不同年龄段牦牛与成年黄牛肺微血管构筑特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用血管铸型技术和扫描电镜技术相结合的方法观察了180日龄牦牛、成年牦牛和成年黄牛肺微血管的构筑特征,并与1日龄牦牛肺微血管的构筑特征进行了系统比较,研究发现不同年龄段牦牛肺微血管的构筑既有各自的一些特点,也有许多共同特点;成年牦牛与成年黄牛的肺微血管构筑也存在许多共同点和不同点。
     180日龄牦牛肺胸膜面具有疏密程度不等的两层血管网。浅层的血管网稀疏,深层的胸膜下微血管网致密。胸膜面浅层的血管可以跨越两个或多个肺小叶表面,浅层的血管可与小叶间隔的微血管之间相互移行;由微血管网形成的肺小叶的轮廓大小不等、形态各异,小叶间隔的深度也有所不同;胸膜下微动脉可根据逐级分支的顺序将其分为微动脉、终末微动脉、毛细血管前微动脉和毛细血管;胸膜下毛细血管网中可见板块状、筛网状和网络状血管网。低倍镜下,在肺脏截面可以见到由微血管网构成了肺泡、肺泡囊、肺泡管和呼吸性细支气管以及终末细支气管等结构的轮廓。肺实质内的微静脉可按照毛细血管、毛细血管后微静脉、集合微静脉和微静脉的顺序汇合。胸膜面浅层的微血管铸型表面光滑,胸膜下微动脉或微静脉以及肺实质内微静脉的表面可以见到呈环形或斜形的平滑肌细胞的压迹,微动脉和微静脉的表面可见圆形内皮细胞核的压痕。
     成年牦牛肺胸膜面也出现两层微血管网。从肺实质内穿出的微血管可发出分支至胸膜面浅层、小叶间隔和胸膜下微血管网中;胸膜下微动脉也可分为微动脉、终末微动脉、毛细血管前微动脉和毛细血管四级;胸膜下毛细血管网多数呈网络状,也可见到呈“小孔状”的结构和筛网状的血管网;小叶间隔的微血管与胸膜面浅层的微血管之间可以相互移行。低倍镜下肺实质内的微血管网呈现大小不等的蜂窝状,肺实质内微静脉与肺泡毛细血管之间联系紧密;在局部区域,肺泡毛细血管网可呈现板块状或筛网状。胸膜面浅层的微血管铸型表面比较光滑,胸膜下微动脉和终末微动脉表面可以看到沿血管长轴排列的呈圆形的内皮细胞核的压痕,以及规律分布的环状缩窄。在肺实质内微静脉的表面也可以见到许多呈圆形的凹陷。
     在成年黄牛肺胸膜面也分布有深、浅两层微血管网。胸膜下微动脉及其分支较短,胸膜下毛细血管网呈现稀疏的网络状,偶尔可见由微血管形成的“小孔状”结构。胸膜面浅层的微血管与胸膜下微血管之间形成毛细血管水平或毛细血管前水平的吻合;低倍镜下肺实质内微血管网也呈现大小不等、形态各异的蜂窝状结构;高倍镜下肺泡毛细血管与微静脉之间联系紧密;在肺泡隔内毛细血管网成单层分布;肺实质内管径较大的微血管表面可以见到纵行的嵴状结构和密集的内皮细胞核的压痕,以及明显的环形缩窄;胸膜下微静脉和毛细血管表面可见圆形内皮细胞核的压痕。
     经过分析和比较发现:180日龄牦牛、成年牦牛和成年黄牛肺微血管的构筑特征存在许多相似之处。胸膜面浅层的微血管网稀疏,深层的胸膜下微血管网致密;胸膜面浅层的微血管与小叶间隔的微血管之间相互移行,与胸膜下微血管之间形成吻合连接;根据胸膜下微动脉连续分支的顺序,常可将其分为微动脉、终末微动脉、毛细血管前微动脉和毛细血管四级;胸膜下毛细血管网主要以网络状的形式存在,但在铸型上均可见数量不等的“小孔状”结构;低倍镜下肺实质内微血管网呈现大小不等、形态各异的蜂窝状结构,可以见到由微血管网构成了肺泡、肺泡囊、肺泡管和呼吸性细支气管以及终末细支气管等结构的轮廓。肺胸膜面浅层微血管的铸型表面光滑,胸膜下和肺实质内微动脉和微静脉的铸型表面可见平滑肌细胞形成的缩窄,以及圆形内皮细胞核的压痕。但在增龄过程中,牦牛肺微血管网的密度逐渐变小,微血管的管径逐渐增大;将180日龄牦牛、成年牦牛与1日龄牦牛肺微血管的特征进行比较后发现,在180日龄牦牛肺泡毛细血管网中可以见到一些呈板块状的血管网,而成年牦牛的肺泡毛细血管网主要呈现网络状。此外,成年牦牛和成年黄牛肺微血管构筑特征间存在的差异更为显著。成年牦牛肺胸膜面浅层的微血管网、胸膜下微血管网以及肺实质内的微血管网比成年黄牛致密;成年牦牛肺微血管的管径范围比黄牛的大;成年牦牛肺胸膜下微动脉及其分支的走行路径比成年黄牛的长;而成年黄牛肺胸膜面浅层的微血管与胸膜下微血管之间的吻合比成年牦牛更为常见。
     总之,牦牛的肺微血管网比黄牛的致密得多,分布的范围也更为广泛,肺微血管网的密度还随着年龄的增加而逐渐变小。可以看出,密集的毛细血管网分布是牦牛肺微血管网构筑上的一个重要特征,这种状况可能是牦牛对高原低氧环境的适应性结构之一。
The construction characteristics of pulmonary microvasculature in 180-day old yak, the adult yak (Bos grunniens) and the adult cattle (Bos Taurus) were studied using the technology of vascular corrosion cast and scanning electron microscopy, and compared with that of one-day old yak in a systematic way. The results showed that there were particular characters of construction of pulmonary microvasculature in yak of different ages themselves, as well as shared lots of common characteristics, and a lot of similarities and differences of the construction of pulmonary microvascular patterns were found between the adult yak and the adult cattle.
     The pleural surface of lung in 180-day old yak had double-layered vascular networks in density in varying degrees. The pleural superficial microvascular networks were much sparser than deep layer on the pleural surface. The superficial blood vessels could cross two or more pulmonary lobules, and the pleural superficial blood vessels and the interlobular blood vessels were mutual transitional. The outlines of lobules composed of vascular networks were various in size and form, and the lobular septa were also different in depth. The subpleural arterioles could be divided into arteriole, terminal arteriole, precapillary arteriole and capillary in turn according to the branching sequence of themselves. The plate-like, sieve-like and web-like vascular networks occurred in the subpleural microvascular networks. The outline of alveolus, alveolar sac, alveolar duct and respiratory bronchiole and terminal bronchiole, which made of microvascular networks, could be found in the cut surface at a low magnification. The pulmonary alveolar capillaries were collected into the postcapillary venule, collecting venule, and venule in turn in the pulmonary parenchyma. The pleural superficial blood vessels were smooth, while the circular and oblique constrictions of smooth muscle cells occurred on the surface of the subpleural arteriole, venule and parenchymal venule. The round imprints of endothelial nuclei were found on the cast surface of the arteriole and venule.
     The pleural double-layered vascular networks were also found in the lung of adult yak. The vessels from the lung parenchyma branched into the pleural superficial vessels, the interlobular vessels and the subpleural microvessels. The subpleural arterioles also could be divided into arteriole, terminal arteriole, precapillary arteriole and capillary in turn. Most subpleural capillary meshes were web-like, and also the small holes and sieve-like meshes occurred in the subpleural microvascular networks. The interlobular blood vessels and the superficial blood vessels were mutual transitional. The honeycomb vascular networks were various in size and form at a low magnification. The venule connected with the pulmonary capillary networks directly. In some fields of view, the pulmonary alveolar networks were plate-like and sieve-like. The pleural superficial blood vessels were smooth, while the round imprints of endothelial nuclei along the vascular axis and circular constrictions were found on the subpleural arteriole and the terminal arteriole. The round depressions occurred on the surface of the venule in the lung parenchyma.
     The pleural superficial and the subpleural vascular networks also occurred in the adult cattle lung. The subpleural arteriole and its branches were short. The subpleural capillary meshes were sparse and web-like, and small holes made of microvessels were found occasionally. The anastomosing occurred between the pleural superficial and the subpleural vascular networks on the capillary level or the precapillary level. The honeycomb vascular networks were also various in size and form at a low magnification. The venule connected with the pulmonary capillary networks directly at a high magnification. The single capillary networks were found in the alveolar septa. The longitudinal crests and dense round imprints of endothelial nuclei and the clear circular constrictions were found on the surface of the larger vessel in the lung parenchyma. The round imprints of endothelial nuclei also occurred on the subpleural venule and capillary.
     The analysis and comparison on the pulmonary microvasculature showed that there were many common characters among 180-day old yak, the adult yak and the adult cattle. The superficial microvascular networks were sparser, while the subpleural microvascular networks were denser. The superficial blood vessels and the interlobular blood vessels were mutual transitional, and the anastomosing between the superficial blood vessels with the subpleural vessels. According to the branching sequence of the subpleural arteriole, it could be divided into the arteriole, terminal arteriole, precapillary arteriole and capillary in turn. The subpleural capillary networks were mainly web-like, while small holes were also found on the cast. The honeycomb vascular networks were various in size and form at a low magnification. The outline of alveolus, alveolar sac, alveolar duct and respiratory bronchiole and terminal bronchiole, made of microvascular networks, could be found in the cut surface. The pleural superficial blood vessels were smooth, while the constrictions of smooth muscle cells and round imprints of endothelial nuclei occurred on the surface of the subpleural and parenchymal arteriole and venule. However, the pulmonary microvascular networks were sparser, and the vascular were larger in diameter with aging. The results from comparison of the pulmonary microvascular construction among 180-day old yak, the adult yak and one-day old yak showed that the plate-like vascular networks occurred in 180-day old yak lung, while the web-like alveolar capillary networks were found in the adult yak lung. Moreover, the significant differences on the pulmonary vascular networks were found between the adult yak and cattle lung. The pleural superficial, subpleural and parenchymal vacular networks were denser, and the range of the microvessels in diameter were larger, and the proceeding distance of the subpleural arteriole and its branches were longer in the adult yak lung than those in the adult cattle lung. However, the anastomosing between the pleural superficial and the subpleural vascular networks were more often found in the adult cattle lung than that in the adult yak.
