issues of creating bus network timetable and its reliability, considering with the characteristics of collaboration dispatching timetable. The main contents of this dissertation are summarized as follows:
     (1) It analyses the characteristics of bus running time from several angles and methods, which include running periods, vehicles, maximum of on/off passengers, proportion of running time, the overall running time value and its distribution. Some important conclusions are as follows: firstly, the ratio of dwell time to total running time (RDT) is from 20% to 40%. Secondly, the total running time, from originating station to a given bus station, display the Matthew’s phenomenon, which means that the gap between total time with every route is growing when station number is increasing. Thirdly, the total running time with every route and station are normal distribution N (μ,σ2), and so on.
     (2) Reliability model and control method to bus running time are studied. We propose the new reliability models of bus running time under one bus route or a bus newwork. Then, we propose a flexible redundancy control method with Hub points for the running time reliability. According to the control method, the reliability models of bus running time under route or network to“large interval with all stations”and“large interval with Hub point”are proposed. For the models and control method, we have some simulating test, which include Mattehew phenomenon test, non-parametric test and comparative reliability test.
     (3) We study the complexity of public transit network by use of complex network theory. From the point of operating of public transit network, we propose two new methods for describing the public transit network and how to determining the Hub points. Then, the empirical analysis proves that Guangzhou public transit network is scale-free network, and some Hub points are listed. We also propose the concept and model of route correlation, then also propose the construction algorithm of Hub point evolution model based on timetable, and finally propose an improved sandpile model to study the influence of operating reliability by cascading failure in public transit network. The results show that whether it is collaboration dispatching or not, once the Hub point is deliberate attacted, the operating relibility of whole public transit network will be greatly affected.
     (4) We propose two sets of bus timetbable models under regional operation public transit network. The first one is a timetable optimization model for transit network in cooperation and competition, which is considered the time disparity of arriving a same station and gives the same interval for dispatching. The second one is a timetable model for collaboration dispatching with multi routes, which is considered the waiting time (transfer waitting time and non-transfer waitting time) for the passengers and gives the different interval for dispatching. Both of the models can be gave the timetable in Hub point. The second model includes the regional operational idea with combination of multi modes and multi routes. The rusults of example show that these two models can balance the passenger demand and enterprise supply, and minimize the costs of both them.