     In conclusion, the pulmonary microvascular networks in the yak were much denser than that in the cattle, and the distributing range were much wider in the yak than the cattle. And the microvascular networks decreased gradually in density with aging in the yak. Therefore, the distribution of dense microvascular networks was one of the important characteristics in the yak lung, which could be one of the important adaptive structures of yak to the highland and hypoxia environments.
引文
[1] Carmeliet P. Angiogenesis in life, disease and medicine[J]. Nature, 2005, 438(7070): 932-936.
    [2] Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling[J]. J Neurooncol, 2000, 50(1-2): 1-15.
    [3] Yancopoulos GD, Davis S, Gale NW, et al . Vascular-specific growth factors and blood vessel formation[J]. Nature, 2000, 407(6801): 242-248.
    [4] Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele[J]. Nature, 1996, 380: 435-443.
    [5] Ferrara N, Carver-Moore K, ChenH, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene[J]. Nature, 1996, 380: 439-444.
    [6] Bautch VL, Redick SD, Scalia A, et al. Characterization of the vasculogenic block in the absence of vascular endothelial growth factor-A[J]. Blood, 2000, 9: 1979-1987.
    [7] Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression[J]. Development, 2000, 127: 3941-3946.
    [8] Shalaby F, Rossant J, Yamaguchi TP, et al . Failure of blood-island formation and vasculogenesis in flk-1 deficient mice[J]. Nature, 1995, 376: 62-66.
    [9] Fong GH, Rossant J, Gertenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating assembly of vascular endothelium[J]. Nature, 1995, 376: 66-70.
    [10] Taipale J, Makinen T, Arighi E, et al. Vascular endothelial growth factor receptor-3[J]. Curr Top Microbial Immunol, 1999, 237: 85-96.
    [11] Dicksonl MC, Martin JS, Cousins1 FM, et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice[J]. Development, 1995, 121: 1845-1854.
    [12] Agah R, Prasad KS, Linnemann R, et al. Cardiovascular overexpression of transforming growth factor-b1 causes abnormal yolk sac vasculogenesis and early embryonic death[J]. Circ Res, 2000, 86: 1024-1030.
    [13] Bussolino F, Mantovani A, Persico G, et al. Molecular mechanisms of blood vessel formation[J]. Trends Biochem Sci, 1997, 22: 251-256.
    [14] Risau W. Mechanisms of angiogenesis[J]. Nature, 1997, 386(6626): 671-674.
    [15] Carlson TR, Feng YZ, Maisonpierre PC, et al. Direct cell adhesion to the angiopoietins mediated by integrins[J]. J Biol Chem, 2001, 276(28): 26516-26525.
    [16] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases[J]. Nature, 2000, 407(6801): 249-257.
    [17] Wilting J, Brand-Saberi B, Kurz H, et al. Development of the embryonic vascular system. Cell Mol Bio Res, 1995, 41: 219-232.
    [18] Djonov V, Schmid M, Tschanz SA, et al. Intussusceptive angiogenesis: its role in embryonic vascular network formation[J]. Circ res, 2000a, 86(3): 286-292.
    [19] Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptiveangiogenesis[J]. Cell Tissue Res, 2003, 314(1): 107-117.
    [20] Burri PH, Djonov V. Intussusceptive angiogenesis--the alternative to capillary sprouting[J]. Mol Aspects Med, 2002, 23(6S): S1-S27.
    [21] Fisher KA, Summer RS. 4. Stem and progenitor cells in the formation of the pulmonary vasculature[J]. Curr Top Dev Biol, 2006, 74: 117-131.
    [22] Betsholtz C, Lindblom P, Gerhardt H. Role of pericytes in vascular morphogenesis[J]. EXS, 2005, 94: 115-125.
    [23] Bikfalvi A. Angiogenesis: molecular mechanisms of activation, promotion and maintenance[J]. J BUON, 2007, Suppl 1: S59-S66.
    [24] Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285(21): 1182-1186.
    [25] Suchting S, Freitas C, le Noble F, et al. Negative regulators of vessel patterning[J]. Novartis Found Symp, 2007, 283: 77-86.
    [26] Senger DR, Asch BB, Smith BD, et al. A secreted phosphoprotein marker for neoplastic transformation of both epithelial and fibroblastic cells[J]. Nature, 1983, 302(5910): 714-715.
    [27] Gospodarowicz D, Lau K. Pituitary follicular cells secrete both vascular endothelial growth factor and follistatin[J]. Biochem Biophys Res Commun, 1989, 165(1): 292-298.
    [28] Yamazaki Y, Morita T. Molecular and functional diversity of vascular endothelial growth factors[J]. Mol Divers, 2006, 10(4): 515-527.
    [29] Hanahan D. Signaling Vascular Morphogenesis and Maintenance[J]. Science, 1997, 277: 48-50.
    [30] Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice[J]. Science, 1997, 276(5317): 1423-1425.
    [31] Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane[J]. Dev Biol, 1997, 188: 96-109.
    [32] Lymboussaki A, Partanen TA, Olofsson B, et al. Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors[J]. Am J Pathol, 1998, 153(2): 395-403.
    [33]薛猛,孙强.胚胎的血管发育及其调控机制[J].中国比较医学杂志, 2003, 13(1): 45-49.
    [34] Ryuto M, Ono M, Izumi H, et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1[J]. J Biol Chem, 1996, 271(45): 28220-28228.
    [35] Bottomley MJ, Webb NJ, Watson CJ, et al. Placenta growth factor (PlGF) induces vascular endothelial growth factor (VEGF) secretion from mononuclear cells and is co-expressed with VEGF in synovial fluid[J]. Clin Exp Immunol, 2000, 119(1): 182-188.
    [36] Sharkey AM, Day K, McPherson A, et al. Vascular endothelial growth factorexpression in human endometrium is regulated by hypoxia[J]. J Clin Endocrinol Metab, 2000, 85(1): 402-409.
    [37] Reynolds LP, Redmer DA. Angiogenesis in the placenta[J]. Biol Reprod, 2001, 64(4): 1033-1040.
    [38] Konopka TE, Barker JE, Bamford TL, et al. Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor production[J]. Cancer Res, 2001, 61(7): 3182-3187.
    [39]徐锦程,冯振中,赵士芳.口腔鳞癌中血管内皮生长因子C、受体3和抑癌基因nm23-H1的表达及意义[J].中华口腔医学杂志, 2007, 42(11): 681-683.
    [40] Yamamoto S, Konishi I, Mandai M, et al. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels[J]. Br J Cancer, 1997, 76(9): 1221-1227.
    [41] Delongchamps NB, Peyromaure M. The role of vascular endothelial growth factor in kidney and prostate cancer[J]. Can J Urol, 2007, 14(5): 3669-3677.
    [42] Pichiule P, Chávez JC, Xu K, et al. Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain[J]. Brain Res Mol Brain Res, 1999, 74(1-2): 83-90.
    [43] Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia[J]. Am J Pathol, 2000, 156(3): 965-976.
    [44] McLaren J, Prentice A, Charnock-Jones DS, et al. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids[J]. J Clin Invest, 1996, 98(2): 482-489.
    [45] Nayak NR, Critchley HO, Slayden OD, et al. Progesterone withdrawal up-regulates vascular endothelial growth factor receptor type 2 in the superficial zone stroma of the human and macaque endometrium: potential relevance to menstruation[J]. J Clin Endocrinol Metab, 2000, 85(9): 3442-352.
    [46] Shiraishi S, Nakagawa K, Kinukawa N, et al. Immunohistochemical localization of vascular endothelial growth factor in the human placenta[J]. Placenta, 1996, 17(2-3): 111-121.
    [47] Ziemssen F, Bartz-Schmidt KU, Grisanti S. (Side) effects of VEGF inhibition[J]. Ophthalmologe, 2006, 103(6): 484-492.
    [48] Childs EW, Tharakan B, Byrge N, et al. Angiopoietin-1 inhibits intrinsic apoptotic signaling and vascular hyperpermeability following hemorrhagic shock[J]. Am J Physiol Heart Circ Physiol, 2008 [Epub ahead of print]
    [49] Chen Y, Zhang S, Chen YP, et al. Increased expression of angiogenin in gastric carcinoma in correlation with tumor angiogenesis and proliferation[J]. World J Gastroenterol, 2006, 12(32): 5135-5139.
    [50] Zamora DO, Davies MH, Planck SR, et al. Soluble forms of Ephrin-B2 and EphB4 reduce retinal neovascularization in a model of proliferative retinopathy[J]. InvestOphthalmol Vis Sci, 2005, 46(6): 2175-2182.
    [51] Zhang J, Hughes S. Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system[J]. J Pathol, 2006, 208(4): 453-461.
    [52] Erber R, Eichelsbacher U, Powajbo V, et al. EphB4 controls blood vascular morphogenesis during postnatal angiogenesis[J]. EMBO J, 2006, 25(3): 628-641.
    [53] Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor EphB4[J]. Cell, 1998, 93(5): 741-753.
    [54] Puri MC, Rossant J, Alitalo K, et al. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells[J]. EMBO J, 1995, 14(23): 5884-5891.
    [55] Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation[J]. Nature. 1995, 376(6535): 70-74.
    [56] Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-l, a ligand for the tie-2 receptor by secretiontrap expression cloning[J]. Cell, 1996, 87(7): 1161-1169.
    [57] Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE-2 receptor, during embryonic angiogenesis[J]. Cell, 1996, 87(7): 1171-1180.
    [58] Maisonpierre PC, Suri C, Jones PF, et al.Angiopoietin-2,a natural antagonist for Tie-2 that disrupts in vivo angiogenesis[J]. Science, 1997, 277(5322): 55-60.
    [59] De Palma M, Murdoch C, Venneri MA, et al. Tie-2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications[J]. Trends Immunol, 2007, 28(12): 519-524.
    [60] Cooke, JP. NO and angiogenesis[J]. Atherosclerosis, 2003, 4(4):53-60.
    [61] Grasselli F ,Tirelli M , Cavalli V, et al. VEGF, bFGF and swine granulose cells: proliferation, steroidogenesis and NO production[J]. Vet Res Commun, 2003, 27(suppl): 233-235.
    [62] Fukumura D, Gohongi T, Kadambi A, et al., Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability[J]. Proc Natl Acad Sci U S A, 2001, 98(5): 2604-2609.
    [63] Babaei S, Stewart DJ. Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model[J]. Cardiovasc Res, 2002, 55(1): 190-200.
    [64] Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in tumor angiogenesis[J]. Cancer Treat Res, 2004, 117: 155-167.
    [65] Milkiewicz M, Hudlicka O, Brown MD, et al. Nitric oxide, VEGF and VEGFR-2: interactions in activity-induced angiogenesis in rat skeletal muscle[J]. Am J Physiol, Heart Circ Physiol, 2005, 289(1): H336-H343.
    [66] Dulak J, Józkowicz A, Dembinska-Kiec A, et al. Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2000, 20(3): 659-666.
    [67] Montrucchio G, Sapino A, Bussolati B, et al. Potential angiogenic role ofplatelet-activating factor in human breast cancer[J]. Am J Pathol, 1998, 153(5): 1589-1596.
    [68] Ma X, Ottino P, Bazan HE, et al. Platelet-activating factor (PAF) induces corneal neovascularization and upregulates VEGF expression in endothelial cells[J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 2915-2921.
    [69] Ko HM, Seo KH, Han SJ, et al. Nuclear factor kappaB dependency of platelet-activating factor-induced angiogenesis[J]. Cancer Res, 2002, 62(6): 1809-1814.
    [70] Yiu GK, Chan WY, Ng SW, et al. SPARC (secreted protein acidic and rich cysteine) induces apoptosis in ovarian cancer cells[J]. Am J Pathol, 2001, 159(2): 609-622.
    [71] Chlenski A, Liu S, Baker LJ, et al. Neurblastoma angiogenesis is inhibited with a folded synthetic molecule corresponding to the epidermal growth factor-like module of the follistatin domain of SOARC[J]. Cancer Res, 2004, 64(20): 7420-7425.
    [72] Motamed K. SPARC (osteonectin/BM-40)[J]. Biochem Cell Biol, 1999, 31(12): 1363-1366.
    [73] Brekken RA, Sage EH. SPARC, a matricellular protein: at the crossroads of cell-matrix communication[J]. Matrix Biol, 2001, 19(8): 816-827.
    [74] Holland PW, Harper SJ, McVey JH, et al. In vivo expression of mRNA for the Ca2+-binding protein SPARC (osteonectin) revealed by in situ hybridization[J]. Cell Biol, 1987, 105(1): 473-482.
    [75] Porter PL, Sage EH, Lane TF, et al. Distribution of SPARC in normal and neoplastic human tissue[J]. J Histochem Cytochem, 1995, 43(8): 791-800.
    [76] Abe K, Hibino T, Mishima H, et al. The cytokine regulation of SPARC production by rabbit corneal epithelial cells and fibroblasts in vitro[J]. Cornea, 2004, 23(2): 172-179.
    [77] Yan Q, Sage EH. SPARC, a matricellular glycoprotein with important biological functions[J]. J Histochem Cytochem, 1999, 47(12): 1495-1505.
    [78] Chlenski A, Liu S, Crawford SE, et al. SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis[J]. Cancer Res, 2002, 62(24): 7357-7363.
    [79] D'Amore PA, Smith SR. Growth factor effects on cells of the vascular wall: a survey[J]. Growth Factors, 1993, 8(1): 61-75.
    [80]张伟丽,惠汝太.血管生成和成熟的分子调节机制[J].中国分子心脏病学杂志, 2004, 4(2): 118-122.
    [81] Ferrara N. VEGF and the quest for tumour angiogenesis factors[J]. Nat Rev Cancer, 2002, 2(10): 795-803.
    [82] Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis[J]. J Cell Biol, 2001, 153(3): 543-553.
    [83] Kluk MJ, Hla T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors[J]. Biochim Biophys Acta, 2002, 1582(123): 72-80.
    [84] Loughna S, Sato TN. Angiopoietin and Tie signaling pathways in vascular development[J]. Matrix Biol, 2001, 20(5-6): 319-325.
    [85] Pepper MS. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity[J]. Cytokine Growth Factor Rev, 1997, 8(1): 21-43.
    [86] Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors[J]. EMBO J, 2002, 21(7): 1743-1753.
    [87] Hynes RO. A reevaluation of integrins as regulators of angiogenesis[J]. Nat Med, 2002, 8(9): 918-921.
    [88] Ruoslahti E. Specialization of tumour vasculature[J]. Nat Rev Cancer, 2002, (2): 83-90.
    [89] Rossant J, Howard L. Signaling pathways in vascular development[J]. Annu Rev Cell Dev Biol, 2002, 18: 541-573.
    [90] Oka M, Iwata C, Suzuki HI, et al. Inhibition of endogenous TGF-βsignaling enhances lymphangiogenesis[J]. Blood, 2008 [Epub ahead of print]
    [91] Wirzenius M, Tammela T, Uutela M,et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting[J]. J Exp Med, 2007, 204(6): 1431-1440.
    [92] Bloch W, Huggel K, Sasaki T, et al. The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing[J]. FASEB J, 2000, 14(15): 2373-2376.
    [93]吴献青.卵巢血管形成与卵巢生理[J].国外医学计划生育分册, 2002, 21(2): 94-97.
    [94] Carmeliet P. Angiogenesis in health and disease[J]. Nat Med, 2003, 9 (6): 653-660.
    [95] Helmlinger G, Netti PA, Lichtenbeld HC, et al. Solid stress inhibits the growth of multicellular tumor spheroids[J]. Nat Biotechnol, 1997, 15(8): 778-783.
    [96] Chang YS, di Tomaso E, McDonald DM, et al. Mosaic blood vessels in tumors : frequency of cancer cells in contact with flowing blood[J]. Proc Natl Acad Sci U S A, 2000, 97(26): 14608-146013.
    [97] Dambska M. The vascularization of the developing human brain[J]. Folia Neuropathol, 1995, 33(4): 189-193.
    [98] Virgintino D, Errede M, Robertson D, et al. VEGF expression is developmentally regulated during human brain angiogenesis[J]. Histochem Cell Biol, 2003, 119(3): 227-232.
    [99] Ryabov SI, Kositsyn NS. Modification of injection mapping of vascular-capillary bed in cerebral nervous tissue[J]. Bull Exp Biol Med, 2006, 141(1): 107-109.
    [100]辜清,白晓春,林刚,等.脑内微血管的发育[J].江西教育学院学报, 2001, 22(3): 44-49.
    [101] Dahl V. The ultrastructure of capillaries in cerebral tissue of human embryos: A preliminary report[J]. Dan Med Bull, 1963, 10: 196-199.
    [102] Allsopp G, Gamble HJ. An electron microscopic study of the pericytes of thedeveloping capillaries in human fetal brain and muscle[J]. J Anat, 1979, 128(Pt 1): 155-168.
    [103] Wolff JR, B?r T. 'Seamless' endothelia in brain capillaries during development of the rat's cerebral cortex[J]. Brain Res, 1972, 41(1):17-24.
    [104]高摄渊,袁龙庆,曾司鲁,等.人胚胎及早期胎儿脑内毛细血管的超微结构[J].解剖学杂志, 1986, 9(4): 247-249.
    [105]贾立明,高摄渊.小鼠血脑屏障的组织发生[J].解剖学杂志, 1998, 21(6): 485-490.
    [106] Marin-Pedillaa M. Embryonic vascularization of the mammalian cerebral cortex[M]. In: Peters A, Jones EG Eds: Cerebral cortex (Vol.7: development and maturation of cerebral cortex) New York: Plenum Press, 1988: 479-509.
    [107]王亮,梁英锐,唐外星,等.人胎脑毛细血管形态发育:超微结构及图像分析仪定量研究[J].解剖学报, 1991, 22(4): 430-434.
    [108] Zeller K, Vogel J, Kuschinsky W. Postnatal distribution of Glut1 glucose transporter and relative capillary density in blood-brain barrier structures and circumventricular organs during development[J]. Brain Res Dev Brain Res, 1996, 91(2): 200-208.
    [109] Keep RF, Jones HC, Vogel, et al. Cortical microvessels during brain development: A morphometric study in the rat[J]. Microvasc Res, 1990, 40(3): 412-416.
    [110] Robertson PL, Dubois M, Bowman PD, et al. Angiogenesis in developing rat brain: an in vivo and in vitro study[J]. Dev Brain Res, 1985, 23(2): 219-223.
    [111] Minamikawa T, Miyake T, Takamatsu T, et al. A new method of lectin histochemistry for the study of brain angiogenesis. Lectin angiography[J]. Histochemistry, 1987, 87(4): 317-320.
    [112] Rowan RA, Maxwell DS. Patterns of vascular sprouting in the postnatal development of the cerebral cortex of the rat[J]. Am J Anat, 1981, 160(3): 247-255.
    [113] Mato M, Ookawara S. A simple method for observation of capillary nets in rat brain cortex[J]. Experientia, 1979, 35(4): 501–503.
    [114] Mironov V, Hritz MA, LaManna JC, et al. Architectural alterations in rat cerebral microvessels after hypobaric hypoxia[J]. Brain Res, 1994, 660(1): 73-80.
    [115]成令忠.组织学[M].北京:人民卫生出版社, 1993
    [116] Vates GE, Hashimoto T, Young WL, et al. Angiogenesis in the brain during development: the effects of vascular endothelial growth factor and angiopoietin-2 in an animal model[J]. J Neurosurg, 2005, 103(1): 136-145.
    [117] deMello DE, Sawyer D, Galvin N, et al. Early fetal development of lung vasculature[J]. Am J Respir Cell Mol Biol, 1997, 16(5): 568-581.
    [118] Schachtner SK, Wang Y, Scott Baldwin H. Qualitative and quantitative analysis of embryonic pulmonary vessel formation[J]. Am J Respir Cell Mol Biol, 2000, 22(2): 157-165.