     (5) In the last section, we propose a bus timetable reliability bi-level programming model. Firstly, we analyse the inner contact between time window and Hub point timetable. Secondly, we propose the bus timetable reliability bi-level programming model including the time window and Hub point timetable. The lower model is the timetable model for minimum total waitting time of passengers, and the upper model is the reliability model of running time for maximum the reliability. An embedded Particle Swarm Optimization is established to solve the bi-level programming model. Finally, the proposed method and model are applied in the public transit network in Guangzhou University Town. The results show that the timetable with non-equal interval dispatching has better results when the passengers flow change obviously, and the bi-level programming model can provide the timetable with high reliability in origin station and Hub point station for every routes.
引文
[1] Albert R., Barabasi A. L.. Statistical Mechanics of Complex Networks [J]. Reviews of Modern Physics, 2002,74(1):47-97
    [2] Amaral L. A. N., Scala A., Barthelemy M., Stanley H. E.. Classes of Small-world Networks [J]. Proceedings of the National Academy of Sciences USA, 2000, 97:11149-11152
    [3] Baaj, M. H., Mahmassani, H. S.. Hybrid Route Generation Heuristic Algorithm for the Design of Transit Networks [J]. Transportation Research-C, 1995, 3(1): 31-50
    [4] Barabasi A. L., Albert R.. Emergence of Scaling in Random Networks [J]. Science, 1999, 286:509-512
    [5] Bell M. G. H. and Iida Y.. Transportation Network Analysis [M]. New York: John Wiley & Sons, 1997: 179-192
    [6] Bell M. G. H., Cassir C., Iida Y., et al. A Sensitivity based Approach to Network Reliability Assessment [C]. Proceedings 14th ISTTT. Jerusalem, 1999: 283-300
    [7] Bell M. G. H., Scbmocker J. D., Iida Y., et al. Transit Network Reliability: An Application of Absorbing Markov Chains [C]. Proceedings of the l5th International Symposium on Transportation and Traffic Theory. Pergamon. Kidlington, 2002: 43-62
    [8] Benn, H.P.. Bus Route Evaluation Standards, Transit Cooperative Research Program, Synthesis of Transit Practice 10. National Academies, Washington, DC,1995
    [9] Bhat C. R., Castelar S.. A Unified Mixed Logit Frame Work for Modeling Revealed and Stated Preferences Formulation and Application to Congestion Pricing Analysis in the San Francisco Bay Area [J]. Transportation Research Part B,2002(36): 593-616
    [10] Bianco L., Ceder A.. Multi-objective Approach for Designing Transit Routes with Frequencies[J]. In Toth, P. (Ed.), Advanced Methods in Transportation Analysis. Springer-Verlag, Berlin, 1996:157-182
    [11] Boccaletti S., Latora V., Moreno Y., et al. Complex Network: Structure and Dynamics [J]. Physics Reports, 2006(424):175-308
    [12] Bowman L. A., Tumquist M. A.. Service Frequency, Schedule Reliability and Passenger Wait Times at Transit Stops [J]. Transportation Research, 1981, 15A, 465-471
    [13] Carey M.. Ex Ante heuristic measures of schedule reliability [J].Transportation Research Part B, 1999, 33:473-494
    [14] Carey M.. Optimizing Scheduled Times, Allowing for Behavioral Response [J]. Transportation Research B, 1998(32):329-342
    [15] Carey M.. Reliability of Interconnected Scheduled Services [J]. European Journal of Operational Research, 1994(79):51-72
    [16] Ceder A., Golany B., Tal O. Creating Bus Timetables with Maximal Synchronization [J]. Transportation Research Part A, 2001,35:913-928