    [119] Parera MC, van Dooren M, van Kempen M, et al. Distal angiogenesis: a new concept for lung vascular morphogenesis[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(1): L141-149.
    [120] Zhao L, Wang K, Ferrara N, et al. Vascular endothelial growth factor co-ordinates proper development of lung epithelium and vasculature[J]. Mech Dev, 2005, 122(7-8): 877-886.
    [121] Donoghue L, Tyburski JG, Steffes CP, et al. Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes[J]. Am J Surg, 2006, 191(3): 349-352.
    [122] Alvarez DF, Huang L, King JA, et al. Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(3): L419-L430.
    [123] Ihida-Stansbury K, McKean DM, Gebb SA, et al. Paired-related homeobox gene Prx1 is required for pulmonary vascular development[J]. Circ Res, 2004, 94(11): 1507-1514.
    [124] Burri PH. Structural aspects of postnatal lung development - alveolar formation and growth[J]. Biol Neonate, 2006, 89(4): 313-322.
    [125] Schittny JC, Mund SI, Stampanoni M. Evidence and structural mechanism for late lung alveolarization[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(2): L246-L254.
    [126] Mitzner W, Lee W, Georgakopoulos D, et al. Angiogenesis in the mouse lung[J]. Am J Pathol, 2000, 157(1): 93-101.
    [127]羊惠君,李爱冬.人胎视网膜血管结构发育的研究[J].中华眼底病杂志, 1997, 13(3): 153-156.
    [128]王嘉伦,于卉影,潘晓蔚,等.微血管形成与宿主组织间关系的实验研究[J].沈阳医学院学报, 1997, 11(3): 8-12.
    [129]王艳宁,韩莹,王嘉伦.血管发生的扫描电镜观察[J].中华医学实践杂志, 2005, 4(4): 307-308.
    [130]张曼,周爱儒,汤健.血管发生和发展的分子机制[J].生理科学进展, 1999, 30(1): 67-70.
    [131]王兆钺.血管新生的研究进展[J].中华医学杂志, 2004, 84(3): 1137-1139.
    [132] M?bius C, Demuth C, Aigner T, et al. Evaluation of VEGF A expression and microvascular density as prognostic factors in extrahepatic cholangiocarcinoma[J]. Eur J Surg Oncol, 2007, 33(8): 1025-1029.
    [133] Munaron L. Intracellular calcium, endothelial cells and angiogenesis[J]. Recent Patents Anticancer Drug Discov. 2006, 1(1): 105-119.
    [134] Zetter BR. Angiogenesis and tumor metastasis[J]. Annu Rev Med, 1998, 49: 407-424.
    [135] Alam SM, Fujimoto J, Jahan I, et al. Overexpression of ephrin-B2 and EphB4 in tumor advancement of uterine endometrial cancers[J]. Ann Oncol, 2007, 18(3): 485-490.
    [136] Alam SM, Fujimoto J, Jahan I,et al. Coexpression of EphB4 and ephrin-B2 in tumour advancement of ovarian cancers[J]. Br J Cancer, 2008, 98(4): 845-851.
    [137] Forooghian F, Das B. Anti-angiogenic effects of ribonucleic acid interferencetargeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha[J]. Am J Ophthalmol, 2007, 144(5): 761-768.
    [138] Raia V, Mancuso P, Bertolini F. Surrogate Markers of Angiogenesis (Tumor Angiogenesis)[M]. 2008: 795-808.
    [139] Tatar O, Shinoda K, Kaiserling E, et al. Early effects of triamcinolone on vascular endothelial growth factor and endostatin in human choroidal neovascularization[J]. Arch Ophthalmol, 2008, 126(2): 193-199.
    [140]王兆钺.血管新生的研究进展[J].中华医学杂志, 2004, 84(13): 1137-1139.
    [1]郭鹞.微循环学基础与实验方法[M].西安:第四军医大学出版社, 2005: 210-218.
    [2]李忠华,王兴海.解剖学技术(第二版)[M].北京:人民卫生出版社, 1998
    [3]刘学政,谷学静,刘学,等.齿状核微血管构筑的研究[J].解剖学杂志, 1995, 18(3): 224-227.
    [4] Hossler FE, Monson FC. Evidence for a unique elastic sheath surrounding the vesicular arteries of the rabbit urinary bladder--studies of the microvasculature with microscopy and vascular corrosion casting[J]. Anat Rec, 1998, 252(3): 472-476.
    [5]戴晓玲,张致身,王元身,等.大鼠丘脑、基底节及内囊的微血管构筑及其定量研究[J].首都医科大学学报, 1999, 20(4): 240-243.
    [6]陈清亮,钟世镇,徐达传.环氧树脂铸型标本制作法[J].解剖学通报, 1982, 5(3): 103-105.
    [7] Weiger T, Lametschwandtner A, Stockmayer P. Technical parameters of plastics (Mercox CL-2B and various methylmethacrylates) used in scanning electron microscopy of vascular corrosion casts[J]. Scan Electron Microsc, 1986, (1): 243-252.
    [8] Christofferson R. Vascular architecture and neovascularization is surveyed with a new casting technique[J]. Lakartidningen, 1991, 88(9): 735-737.
    [9] Aharinejad S, Bock P. Casting with Mercox-methylmethacrylic acid mixtures causes plastic sheets on elastic arteries. A scanning and transmission electron microscopic study[J]. Scanning Microsc, 1993, 7(2): 629-635.
    [10] Tsikaras DP, Natsis K, Hytiroglou P, et al. Microanatomy of the vasa vasorum of the human thoracic aorta: a study utilizing a polyester resin casting technique[J]. Morphologie, 1997, 81(252): 21-22.
    [11]宋振岚,王有伟,徐文论.股骨骨髓微血管构筑——扫描电镜观察[J].解剖学杂志, 1996, 19(3): 257-260.
    [12]王增贤,宗传龙.大鼠大脑尾壳核微血管铸型的扫描电镜观察[J].泰山医学院学报, 1999, 20(3): 211-213.
    [13] Krucker T, Lang A, Meyer EP. New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics[J]. Microsc Res Tech, 2006, 69(2): 138-147.
    [14]王淼,谢正兰,潘爱华,等.不同年龄层次人体动脉系铸型的设计与制作[J].解剖与临床, 2007, 12(5): 354-355.
    [15]张平,曹承刚,左志林.后海穴区腔上囊的微血管构筑[J].上海针灸杂志, 2001, 20(1): 44-45.
    [16]王剑,崔燕.去除心脏表面脂肪的福尔马林-盐酸法[J].解剖学杂志, 2005, 28(5): 492
    [17]马鲜平,崔燕.快速去脂法在制作心脏血管铸型标本中的应用[J].解剖学杂志, 2006, 29(3): 388-389.
    [18]赵建红.牦牛肺脏管道铸型解剖学研究[D].兰州:甘肃农业大学, 2006
    [19]赵建红,俞红贤,刘英,等.绵羊支气管动脉立体铸型的显示方法[J].甘肃农业大学学报, 2007, 42(3): 38-40.
    [20]王剑,谌剑波,吴建云,等.牛蛙心肝肺联合铸型的设计与制作[J].西南师范大学学报(自然科学版): 2007, 32(5): 79-81.
    [21] Lametschwandtner A, Lametschwandtner U, Weiger T. Scanning electron microscopy of vascular corrosion casts--technique and applications[J]. Scan Electron Microsc, 1984, (Pt 2): 663-695.
    [22] Lametschwandtner A, Lametschwandtner U, Weiger T. Scanning electron microscopy of vascular corrosion casts--technique and applications: updated review[J]. Scanning Microsc, 1990, 4(4): 889-941.
    [23] Lametschwandtner A, Minnich B, St?ttinger B, et al. Analysis of microvascular trees by means of scanning electron microscopy of vascular casts and 3D-morphometry[J]. Ital J Anat Embryol, 2005, 110(2 Suppl 1): 87-95.
    [24] Hodde KC, Steeber DA, Albrecht RM. Advances in corrosion casting methods[J]. Scanning Microsc, 1990, 4(3): 693-704.
    [25] Malkusch W, Konerding MA, Klapthor B, et al. A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization[J]. Anal Cell Pathol, 1995, 9(1): 69-81.
    [26] Konerding MA, Malkusch W, Klapthor B, et al. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts[J]. Br J Cancer. 1999, 80(5-6): 724-732.
    [27] Minnich B, Bartel H, Lametschwandtner A. Quantitative microvascular corrosion casting by 2D- and 3D-morphometry[J]. Ital J Anat Embryol, 2001, 106(2 Suppl 1): 213-220.
    [28] Giuv?r??teanu I. Scanning electron microscopy of vascular corrosion casts--standard method for studying microvessels[J]. Rom J Morphol Embryol, 2007, 48(3): 257-261.
    [29] Ohtani O, Ohtani Y. A corrosion casting/scanning electron microscope method that simultaneously demonstrates clear outlines of endothelial cells and three-dimensional vascular organization[J]. Arch Histol Cytol, 2000, 63(5): 425-429.
    [30] Schraufnagel DE, Schmid A. Microvascular casting of the lung: vascular lavage[J]. Scanning Microsc, 1988, 2(2): 1017-1020.
    [31] Schraufnagel DE. Ranking corrosion efficiency: a Latin square study on rat lung microvascular corrosion casts[J]. Scanning Microsc, 1989, 3(1): 299-304.
    [32] Viggiano D, Sangiorgi S, Reguzzoni M. A new method to make vascular and bronchial casts of voluminous organs[J]. Eur J Morphol, 2003, 41(5): 161-165.
    [33]许湘筠,除敏源.中空型微血管铸型技术在微血管构筑研究中的应用[J].生物医学工程学杂志, 1993, 10(1): 42-46
    [34]滑炎卿,于彦铮.在体肺铸型标本的制作[J].解剖学杂志, 1994, 1: 88-89.
    [35]漆光平,杜亚政,潘爱华,等.乳胶血管灌注的技术探讨[J].湖南医科大学学报, 2000, 5(4): 411-412.
    [36]李莉,饶利兵,易传安,等.应用硅氧烷-水晶胶制作铸型标本解剖学研究[J] ,解剖学研究, 2003, 25(2): 113
    [37]王昌德,张炜.制作保留骨骼的血管铸型标本的方法改进[J].解剖学杂志, 2004, 27(4): 454-455.
    [38]石瑾,欧伟.心肺肝联合铸型标本的设计与制作[J].解剖学杂志, 1999, 22(6): 561-562.
    [39] Schraufnagel DE, Ganesan DP. Tracers in vascular casting resins enhance backscattering (反向散射)brightness[J]. Scanning, 2002, 24(3): 121-126.
    [40]杜晓霞.一日龄牦牛肺脏微血管构筑的研究[D].兰州:甘肃农业大学, 2005,
    [41]王宇.牦牛和绵羊肺静脉铸型后胸膜下微血管的构筑特征[D].兰州:甘肃农业大学, 2007.
    [42]柳东阳.牦牛和绵羊肺脏实质内微静脉铸型的扫描电镜观察[D].兰州:甘肃农业大学, 2007.
    [43] McMullan DM, Hanley FL, Riemer RK. A method for selectively limiting lumen diameter in corrosion casting[J]. Microvasc Res, 2004, 67(3): 215-217.
    [44] Sangiorgi S, Manelli A, Dell'Orbo C, et al. A new method for the joint visualization of vascular structures and connective tissues: corrosion casting and 1 N NaOH maceration[J]. Microsc Res Tech, 2006, 69(11): 919-923.
    [45] Manelli A, Sangiorgi S, Binaghi E, et al. 3D analysis of SEM images of corrosion casting using adaptive stereo matching[J]. Microsc Res Tech, 2007, 70(4): 350-354.
    [46] Verli FD, Rossi-Schneider TR, Schneider FL, et al. Vascular corrosion casting technique steps[J]. Scanning, 2007, 29(3): 128-132.
    [47] Lametschwandtner A, Minnich B, Kachlik D, et al. Three-dimensional arrangement of the vasa vasorum in explanted segments of the aged human great saphenous vein: scanning electron microscopy and three-dimensional morphometry of vascular corrosion casts[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 281(2): 1372-1382.
    [48] Kachlik D, Baca V, Stingl J, et al. Architectonic arrangement of the vasa vasorum of the human great saphenous vein[J]. J Vasc Res, 2007, 44(2): 157-166.
    [49]张朝佑.器官内微血管铸型扫描电镜图谱[M].北京:科学出版社, 1988:71-77.
    [50]姚作宾,周家宝.肺内支气管动脉及其与肺血管的吻合[J].解剖学报, 1985, 16(1): 15-19.
    [51]余新光,周定标,段国升,等.多支供血的脑动静脉畸形在血管造影上的构筑特征[J].中华神经外科杂志, 1995, 11(3): 151-153,185.
    [52] Kondo S. Microinjection methods for visualization of the vascular architecture of the mouse embryo for light and scanning electron microscopy[J]. J Electron Microsc, 1998, 47(2): 101-113.
    [53] Turhan A, Konerding MA, Tsuda A, et al. Bridging mucosal vessels associated with rhythmically oscillating blood flow in murine colitis[J]. Anat Rec (Hoboken), 2008, 291(1): 74-82.
    [54]汤少明,梁杰,颜大胜,等.碱性磷酸酶组化法在研究疤痕微血管构筑的应用[J].广东医学院学报, 1993, Z1: 224.
    [55] Lind A, Kernell D. Myofibrillar ATPase histochemistry of rat skeletal muscles: A“two-dimensional”quantitative approach[J]. J Histochem Cytochem, 1991, 39(2):589-597.
    [56]张成岗,蔡文琴.利用内源性碱性磷酸酶显示组织中的微血管构筑[J].解剖学杂志, 1999, 22(6): 559-560.
    [57]吕华,郭旭方,赵全明.发育阶段人脑视觉系统微血管密度的增龄变化[J].解剖学杂志, 2004, 27(1): 43-46.
    [58]黄庆愿,高钰琪,史景泉,等.大鼠心、脑、骨骼肌毛细血管染色方法比较[J].第三军医大学学报, 2001, 23(2): 237-239.
    [59]赵淑敏,孔祥玉,张一模,等.对小脑不同部位微血管构筑的光镜观察[J].承德医学院学报, 2000, 17(3): 1-3.
    [60]赵淑敏,孔祥玉.一种媒染血管的新方法—单宁酸-氯化铁法[J].解剖学杂志, 2001, 24(1): 91-92.
    [61]赵淑敏,韩莉,马泉,等.单宁酸-氯化铁媒染法显示大鼠嗅球微血管构筑[J].承德医学院学报, 2003, 20(2): 94-96.
    [62] Ravnic DJ, Jiang X, Wolloscheck T, et al. Vessel painting of the microcirculation using fluorescent lipophilic tracers[J]. Microvasc Res, 2005, 70(1-2): 90-96.
    [63] Ravnic DJ, Konerding MA, Tsuda A, et al. Structural adaptations in the murine colon microcirculation associated with hapten-induced inflammation[J]. Gut, 2007, 56(4): 518-523.
    [64] Ravnic DJ, Zhang YZ, Turhan A, et al. Biological and optical properties of fluorescent nanoparticles developed for intravascular imaging[J]. Microsc Res Tech, 2007, 70(9): 776-781.
    [65] Turnball IM. Blood supply of the spinal cord: Normal and pathological considerations[J]. Clin Neurosurg, 1973, 20: 56-84.
    [66] Jedrzejewski KS, Cendrowska I, Okraszewska E. Evaluation of several methods used in anatomical investigations of the blood and lymphatic vessels[J]. Folia Morphol (Warsz), 2002, 61(2): 63-69.
    [67] Anderson BG, Anderson WD. Renal vasculature of the trout demonstrated by scanning electron microscopy, compared with canine glomerular vessels[J]. Am J Anat, 1976, 145(4): 443-457.
    [68] Ohtani O. Microvasculature of the rat lung as revealed by scanning electron microscopy of corrosion casts[J]. Scan Eletron Microsc, 1980, 3: 349-356.
    [69] Kendall MW, Eissmann E. Scanning electon microscopic examination of human pulmonary capillaries using a latex replication method[J]. Anat Rec, 1980, 196: 275-283.
    [70] Carretero A, Ditrich H, Navarro M, et al. Afferent portal venous system in the mesonephros and metanephros of chick embryos: development and degeneration[J]. Anat Rec, 1997, 247(1): 63-70.
    [71]魏宝林,侯广棋.葡萄膜血管铸型的扫描电镜观察[J].解剖学报, 1983, 14(1): 109-112.
    [72] Scala G, Mirabella N, Paino G, et al. The microvascularization of the choroid plexus of the lateral ventricles in the goat (Capra hircus)[J]. Anat Histol Embryol, 1994, 23(2):93-101.
    [73] Sugiyama K, Gu ZB, Kawase C, et al. Optic nerve and peripapillary choroidal microvasculature of the rat eye[J]. Invest Ophthalmol Vis Sci, 1999, 40(13): 3084-3090.
    [74] Bhutto IA, Amemiya T. Microvascular architecture of the rat choroid: corrosion cast study[J]. Anat Rec, 2001, 264(1): 63-71.
    [75] Ninomiya H, Kuno H. Microvasculature of the rat eye: scanning electron microscopy of vascular corrosion casts[J]. Vet Ophthalmol, 2001, 4(1):55-59.
    [76] Ninomiya H, Inomata T. Microvasculature of the hamster eye: scanning electron microscopy of vascular corrosion casts[J]. Vet Ophthalmol, 2005, 8(1): 7-12.
    [77] Ninomiya H, Inomata T. Microvascular anatomy of the pig eye: scanning electron microscopy of vascular corrosion casts[J]. J Vet Med Sci, 2006, 68(11): 1149-1154.
    [78] Eida H, Bhutto IA, Amemiya T. Corrosion cast demonstration of choroidal vasculature in normal Wistar Kyoto rat[J]. Ital J Anat Embryol, 2001, 106(2 Suppl 1): 245-250.
    [79] Sangiorgi S, Picano M, Manelli A, et al. The microvasculature of the lateral choroid plexus in the rat: a scanning electron microscopy study of vascular corrosion casts[J]. Eur J Morphol, 2003, 41(5): 155-160.
    [80] Anderson BG, Anderson WD. Microvasculature of the canine heart demonstrated by scanning electron microscopy[J]. Am J Anat, 1980, 158(2): 217-227.
    [81] Tsunenari I. Cushion-like structure in coronary arteries of rats[J]. Kaibogaku Zasshi, 1993, 68(1): 67-75.
    [82]张平,左志林.猪右心室壁微血管构筑的扫描电镜观察[J].黑龙江畜牧兽医, 1997, 4: 23-25.
    [83]韩卉,牛朝诗,严中亚,等.犬左心室壁微血管构筑的扫描电镜观察[J].安徽医科大学学报, 1998, 33(2): 85-87.
    [84] Moore JA, Rutt BK, Karlik SJ, et al. Computational blood flow modeling based on in vivo measurements[J]. Ann Biomed Eng, 1999, 27(5): 627-640.
    [85] Higuchi K, Hashizume H, Aizawa Y, et al. Scanning electron microscopic studies of the vascular smooth muscle cells and pericytes in the rat heart[J]. Arch Histol Cytol, 2000, 63(2): 115-126.
    [86] Higuchi K, Kumaki K, Aizawa Y, et al. A KOH-collagenase digestion method for scanning electron microscopic studies of vascular smooth muscle fibers in the human heart[J]. Ital J Anat Embryol, 2001, 106(2 Suppl 1): 197-202.
    [87] Ratajska A, Ciszek B, Sowińska A. Embryonic development of coronary vasculature in rats: corrosion casting studies[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 270(2): 109-116.
    [88]王剑.牦牛心脏血管铸型的研究[D].兰州:甘肃农业大学, 2005
    [89]贺延玉.犊牦牛和成年牦牛心脏微血管构筑的研究[D].兰州:甘肃农业大学, 2007
    [90]王仲侨,郑观德.肺胸膜血管毛细管及肺泡毛细管网的立体构筑显示法[J].解剖学通报, 1966, 1: 66-68
    [91] McLaughlin RF, Tyler WS, Canada RO. A study of the subgross pulmonary anatomy in various mammals[J]. Am J Anat, 1961, 108: 149-165.