    [17] Ceder A., Wilson N. H. M.. Bus Network Design [J].Transportation Research-B, 1986, 20B(4):331-344
    [18] Ceder A.著,关伟,等译.公共交通规划与运营——理论、建模及应用[M].北京:清华大学出版社, 2010.5
    [19] Chang T. S., Wan Y. W., Wei T.. A Stochastic Dynamic Traveling Salesman Problem with Hard Time Windows [J]. European Journal of Operational Research, 2009, 198:748-759
    [20] Chen X.M., Yu L., Zhang Y.S., et al. Analyzing Urban Bus Service Reliability at the Stop, Route, and Network Levels [J]. Transportation Research Part A, 2009(43):722-734
    [21] Chowell G., Hyman J. M., Eubank S., et al. Scaling Laws for the Movement of People Between Locations in a Large City [J]. Physical Review E, 2003, 68: 066102
    [22] Christoph E., Mandl. Evaluation and Optimization of Urban Public Transportation Networks [J]. European Journal of Operational Research, 1980, 5(6):396-404
    [23] Crucitti P., Latora V., Marchiori M.. Model for Cascading Failures in Complex Networks [J]. Physical Review E, 2004, 69: 045104(R)
    [24] Dantzig G., Fulkerson D.. Minimizing the Number of Tankers to Meet a Fixed Schedule [J]. Naval Research Logistics Quarterly, 1954, 1(3), 217-222
    [25] Davol A. P.. Modeling of Traffic Signal Control and Transit Signal Priority Strategies in a Microscopic Simulation Laboratory [D]. Cambridge, MA: Massachusetts Institute of Technology, 2001
    [26] Desaulniers G., Lavigne J., Soumis F.. Multi-depot Vehicle Scheduling Problems with Time Windows and Waiting Costs [J]. European Journal of Operational Research, 1998(111):479-494
    [27] Deshpande V.. Evaluating the Impact s of Transit Signal Priority Strategies on Traffic Flow Characteristics: Case Study along U.S.A., Fairfax Count y, Virginia [D]. Falls Church, Virginia: Virginia Polytechnic Institute and State University, 2003
    [28] Diana M., Dessouky M. M., Xia N.. A Model for the Fleet Sizing of Demand Responsive Transportation Services with Time Windows [J]. Transportation Research Part B, 2006(40):651-666
    [29] Dobson I., Carreras B. A., Newman D. E.. A Loading-dependent Model of Probabilistic Cascading Failure [J]. Probability in the Engineering and Informational Sciences, 2005, 19(1): 15-32
    [30] Dobson I., Carreras B. A., Newman D. E.. A Probabilistic Loading-dependent Model of Cascading Failure and Possible Implications for Blackouts [C]. Proceedings of 35th Hawaii International Conference on System Sciences, 2003, 1-8
    [31] Dobson I., Chen J., Thorp J. S., et al. Examining Criticality of Blackouts in Power System Models with Cascading Events. Proceedings of 35th Hawaii International Conference on System Sciences, 2002, 63-72
    [32] Dubois D., Bel G., and Libre M.. A Set of Methods in Transportation Network Synthesis and Analysis [J]. Journal of Operational Research Society, 1979, 30(9):797-808
    [33] Ettema Dick, Ashiru Olu, Polak John. Modelling Timing and Duration of Activities and Trips in Response to Road Pricing Policies [C]. Transportation Research Record ,Washington DC, 2004
    [34] Fagerholt K.. Ship Scheduling with Soft Time Windows: An Optimization based Approach [J]. European Journal of Operational Research, 2001(131):559-571
    [35] Florian M.. An Introduction to Network Models Used in Transportation Planning [J]. Transportation planning models, Elsevier science publishers B.V. North Holland, Amsterdam, 1984:137-152
    [36] Fu B. B., Gao Z. Y., Kong X. J., et al. Express Passenger Transport System as a Scale-free Network [J]. Modern Physics Letters B, 2006, 20: 1755
    [37] Furth, P.G., Wilson, N.H.M.. Setting Frequencies on Bus Routes: Theory and Practice [J]. Traps. Res. Record, 1982, 818: 1-7
    [38] Hall, R.W.. Vehicle Scheduling at a Transportation Terminal with Random Delays en Route [J]. Transportation Science, 1985(19):308-320
    [39] Hasselstrom, D.. Public Transportation Planning- A Mathematical Programming Approach [D]. Doctoral Dissertation, University of Goteborg, Sweden, 1981
    [40] Heilporn G., Giovanni L. De, LabbéM.. Optimization Models for the Single Delay Management Problem in Public Transportation [J]. European Journal of Operational Research, 2008, 189(3):762-774
    [41] Holme P., Kim B. J.. Attack Vulnerability of Complex Networks [J]. Physical Review E, 2002, 65:056109
    [42] Hu Y. C., Situ B. Q., Jin W. Z., et al. Study on a Passageway Location Model of Underground Expressway [C]. Proceedings of the 9th International Conference of Chinese Transportation Professionals, 2009:108-114
    [43] Ibaraki T., Imahori S., Kubo M.. Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints [J]. Transportation Science, 2005,39(2):206-232
    [44] John Bates,John Polak,Peter Jones,et al. The Valuation of Reliability for Personal Travel [J]. Transportation Research Pan E, 2001,37:191-229
    [45] Jung B. S., Karney B. W.. Benchmark tests of evolutionary computational algorithms. Proceedings of the 2005 Conference of the Environmental and Water, Resources Institute, ASCE. Anchorage, AK, 2005
    [46] Kennedy J., Eberhar R. C.. Particle Swarm Optimization [C]. Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service Center, 1995: 1942-1948
    [47] Koutsopoulos H.N., Odoni A., Wilson N.H.M.. Determination of Headways as a Function of Time Varying Characteristics on a Transit Network [J].Computer Scheduling of Public Transport 2, North-Holland, Amsterdam, 1985:391-414
    [48] Kurant M., Thiran P.. Extraction and Analysis of Traffic and Topologies of Transportation Networks[J]. Phys. Rev. E,2006(74):036114
    [49] Lam W.H.K., Gao Z.Y., Chan K.S., et al. A Stochastic User Equilibrium Assignment Model for Congested Transit Networks [J]. Transportation Research Part B, 1999, 33(5), 351-368
    [50] Latora V., Marchiori M.. Is the Boston Subway a Small-world Network? [J]. Physica A, 2002, 314: 109-113
    [51] Lazar N.S., Paul M.,Schonfeld. Method for Optimizing Transit Service Coverage [J]. Transportation Research Record, 1993, 1402:28-39
    [52] Li W., Cai X.. Statistical Analysis of Airport Network of China [J]. Physical Review E, 2004, 69: 046106
    [53] Lin J., Wang P., Barnum D. T.. A Quality Control Framework for Bus Schedule Reliability [J]. Transportation Research Part E, 2008(44):1086-1098
    [54] Marvin Rausand著,郭强,王秋芳,刘树林译.系统可靠性理论:模型、统计方法及应用(第2版)[M].北京:国防工业出版社,2010.2
    [55] Maurizio Bielli, Massimiliano Caramia, Pasquale Carotenuto. Genetic Algorithms in the Bus Network Optimization [J].Transportation Research Part C, 2002,10(1):19-34
    [56] Montis A. D., Barthelemy M., Chessa A., et at. The Structure of Inter-urban Traffic: A Weighted Network Analysis [J]. arXiv.org prerint physics, 2005,0507106
    [57] Moreno Y., Gomez J. B., Pacheco A. F.. Instability of Scale-free Networks Under Node-breaking Avalanches [J]. Euro physics Letters, 2002, 58(4): 630-636