    [92] Aharinejad S, Lametschwandtner A, B?ck P, et al. Microvascularization of the pleura in rats and guinea pigs. Scanning Microsc, 1991, 5: 1097-1103.
    [93]杜晓华.双峰驼肺脏微血管构筑学特征的研究[D].兰州:甘肃农业大学, 2000
    [94] Tobin CE. The bronchial arteries and their connections with other vessels in the human lung[J]. Surg Gynec Obstet, 1952, 95: 741-750.
    [95]张永起.支气管动脉在肺内的径路与分布及其与肺动脉的吻合[J].解剖学报. 1958, 3(4): 245-253.
    [96]姚作宾,周家宝.肺内支气管动脉及其与肺血管的吻合[J].解剖学报. 1985, 16(1): 15-19.
    [97] Albertine KH, Wiener-Kronish JP, Philip JR. Structure, blood supply, and lymphatic vessels of the sheep’s visceral pleural[J]. Am J Anat, 1982, 165: 277-294.
    [98] Schraufnagel DE, Pearse DB, Mitzner WA. Three-dimensional structure of the bronchial microcirculation in sheep[J]. Anat Rec, 1995, 243(3): 357-366
    [99] Ferrieira PG, Silva AC, Aguas AP, et al. Detailed arrangement of the bronchial arteries in the Wistar rat: A study using vascular injection and scanning electron microscopy[J]. Eur J Anat, 2001, 5(2):67-76.
    [100]侯广棋,魏宝林,张朝佑,等.肺毛细血管和肺泡铸型的扫描电子显微镜观察[J].解剖学报, 1981, 12(2): 390-392.
    [101]侯广棋,魏宝林,廖瑞,等.人肺毛细血管和肺泡铸型的扫描电子显微镜观察[J].解剖学报, 1983,14(2): 113-115.
    [102]沈惠卿,张亚霏,张其鸿,等.大鼠肺微血管和肺泡铸型的扫描电镜观察[J].第二军医大学学报, 1988,9(6): 536-537.
    [103]俞诗源,李重阳.家兔肺毛细血管和肺泡铸型的扫描电镜观察[J].兰州大学学报(自然科学版), 1995a, 31 (4): 47-49.
    [104]俞诗源,尤启斌.鼠兔肺毛细血管铸型的扫描电镜观察[J].西北师范大学大学报(自然科学版), 1996b, 32(4): 115-117.
    [105]俞诗源.金丝猴肺毛细血管和肺泡铸型的扫描电镜观察[J].兽类学报, 1997b, 17(4): 301-302
    [106]俞诗源.小白鼠肺毛细血管和肺泡铸型的扫描电镜观察[J].西北师范大学学报(自然科学版), 1998a, 34 (2): 65-68.
    [107]杜晓华,刘霞,刘英,等.双峰驼胸膜下肺微血管构筑的扫描电镜观察[J].解剖学报, 2006, 37(1): 87-90.
    [108] Guntheroth WG, Luchtal DL, Kawabori I. Pulmonary microcirculation: tubules rather than sheet and post[J]. J Appl Physiol, 1982, 53: 510-515.
    [109]柳东阳.牦牛和绵羊肺脏实质内微静脉铸型的扫描电镜观察[D].兰州:甘肃农业大学, 2007.
    [110] Pump KK. The bronchial arteries and their anastomoses in the human lung[J]. Dis Chest, 1963, 43(3): 245-255
    [111]真炳攸,张云鹏,张留保,等.成人肺微血管研究[J].解剖学报, 1990, 21(3):21-22.
    [112]廖瑞,袁桂琴,魏宝林.人和猴器官内微管三维构筑[M].北京:科学出版社, 1993: 69-73.
    [113] Caduff JH, Fischer LC, Burri PH. Scanning Electron microscopy study of the developing microvasculature in the postnatal rat lung[J]. Anat Rec, 1986, 216(2): 154-164.
    [114] Burri PH, Mojmir RT. A novel mechanism of capillary growth in the rat pulmonary microcirculation[J]. Anat Rec, 1990, 228: 35-45.
    [115] Burri PH. Structural aspects of postnatal lung development - alveolar formation and growth[J]. Biol Neonate, 2006, 89(4): 313-322.
    [116] Yamada T, Suzuki E, Gejyo, F. Developmental changes in the structure of the rat fetal lung, with special reference to the airway smooth muscle and vasculature[J]. Arch Histo Cyto, 2002, 65(1): 55-69.
    [117] Schachtner SK, Wang Y, Scott Baldwin H. Qualitative and quantitative analysis of embryonic pulmonary vessel formation[J]. Am J Respir Cell Mol Biol, 2000, 22(2): 157-165.
    [118] Haratake J, Yamamoto O, Hisaoka M, et al. Scanning electron microscopic examinations of microvascular casts of the rat liver and bile duct[J]. J Uoeh. 1990, 12(1): 19-28.
    [119] Andrews CJ, Andrews WH. Casts of hepatic blood vessels: a comparison of the microcirculation of the penguin, Pygoscelis adeliae, with some common laboratory animals[J]. J Anat, 1976, 122(Pt 2): 283-292.
    [120] Aharinejad S, Lametschwandtner A, B?ck P, et al. Microangioarchitecture of the guinea pig common bile duct and duodenal papilla: a scanning electron and light microscopic study[J]. Anat Rec, 1994, 239(3): 280-286.
    [121] Jackowiak H, Godynicki S. Microvascularization of the Canine Hepatic Ducts[J]. Anat Histol Embryol, 2006, 35(6): 402-407
    [122] Gaudio E, Pannarale L, Franchitto A, et al. Cholangiocytes and blood supply[J]. World J Gastroenterol, 2006, 12(22): 3546-3552.
    [123] Pannarale L, Onori P, Borghese F, et al. Three-dimensional organization of the hepatic artery terminal branches: a scanning electron microscopic study of vascular corrosion casts of rat liver[J]. Ital J Anat Embryol, 2007, 112(1): 1-12.
    [124]刘学政,谷学静,刘学,等.齿状核微血管构筑的研究[J].解剖学杂志, 1995, 18(3): 224-227.
    [125]牛朝诗,韩卉,张为龙.后丘脑动脉的显微解剖及其微血管构筑[J].解剖学杂志, 1996, 19(2): 91-95.
    [126]秦有,张为,何娟娟,等.脊髓内部动脉构筑的优化分析[J].广东解剖学通报, 1996, 18(1): 22-26.
    [127] Tokunaga H. Postnatal development of the blood vasculature in the rat adrenal gland: a scanning electron microscope study of microcorrosion casts[J]. Arch Histol Cytol, 1996, 59(4): 305-315.
    [128] Reina-De La Torre F, Rodriguez-Baeza A, Sahuquillo-Barris J. Morphological characteristics and distribution pattern of the arterial vessels in human cerebral cortex: a scanning electron microscope study[J]. Anat Rec, 1998, 251(1): 87-96.
    [129]王增贤,宗传龙.大鼠大脑尾壳核微血管铸型的扫描电镜观察[J].泰山医学院学报, 1999, 20(3): 211-213.
    [130] Chuncher S, Somana R. Microvascularization of thalamus and metathalamus in common tree shrew (Tupaia glis) [J]. Anat Embryol (Berl), 2006, 211(3): 173-181.
    [131] St?ttinger B, Klein M, Minnich B, et al. Design of cerebellar and nontegmental rhombencephalic microvascular bed in the sterlet, Acipenser ruthenus: a scanning electron microscope and 3D morphometry study of vascular corrosion casts[J]. Microsc Microanal, 2006, 12(5): 376-389.
    [132] Miodoński AJ, Litwin JA. Microvascular architecture of the human urinary bladder wall: a corrosion casting study[J]. Anat Rec, 1999, 254(3): 375-381.
    [133] Herbert IRL. Vascular morphology of the bovine spermatic cord and testis. light and scanning electron microscopic studies on the testicular artery and pampiniform plexus[J]. Cell Tissue Res, 1984, 237(1): 31-38.
    [134] Yániz JL, Lopez-Gatius F, Santolaria P, et al. Study of the functional anatomy of bovine oviductal mucosa[J]. Anat Rec, 2000, 260(3): 268-278.
    [135] Yaniz JL, Lopez-Gatius F, Hunter RH. Scanning electron microscopic study of the functional anatomy of the porcine oviductal mucosa[J]. Anat Histol Embryol, 2006, 35(1): 28-34.
    [136] Hossler FE, Monson FC. Microvasculature of the rabbit urinary bladder[J]. Anat Rec, 1995, 243(4): 438-448.
    [137] Hossler FE, Monson FC. Evidence for a unique elastic sheath surrounding the vesicular arteries of the rabbit urinary bladder--studies of the microvasculature with microscopy and vascular corrosion casting[J]. Anat Rec, 1998, 252(3): 472-476.
    [138] Hossler FE, Kao RL. Microvasculature of the urinary bladder of the dog: a study using vascular corrosion casting[J]. Microsc Microanal. 2007, 13(3): 220-227.
    [139] Shabsigh A, Buttyan R, Burchardt T, et al. The microvascular architecture of the rat vagina revealed by image analysis of vascular corrosion casts[J]. Int J Impot Res, 1999, Suppl 1:S23-30.
    [140] Matsuo M, Takahashi K. Scanning electron microscopic observation of microvasculature in periodontium[J]. Microsc Res Tech, 2002, 56(1): 3-14.
    [141] Peker T, Omeroglu S, Hamdemir S, et al. Three-dimensional a ssessment of the morphology of the umbilical artery in normal and pre-eclamptic placentas[J]. J Obstet Gynaecol Res, 2006, 32(5): 468-474.
    [142] Kwon KY, Park KK, Chang ES. Scanning electron microscopic study of capillary change in bleomycin-induced pulmonary fibrosis[J]. J Korean Med Sci, 1991, 6(3): 234-245.
    [143] Schraufnagel DE, Sekosan M, McGee T, et al. Human alveolar capillaries undergo angiogenesis in pulmonary veno-occlusive disease[J]. Eur Respir J, 1996, 9(2):346-350
    [144]辜清,郭家松,戴惠娟,等.癫痫大鼠海马微血管的扫描电镜观察[J].解剖学杂志, 1998, 21(1): 14-17
    [145]解雪涛,邱尉六,袁文化,等.豚鼠下颌骨血管系统放射损伤的实验研究[J].华西口腔医学杂志, 1998, 16(1): 5-7.
    [146]解雪涛,邱尉六,袁文化,等.放射性骨坏死微血管铸型的动物实验[J].中华口腔医学杂志, 1999, 34(1): 9-12.
    [147] Konerding MA, Malkusch W, Klapthor B, et al. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts[J]. Br J Cancer, 1999, 80(5-6): 724-732.
    [148] Choi IH, Ahn JH, Chung CY, et al. Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation[J]. J Orthop Res, 2000, 18(5): 698-705.
    [149] Kamiryo T, Lopes MB, Kassell NF, et al. Radiosurgery-induced microvascular alterations precede necrosis of the brain neuropil[J]. Neurosurgery, 2001, 49(2): 409-415.
    [150] Sricharoenvej S, Tongpob Y, Lanlua P, et al. Renal microvascular changes in streptozotocin-induced, long-termed diabetic rat[J]. J Med Assoc Thai, 2007, 90(12): 2677-2682.
    [1] Lametschwandtner A, Lametschwandtner U, Weiger T. Scanning electron microscopy of vascular corrosion casts--technique and applications: updated review[J]. Scanning Microsc, 1990, 4(4): 889-941.
    [2] Lametschwandtner A, Minnich B, Stottinger B, et al. Analysis of microvascular trees by means of scanning electron microscopy of vascular casts and 3D-morphometry[J]. Ital J Anat Embryol, 2005, 110(2 Suppl 1): 87-95.
    [3] Giuvarasteanu I. Scanning electron microscopy of vascular corrosion casts--standard method for studying microvessels[J]. Rom J Morphol Embryol, 2007, 48(3): 257-261.
    [4] Ninomiya H, Wakao Y. Scanning electron microscopy of vascular corrosion casts and histologic examination of pulmonary microvasculature in dogs with dirofilariosis[J]. Am J Vet Res, 2002, 63(11): 1538-1544.
    [5]高从敬,陈尔瑜,纪荣明.肺癌组织内肺动脉灌注血管立体构筑[J].中国肿瘤临床, 1999, 26(7): 514-516.
    [6]高从敬,叶福林,张南征.肺癌组织内肺动脉供血活体灌注观察[J].中国解剖临床学杂志, 2005, 23(1): 93-95.
    [7]赵银.天祝白牦牛对高山草原生态环境适应性及生产性能的研究[J].家畜生态, 1989, (1): 1-3.
    [8] Cai L, Wiener G. The Yak[M]. FAO Regional Office for Asia and the Pacific. Bangkok, Thailand. 1995: 47-52.
    [9] Lalthantluanga R, Wiesner H, Braunitzer G. Studies on yak hemoglobin (Bos grunniens, Bovidae): structural basis for high intrinsic oxygen affinity?[J]. Biol Chem Hoppe Seyler, 1985, 366(1): 63-68.
    [10]李莉.不同发育期牦牛低氧适应机制的研究[D].浙江:浙江大学, 2005
    [11] Alexander AF, Jensen R. Gross cardiac changes in cattle with high mountain (Brisket) disease and in experimental cattle maintained at high altitudes[J]. Am J Vet Res, 1995, 20: 680-689.
    [12]刘建,王培勇,罗德成. 5-羟色胺对肺动脉平滑肌细胞在缺氧条件下增殖的作用[J].生理学报, 1997, 49: 292-298.
    [13]杨建立,杨之,顾浩平.青藏高原牦牛血液动力学特点的探讨[J].高原医学杂志, 1988, 14: 25-26.
    [14]俞红贤.高原低氧与家畜[J].青海畜牧兽医杂志, 2000, 30(2): 41-42.
    [15]张朝佑.器官内微血管铸型扫描电镜图谱[M].北京:科学出版社, 71-77.
    [16]杜晓华,刘霞,刘英,等.双峰驼胸膜下肺微血管构筑的扫描电镜观察[J].解剖学报, 2006, 37(1): 87-90.
    [17]俞诗源.小白鼠肺毛细血管和肺泡铸型的扫描电镜观察[J].西北师范大学学报(自然科学版), 1998a, 34(2): 65-68.
    [18] Guntheroth WG, Luchtal DL, Kawabori I. Pulmonary microcirculation: tubules rather than sheet and post[J]. J Appl Physiol, 1982, 53: 510-515.
    [19]俞诗源,李重阳.家兔肺毛细血管和肺泡铸型的扫描电镜观察[J].兰州大学学报(自然科学版), 1995a, 31 (4): 47-49.
    [20]俞诗源,尤启斌.鼠兔肺毛细血管铸型的扫描电镜观察[J].西北师范大学大学报(自然科学版), 1996b, 32(4): 115-117.
    [21]俞诗源.金丝猴肺毛细血管和肺泡铸型的扫描电镜观察[J].兽类学报, 1997b, 17(4):301-302.
    [22]侯广棋,魏宝林,张朝佑,等.肺毛细血管和肺泡铸型的扫描电子显微镜观察[J].解剖学报, 1981, 12(2): 390-392.
    [23]侯广棋,魏宝林,廖瑞,等.人肺毛细血管和肺泡铸型的扫描电子显微镜观察[J].解剖学报, 1983, 14(2): 113-115.
    [24]王宇.牦牛和绵羊肺静脉铸型后胸膜下微血管的构筑特征[D].兰州:甘肃农业大学, 2007
    [25] Miller, W. S. The Lung[M]. Springerfield, II: Thomas, 1937
    [26]沈惠卿,张亚霏,张其鸿,等.大鼠肺微血管和肺泡铸型的扫描电镜观察[J].第二军医大学学报, 1988, 9 (6): 536-537.
    [27]杜晓华.不同年龄牦牛肺脏超微结构的形态学与形态计量学研究[D].兰州:甘肃农业大学, 2007.
    [28]柳东阳.牦牛和绵羊肺脏实质内微静脉铸型的扫描电镜观察[D].兰州:甘肃农业大学, 2007.
    [29]杜晓霞.一日龄牦牛肺脏微血管构筑的研究[D].兰州:甘肃农业大学, 2005
    [30] Caduff JH. Fischer LC. Burri PH Scanning electron microscopy study of the developing microvasculature in the postnatal rat lung[J]. Anat.Rec, 1986, 216(2): 154-164.
    [31] Burri PH. Postnatal development and growth of the pulmonary microvasculature. In: Motta PM, Murakami T, Fujita H, editors. Scanning electron microscopy of vascular casts: methods and applications[M]. The Hague: Kluwer Academic Publishers, 1992, 139-156.
    [32] Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling by intussusception: from form to function[J]. News Physiol Sci, 2003, 18: 65-70.
    [33] Zeltner TB, Caduff JH,Gehr P, et al. The postnatal development and growth of the human lung. I. Morphometry[J]. Respir Physiol, 1987, 67: 247-267.
    [34] Kendall MW, Eissmann E. Scanning electron microscopic ex amination of human pulmonary capillaries using a latex replication method[J]. Anat Rec, 1980, 196: 275-283.
    [35] Hijiya K, Okada Y. Scanning electron microscope study of the cast of the pulmonary capillary vessels in rats[J]. J Electron Micros, 1978, 27(2): 49-54.
    [36]杜晓华.不同年龄牦牛肺脏超微结构的形态学与形态计量学研究[D].兰州: 2007
    [37] Burri PH. Dbaly J,Weibel ER. The postnatal growth of the rat lung. I. Morphometry[J]. Anat Rec, 1974, 178: 711-730.
    [38] deMello DE, Sawyer D, Galvin N, Reid LM. Early fetal development of lung vasculature[J]. Am J Respir Cell Mol Biol 1997, 16(5): 568-581.
    [39]杜晓华.双峰驼肺脏微血管构筑学特征的研究[D].兰州:甘肃农业大学, 2000
    [40]真炳攸,张云鹏,张留保,等.成人肺微血管研究[J].解剖学报, 1990, 21(3): 233-238.
    [41] Peáo MN,águas AP, de SáCM, et al. Identification of vascular sphincters at the junction between alveolar capillaries and pulmonary venules of the mouse lung[J]. Anat Rec, 1995, 241(3): 383-390.
    [42] Aharinajad S, Bock P, Lametschwandtner A. Scanning and transmission electron microscopy of venous sphincters in the rat lung[J]. Anat Rec, 1992, 233: 555-568.
    [43] Brown RE. The pattern of the microcirculatory bed in the ventricular myocardium of domestic mammals[J]. Am J Anat, 1965, 116(2): 355-373.
    [44]李青水,凌风东,王国瑞.狗心左室壁内微血管特征[J].解剖学杂志, 1989, 12(2): 103–107.
    [45]张子臣,夏家骝.人右心室壁微血管构筑[J].中国循环杂志, 1993, 8(4): 223-225.
    [46]贺延玉.成年牦牛心室肌微血管床的形态学特征[J].中国兽医科学, 2007, 37(4): 338-341.
    [47] Aharinejad S, Lametschwandtner A, B?ck P, et al. Microvascularization of the pleura in rats and guinea pigs[J]. Scanning Microsc, 1991, 5: 1097-1103.
    [48] McLaughlin RF, Tyler WS, Canada RO. A study of the subgross pulmonary anatomy in various mammals[J]. Am J Anat, 1961, 108: 149-165.
    [49]赵建红.牦牛肺脏管道铸型解剖学研究[D].兰州:甘肃农业大学, 2006
    [50] Ferrieira PG, Silva AC,águas AP, et al. Detailed arrangement of the bronchial arteries in the Wistar rat: a study using vascular injection and scanning electron microscopy[J]. Eur J Anat, 2001, 5(2): 67-76.
    [51] Schraufnagel DE, Pearse DB, Mitzner W, et al. Three-dimensional structure of the bronchial microcirculation in sheep[J]. Anat Rec, 1995, 243: 357-366.
    [52] Konaschko P J.über anastomosen zwischen der A. Pulmonalis und den Aa. Bronchiales[J]. Ztschr Anat, 1926, 78: 136-147.
    [53] Tobin CE. The bronchial arteries and their connections with other vessels in the human lung[J]. Surg Gynec Obstet, 1952, 95: 741-750.