    [58] Moreno Y., Pastor-Satorras R., Vázquez A., et al. Critical Load and Congestion Instabilities in Scale-free Networks [J]. Euro physics Letters, 2003, 62: 292-298
    [59] Motter A. E., Lai Y. C.. Cascade-based Attacks on Complex Networks [J]. Physical Review E, 2002,66:065102(R)
    [60] Nakanishi Y. J.. Bus Performance Indicators: On-time Performance and Service Regularity [J]. Transportation Research Record, 1997(1571):3-13
    [61] Newman M. E. J.. The Structure and Function of Complex Networks [J]. Siam Review, 2003,45(2):167-256
    [62] Nguyen S., Pallottino S.. Hyperpaths and Shortest Hyperpaths [J]. In Combinatorial Optimization, Springer-Verlag, Berlin, 1989:258-271
    [63] Palma A. D., Lindsey R.. Optimal Timetables for Public Transportation [J]. Transportation Research Part B, 2001,35(8):789-813
    [64] Porta S., Crucitti P., Latora V.. The Network Analysis of Unban Streets: A Primal Approach[J]. anxiv.org preprint condmat, 2004:0411241
    [65] Porta S., Crucitti P., Latora V.. T he Network Analysis of Unban Streets: A Primal Approach[J]. arxiv. org preprint physics, 2005:0506009
    [66] Powell W., Sheffi Y.. A Probabilistic Model of Bus Route Performance [J]. Transportation Science, 1983(17):376-404
    [67] Rietveld P., Bruinsma F. R., Vuuren D. J.. Coping with Unreliability in Public Transport Chains: A case study for Netherlands [J]. Transportation Research Part A, 2001(35):539-559
    [68] Roberto C., Giovanni L., Cristina M.. Estimation of Transit Reliability Level-of-Service Based on Automatic Vehicle Location Data [J]. Transportation Research Record, 2005(1927): 277–286
    [69] Rosvall M., Trusina A., Minnhagen P., et al. Network and Cities: an Information Perspective [J]. Phys. Rev. Lett, 2005,94:028701
    [70] Scheele S.. A Supply Model for Public Transit Services [J]. Transportation Research-B, 1980(14):133-146
    [71] Seaton K. A., Hackett L. M.. Station, Trains and Small-world Networks [J]. Physica A, 2004, 339: 635-644
    [72] Sen P., Dasgupta S., Chatterjee A., et al. Small-world Properties of the Indian Railway Network [J]. Physical Review E, 2002, 67: 036106-036110
    [73] Shih M. C., Mahmassani H. S.. Vehicle Sizing Model for Bus Transit Networks [J]. Transportation Research Record, 1995, 1452:35-41
    [74] Sienkiewicz J., Holyst J. A.. Public Transport Systems in Poland: from Bialystok to Zielona Gora by Bus and Tram Using Universal Statistics of Complex Networks [J]. Physics, 2005, 0503099
    [75] Sienkiewicz J., Holyst J. A.. Statistical Analysis of 22 Public Transport Networks in Poland [J]. Physical Review E, 2005.72: 046127
    [76] Silman L. A., Barzily Z., Passy U.. Planning the Route System for Urban Buses [J]. Computers and Operations Research, 1974, 1(2):201-211
    [77] Solomon M. M., Desrosiers J.. Time Window Constrained Routing and Scheduling Problems [J]. Transportation Science, 1988, 22 (1), 1-13
    [78] Solomon M. M.. Algorithms for the Vehicle Routing and Scheduling Problems with Time Windows Constraints [J]. Operations Research, 1987, 35 (2), 254-265
    [79] Spiess H., Florian M.. Optimal Strategies: A New Assignment Model for Transit Network [J]. Transportation Research, 1989, 23B:83-102
    [80] Thomas Jeffrey Kimpel. Time Point—level Analysis of Transit Service Reliability and Passenger Demand [D]. Portland State University, 2001
    [81] Tsao J., Wei W. B., Pratama A..一条专用车道双向运营BRT/轻轨的可行性[J].城市交通,2010,8(2):80-93