    [54]张永起.支气管动脉在肺内的径路与分布及其与肺动脉的吻合[J].解剖学报, 1958, 3(4): 245-253.
    [55] Pump K K. The bronchial arteries and their anastomoses in the human lung[J]. Dis Chest, 1963, 43(3): 245-255.
    [56]姚作宾,周家宝.肺内支气管动脉及其与肺血管的吻合[J].解剖学报, 1985, 16(1): 15-19.
    [57]江家元,吴国流.肺内支气管血管: 1.支气管动脉的行径及其与肺动脉的吻合[J].皖南医学院学报, 1982, 1(2): 1-4.
    [58]江家元.肺的临床解剖学[M].上海:上海科学技术出版社, 1988
    [59]杜建颖,李崇谦,陈仲欣.肺内支气管动脉与肺动脉吻合的形态学研究[J].天津医科大学学报, 1999, 5(2): 19-21.
    [60]杜建颖,李崇谦.支气管动脉与肺循环血管关系的解剖和临床[J].天津医科大学学报. 2004, 10(3):365-367.
    [61] Do KH, Goo JM, Im JG. Systemic arterial supply to the lungs in adults: spiral CT findings[J]. Radiographics, 2001, 21(2): 387-402.
    [62] Remy J, Deschildre F, Artaud D. Bronchial arteries in the pig before and after permanent pulmonary artery occlusion[J]. Invest Radiol, 1997, 32(4): 218-224.
    [63] Gade J, Norgaard M A, Andersen C B, et al. The porcine bronchial artery: surgical and angiographic anatomy[J]. J Anat, 1999, 194(2): 241-247.
    [64] Liebow AA, Hales MR, Lindskog GE. Enlargement of the bronchial arteries and their anastomoses with the pulmonary arteries in bronchiectasis[J]. Am J Patho, 1949, 25: 211-231.
    [65] Yu SY, Du XH, Li HY, et al. Architecture of subpleural microvessel of the lung in Bactrian Camel(Camelus bactrianus) [J]. J Camel Pract Res, 2004, 11(1): 27-34.
    [66] Zhao WH, Zhang XB, Du XH, et al. Architecture of pulmonary, interstitial microvessels in bactrian camel (Camelus bactrianus) [J]. J Camel Pract Res, 2005, 12(1): 13-16.
    [67]张友云,陈锡昌,丁成萦,等.肺铸型的扫描电子显微镜观察[J].湖北医学院学报, 1984, 5(2): 107-110.
    [68]韩卉,牛朝诗,严中亚,等.犬左心室壁微血管构筑的扫描电镜观察[J].安徽医科大学学报, 1998, 33(2): 85-87.
    [69] Ohtani O. Microvasculature of the rat lung as revealed by scanning electron microscopy ofcorrosion casts[J]. Scan Eletron Microsc, 1980, 3: 349-356.
    [70] Schraufnagel DE. Microvascular corrosion casting of the lung. A state-of-the-art review[J]. Scanning Microsc, 1987, 1(4): 1733-1747.
    [71] Schraufnagel DE, Schmid A. Microvascular casting of the lung: effects of various fixation protocols[J]. J Electron Microsc Tech, 1988a, 8(2): 185-191.
    [72] Schraufnagel DE, Schmid A.Microvascular casting of the lung: vascular lavage[J]. Scanning Microsc, 1988b, 2(2): 1017-1020.
    [73] Schraufnagel DE, Patel KR. Sphincters in pulmonary veins. An anatomic study in rats[J]. Am Rev Respir Dis, 1990, 141(3): 721-726.
    [74] Aharinejad S, Egerbacher M, Nourani F, et al. Pulmonary venous sphincters in cattle. Anat Rec, 1996, 246(3): 356-363.
    [75] Hashizume H, Tango M, Ushiki T. Three-dimensional cytoarchitecture of rat pulmonary venous walls: a light and scanning electron microscopic study[J]. Anat Embryol (Berl), 1998, 198(6): 473-480.
    [76] Burri PH. Structural aspects of postnatal lung development - alveolar formation and growth[J]. Biol Neonate, 2006, 89: 313-322.
    [77] DeFouw DO, Shumko JZ. Pulmonary microcirculation: differences in endothelia of subpleural and alveolar capillaries[J]. Microvasc Res, 1986, 32(3):348-358.
    [78] Short AC, Montoya ML, Gebb SA, et al. Pulmonary capillary diameters and recruitment characteristics in subpleural and interior networks[J]. J Appl Physiol, 1996, 80(5):1568-1573.
    [79]魏登邦,马建宾.哺乳动物对高海拔低氧适应的分子机制研究进展[J].青海大学学报, 2001, 19(1): 15-17.
    [80]金咸瑢,范明,王志强,等.大鼠肺血管反应性种系差异的机制[J].同济医科大学学报, 1990, 1:1-5.
    [81]郭胜祥,刘永年,李景荣,等.高原适应动物牦牛与普通黄牛肺血管反应性的比较研究[J].中国病理生理杂志, 1995, 11(3): 230-233
    [82] Durmowicz AG, Hofmeister TK, Kadyraliev AA, et al. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude[J]. J.Appl Physiol, 1993, 74(5): 2276-2285.
    [83]陈秋红.高原鼠兔肺动脉血管功能及形态变化[J].中国应用生理学杂志, 2001, 17(2): 178-181.
    [84]陈秋生,冯霞,姜生成.牦牛肺脏高原适应性的结构研究[J].中国农业科学, 2006, 39(10): 2107-2113.
    [85] Tucker A, McMurtry IF, Reeves JT, et al. Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude[J]. Am J Physiol, 1975, 228(3): 762-767.
    [86]杨之,滕国奇,龙雯,等.青海牦牛肺动脉高压及相关参数的比较性研究[J].青海医药杂志.1987,1:3-6.
    [87] Heath D, Williams D, Dickinson J. The pulmonary arteries of the yak[J]. Cardiovasc Res. 1984, 18(3): 133-139.
    [88] Gupta ML, Rao KS, Anand IS, et al. Lack of smooth muscle in the small pulmonary arteries of the native Ladakhi. Is the Himalayan highlander adapted?[J]. Am Rev Respir Dis, 1992, 145(5): 1201-1204.
    [89] Anand I, Heath D, Williams D, et al. The pulmonary circulation of some domestic animals at high altitude[J]. Int J Biometeorol, 1988, 32(1): 56-64.
    [90]张勤文.不同海拔牦牛肺组织形态学比较研究[J].中国奶牛,2004,2:18-19
    [91]孙宏夫,王建国,李立英,等.平原地区狗进入高原后对其主要脏器组织形态学的光镜和电镜观察[J].高原医学杂志, 1982, 1: 53-55.
    [92]俞红贤.藏羊肺组织形态测量指标及其与高原低氧的关系[J].中国兽医科技, 1999, 29(7): 15-16.
    [93]贾荣莉.高原藏羊肺组织学结构及特点[J].中国养羊, 1997, 17(1): 31-32.
    [94]魏青.不同年龄阶段牦牛和平原黄牛肺泡[D].西宁:青海大学, 2007
    [95] Livingston Dj, La Mar GN, Brown WD. Myoglobin diffusion in bovine heart muscle[J]. Science, 1983, 220:71-73.
    [96]柴旦,周兆年.急性低氧对体外培养乳鼠心肌细胞肌红蛋白的影响[J].生理学报, 1997, 49(5): 497-503.
    [97]李庆芬.人与动物呼吸系统对高海拔低氧的适应[J].生物学通报, 199l, (10): 19-31.
    [98] Reynafarja C. et al. Kinetics of red cell formation and destruction in high altitude adapted animals[C]. 23th International Congress of Physiological Sciences, 1965, 182.
    [99]陆天才,崔刚,赖明荣,等.牦牛心、肺组织学结构及特点[J].中国牦牛, 1991, 8(2): 33-35.
    [100]江家椿,嘎玛仁增,何玛丽.不同海拔高度西藏高原牦牛若干血液生理常值的比较[J].畜牧兽医学报, 1991, 22(1): 20-26.
    [101]崔燕.不同年龄牦牛若干生理指标测定[J].中国兽医科技, 1998, 28(4): 7-9.
    [102]李莉,沈明华,俞红贤.含1/4野血犊牦牛血红蛋白、肌红蛋白含量的测定[J].青海大学学报(自然科学版), 2005, 23(6): 42-44.
    [103]李莉,沈明华,俞红贤.不同发育期牦牛红细胞数、血红蛋白及肌红蛋白的测定及意义[J].家畜生态学报, 2006, 27(2): 51-54.
    [104]李莉,俞红贤.不同发育期牦牛血浆和心肌中心钠素的测定及意义[J].中国兽医杂志, 2007, 43(3): 13-14.
    [105] Banai S, Shweiki D, Pinson A, et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis[J]. Cardiovasc Res, 1994, 28(8): 1176-1179.
    [106] Bauters C, Asahara T, Zheng LP, et al. Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor[J]. J Vasc Surg, 1995a, 21(2): 314-325.
    [107] Bauters C, Asahara T, Zheng LP, et al. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor[J]. Circulation, 1995, 91(11): 2802-2809.
    [108] Pierce EA, Avery RL, Foley ED, et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization[J]. Proc Natl Acad Sci U S A, 1995, 92(3): 905-909.
    [109] Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor[J]. Nature, 1987, 327(6122): 524-526.
    [110] Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain[J]. Nature, 1988, 336(6197): 385-388.
    [111] Knowles RG, Palacios M, Palmer RM, et al. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase[J]. Proc Natl Acad Sci U S A, 1989, 86(13): 5159-5162.
    [112] Carvajal JA, Germain AM, Huidobro-toto JP, etal. Molecular mechanism of cGMP– mediatedsmooth muscle relaxation[J]. J Cell Physicl, 2000, 184(3): 409-420.
    [113] Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology[J]. Br J Pharmacol. 2006, 147(Suppl 1): S193-S201.
    [114]乔海生,俞红贤,李莉.犊牦牛血清和组织中一氧化氮含量测定[J].青海大学学报(自然科学版), 2005, 23(5): 23-25.
    [115]宁鹏,史福胜,吕恒龙.牦牛血清和组织中一氧化氮含量测定[J].中国兽医杂志, 2004, 40(7): 21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700