    [82] Val M. G., Stwart. Role of Load History in Reliability–Based Decision Analysis of Ageing Bridges [J]. Journal .of Structures Engineering, ASCE, 1999, 125(7):776-783
    [83] Vuchic V. R.. Urban Transit: Operations, Planning, and Economics [M]. Wiley, New York, NY, 2004
    [84] Watts D. J., Strogatz S. H.. Collective Dynamics of Small-world Networks [J]. Nature (London), 1998, 393: 440-442
    [85] Watts D. J.. A Simple Model of Global Cascades on Random Networks [J]. Proceedings of the National Academy of Sciences, U.S.A, 2002, 99(9): 5766-5771
    [86] Woodhull J. Issues in On-time Performance of Bus Systems. Unpublished manuscript. Los Angeles,CA: Southern California Rapid Transit District, 1987
    [87] Wu J. J., Gao Z. Y., Sun H. J., et al. Urban Transit System as a Scale-free Network [J]. Modern Physics Letters B, 2004, 18:1043
    [88] Wu J. J., Gao Z. Y., Sun H. J.. Cascade and Breakdown in Scale-free Networks with Community Structure [J]. Physical Review E, 2006.74: 066111
    [89] Wu J. J., Gao Z. Y., Sun H. J.. Cascading Failures on Weighted Urban Traffic Equilibrium Networks [J]. Physica A, 2007, 386: 407-413
    [90] Wu J. J., Gao Z. Y., Sun H. J.. Complexity and Efficiency of Beijing Transit Network [J]. International Journal of Modern Physics B, 2006.20: 2129
    [91] Wu J. J., Gao Z. Y., Sun H. J.. Effects of the Cascading failures on scale-free traffic networks [J]. Physica A, 2007, 378(2): 505-511
    [92] Yannis T., Constantions A.. Public Transit User Satisfaction: Variability and Policy Implications [J]. Transport Policy, 2008, 15(4):197-208
    [93] Zheng J. F., Gao Z. Y., Zhao X. M.. Clustering and Congestion Effects on Cascading Failures of Scale-free Networks [J]. Europhysics Letters, 2007, 79: 58002
    [94] Zheng J. F., Gao Z. Y., Zhao X. M.. Modeling Cascading Failures in Congested Complex Networks [J]. Physica A, 2007, 385: 700-706
    [95]白子建,赵淑芝,田振中.公共交通网络优化的禁忌算法设计与实现[J].吉林大学学报, 2006, 36(3):340-344
    [96]簿翠梅,张湜,王执铨,李俊.基于滑动时间窗的支持向量机软测量建模研究[J].自动化仪表, 2006, 27(1):45-48
    [97]陈艳艳,刘小明,梁颖.可靠度在交通系统规划与管理中的应用[M].北京:人民交通出版社, 2006
    [98]陈永洲.城市公交巴士复杂网络的实证与模拟研究[D].南京:南京航空航天大学, 2007
    [99]崔迪,群落结构的复杂网络及其交通行为的研究[D].北京:北京交通大学, 2009
    [100]戴帅,陈艳艳,魏中华.复杂公交网络的系统可靠性分析[J].武汉理工大学学报(交通科学与工程版), 2007, 31(3):412-414
    [101]戴帅,姜华平,陈海泳,陈艳艳.公共交通换乘时间可靠度研究[J].公路交通科技, 2007, 24(9):123-126
    [102]戴帅.大城市公共交通一体化关键技术研究[D].北京:北京工业大学, 2008
    [103]邓铁军.结构工程施工系统可靠性理论方法及其应用的研究[D].长沙:湖南大学, 2007
    [104]范海燕,杨晓光,严凌,等.蒙特卡罗法在公交线路运行时间可靠性计算中的应用[J].上海理工大学学报, 2006, 28(1):59-62
    [105]方锦清,汪小帆,郑志刚,等.一门崭新的交叉学科:网络科学(上)[J].物理学进展, 2007,27(3):1-111
    [106]方锦清,汪小帆,郑志刚,等.一门崭新的交叉学科:网络科学(下篇)[J].物理学进展, 2007,27(4):361-448
    [107]方锦清.网络科学的理论模型探索及其进展[J].科学导报, 2006,24(12):67-71
    [108]冯树民,陈洪仁.公共交通线网优化研究[J].哈尔滨工业大学学报, 2005, 37(5):691-693
    [109]高桂凤,魏华,严宝杰.城市公交服务质量可靠性评价研究[J].武汉理工大学学报(交通科学与工程版), 2007, 31(1):140-143
    [110]高自友,任华玲著.城市动态交通流分配模型与算法[M].北京:人民交通出版社, 2005. 5
    [111]高自友,宋一凡,四兵锋,等.公交网络中基于弹性需求和能力限制条件下的SUE配流模型及算法(Ⅰ)[J].北方交通大学学报, 2000, 24(6):1-7
    [112]高自友,宋一凡,四兵锋,等.公交网络中基于弹性需求和能力限制条件下的SUE配流模型及算法(Ⅱ)[J].北方交通大学学报, 2000, 24(6):8-13
    [113]高自友,赵小梅,黄海军,等.复杂网络理论与城市交通系统复杂性问题的相关研究[J].交通运输系统工程与信息, 2006,6(3):41-47
    [114]葛亮,王炜,杨明,等.基于GIS的公交网络配流新方法[J].交通运输工程学报, 2004, 4(3):54-58
    [115]葛昱,李伟,张秀媛.城市中心区内停车价格对出行行为的影响分析[J].数学的实践与认识, 2010, 40(3):43-47
    [116]广州市公共交通导乘手册[G].广州市交通委员会,2008.5
    [117]郭雷,许晓鸣主编.复杂网络[M].上海:上海科技教育出版社, 2006
    [118]韩红成.资本定价理论及其在我国的应用研究[D].上海:复旦大学, 2005
    [119]韩印,李维斌,李晓峰.城市公交线网调整优化PSO算法[J].中国公路学报, 1999, 12(3):100-104
    [120]何大韧,刘宗华,汪秉宏编著.复杂系统与复杂网络[M].北京:高等教育出版社, 2009
    [121]何迪. APTS下公交车辆区域调度问题研究[D].成都:西南交通大学, 2009
    [122]侯立文,蒋馥.城市道路网的可靠性仿真[J].系统仿真学报, 2002, 5:664-668
    [123]侯立文,蒋馥.城市道路网络可靠性的研究[J].系统工程, 2000, 18(5):38-41
    [124]胡海波,王林.幂律分布研究简史[J].物理, 2005. 34(12):889-896
    [125]胡郁葱,司徒炳强,靳文舟,等.基于集散点选择模型的地下快速路网规划[J].华南理工大学学报(自然科学版), 2009, 37(2):65-69
    [126]胡郁葱,司徒炳强,刘勤,等.地下快速路出入口集散点选择模型[J].中国公路学报, 2009, 22(3):89-94
    [127]蒋仁言,左明健.可靠性模型与应用[M].北京:机械工业出版社, 1999
    [128]雷德明,严新平,编著.多目标智能优化算法及其应用[M].北京:科学出版社, 2009.3
    [129]李瑞敏,陆化普.公交优先的交通信号多层模糊控制模型[J].清华大学学报(自然科学版), 2006, 46(9):1510-1513
    [130]李英,周伟,郭世进.上海公共交通网络复杂性分析[J].系统工程, 2007. 25(1):38-41
    [131]李志纯,朱道立.随机动态交通网络可靠度分析与评价[J].交通运输工程学报, 2008, 8(1). 106-112
    [132]刘宏鲲.中国航空网络的结构及其影响因素分析[D].成都:西南交通大学博士学位论文, 2007
    [133]刘环宇.基于可靠性的公交时刻表优化设计研究[D].北京:北京交通大学, 2010
    [134]刘锐,严宝杰,黄志鹏,刘芸欣.可靠性理论在公交网络分析中的应用[J].公路交通科技, 2008, 25(4):122-126
    [135]刘勇,项莉,谢军,严宝杰.城市路网可靠性计算方法[J].交通运输工程学报, 2007, 7(3):95-99
    [136]刘志刚.城市公共交通区域运营调度系统协同优化问题研究[D].北京:北京交通大学, 2008
    [137]罗清玉,孙宝凤,吴文静,等.基于Mixedlogit模型的拥挤收费下交通方式分担率预测[J].吉林大学学报(工学版), 2010. 40(5):1230-1234
    [138]马朝群.晋城市城市公共交通可持续发展研究[D].武汉:华中科技大学, 2007
    [139]毛林繁.城市公交网络可靠性的双层规划模型[J].中国公路学报, 2002, 15(3):88-91
    [140]潘贵军.自组织临界性与复杂网络的若干问题研究[D].武汉:华中科技大学, 2006
    [141]沈波,刘云.城轨网络对北京公共交通的影响研究[J].都市快轨交通, 2008, 21(1):32-36
    [142]沈吟东.农村客运改革:公交化及区域模式?[J].中国软科学, 2009(S1): 40-45
    [143]石琴,黄志鹏,公交区域调度的最大同步换乘模型[J].中国公路学报, 2007, 20(6):90-94
    [144]宋旭光.优先发展城市公交的策略研究[J].价格理论与实践, 2007(12):37-38
    [145]孙芙灵,公交调度中发车间隔的确定方法的探讨[J].西安公路交通大学学报, 1997. 17(2):p:44-48
    [146]铁婴.为何车堵紫禁城——对京城堵车现象的透视[J].决策与信息, 2004, 7:38-40
    [147]汪小帆,李翔,陈关荣编著.复杂网络理论及其应用[M].北京:清华大学出版社, 2006
    [148]王大勇,王海星.城市公交区域运营模式及其关键技术[J].综合运输, 2008(3): 64-66
    [149]王静.基于客户分组的带时间窗车辆路径选择问题研究[D].北京:北京交通大学, 2009
    [150]王炜,杨新苗,陈学武,等.城市公共交通系统规划方法与管理技术[M].北京:科学出版社, 2002
    [151]王文旭.复杂网络的演化动力学及网络上的动力学过程研究[D].合肥:中国科学技术大学, 2007
    [152]王喆,彭其渊.成都市公交网络布局研究[J].铁道运输与经济, 2007, 29(7):64-67
    [153]吴建军,高自友,孙会君,等著.城市交通系统复杂性——复杂网络方法及其应用[M].北京:科学出版社, 2010.5
    [154]吴建军.城市交通网络拓扑结构复杂性研究[D].北京:北京交通大学, 2008
    [155]吴志周,马万经,杨晓光.考虑信号优先的相邻公交停靠站最佳布置方法[J].公路交通科技, 2008, 25(1):146-150
    [156]许良.基于可靠性分析的城市道路交通网络设计问题研究[D].北京:北京交通大学, 2006
    [157]阎威武,常俊林,邵惠鹤.基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真[J].上海交通大学学报, 2004, 38(4):524-526
    [158]杨柳.计算机编制公交行车时刻表方法研究[D].北京:北京工业大学硕士论文, 2008
    [159]杨晓光,阴炳成.公共汽车交通专用道及其停靠站最佳布置方法[J].同济大学学报, 2004, 32(7):901-905
    [160]杨兆升.城市智能公共交通系统理论与方法[M].北京:中国铁道出版社, 2004
    [161]于滨,杨忠振,程春田,等.公交线路发车频率优化的双层规划模型及其解法[J].吉林大学学报(工学版), 2006, 36(5):664–668
    [162]于滨.城市公交系统模型与算法研究[D].大连:大连理工大学, 2006
    [163]张清峰.厦门市BRT一号线岛内段预留轨道交通方式选择研究[J].铁道勘测与设计, 2009(6):6-12
    [164]张宇石.大城市常规公共交通运行可靠性的研究与实例评价[D].北京:北京交通大学, 2008
    [165]赵航,宋瑞.公共交通系统营运可靠性研究[J].公路交通科技, 2005, 22(10):132-134
    [166]赵金山,狄增如,王大辉.北京市公共汽车交通网络几何性质的实证研究[J].复杂系统与复杂性科学, 2005, 2(2):45-48
    [167]赵淑芝,赵贝,朱永刚.基于SP调查的出行方式选择模型与公交优先政策[J].吉林大学学报(工学版), 2009, 39(Z2):187-190
    [168]周晶,盛昭瀚.多用户公交网络随机平衡分配模型[J].信息与控制, 2001, 30(1):63-67
    [169]周涛,柏文洁,汪秉宏,等.复杂网络研究概述[J].物理, 2005, 34(1):31-36
    [170]周雪梅,杨晓光.基于ITS的公共交通换乘等待时间最短调度问题研究[J].中国公路学报, 2004, 17(2)
    [171]朱顺应,王炜,邓卫,等.交通网络可靠度及其通路算法研究[J].中国公路学报, 2000, 13(1):91-94
    [172]朱芸.公共交通优先发展政策研究——以无锡市为例[D].上海:复旦大学, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700