金属离子驱动的DNA分子折叠及其协助下的链替换反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富含胸腺嘧啶(T)碱基与胞嘧啶碱基(C)的长单链DNA分子是一种柔性很强的生物大分子。它能够在汞离子与银离子的驱动下通过形成T-Hg-T以及C-Ag-C的金属-碱基对从而发生分子内折叠形成特殊结构。在本论文中,我们采用等温滴定微量热技术(ITC)监测了汞离子与富T碱基长单链DNA的相互作用并测定了二者结合的各项热力学参数。结合圆二色谱的结果我们发现这种相互作用是放热过程且伴随着熵减小——体系由无序化转向有序化的过程——长链富T碱基DNA分子在汞离子驱动下能够发生自我折叠形成发夹结构。同时我们发现,外界环境促发DNA无规单链强行折叠成发夹的过程中,DNA趋向于尽量使得发夹双臂的链接环存有4或5个碱基的链段。
     进一步的,我们利用得出的DNA单链发夹折叠原则设计了一种富含T、C碱基的DNA序列。我们利用ITC、CD、荧光等技术手段探究了这种DNA序列在汞离子与银离子的驱动下发生构象转变的机理,这种探究拓展了我们对于金属-DNA复合物的理解。DNA在这两种离子的驱动下都能发生分子折叠成为发夹。这种分子折叠存在着两种路径——发生在发夹尾端的高熵变的路径与发生在靠近发夹环内部的低熵变路径。这两种路径的最终产物都只有一个。与汞离子反应后的DNA-Hg复合物能与银离子发生相互作用形成更为稳定而完美的发夹结构,而这种结合就发生在发夹不完美的部分。UV滴定数据佐证了ITC的结合位点数是正确的,CD与荧光的表征手段验证了中间过程与最终形态的发夹构象。
     更改离子的加入顺序,DNA会有不同的发夹折叠方式,这对于离子驱动的DNA分子机器与含有离子参与的DNA纳米技术都有着非凡的意义。DNA的折叠是个非常复杂的过程,同样的离子改变加样顺序结果都会不同。在银离子条件下,DNA采取了一种新发现的不同于传统的C-Ag-C的金属-碱基配对:T-Ag-C。这种配对方式形成了更多的金属-碱基对,使得DNA采取了一种不完美的发夹折叠方式。它同时也封闭住了体系中大多数的T碱基,在大大提升了DNA与银离子结合能力的同时,也大大的降低甚至是基本上杜绝了DNA与汞离子反应的活性——汞离子的后续加入不再能使DNA链段发生有效的折叠。这种发夹结构是不完美的但是却是稳定的。
     最后一章中,我们提出了一种新型的可用于调控DNA链替换反应速率的新方法。我们引入了一个全新的概念:metallo-toehold,并利用其构建了汞离子驱动DNA链替换反应的体系。我们发现利用汞离子浓度的不同我们可以很方便且很灵敏的对单一目标DNA体系调控其链替换反应的速率。通过形成稳定的T-Hg-T金属碱基对弥补了碱基错配所带来的障碍,合适的汞离子浓度会极大地促进DNA链替换反应的进行。但是物极必反,过高浓度的汞离子浓度会因为封闭T碱基而阻滞DNA分支迁移的进行。这种抑制作用可以随着汞离子被其他强结合物质(如DTT)捕缚而得到解放。这种在汞离子不同浓度下,metallo-toehold DNA体系的特性让我们调控其链替换反应速度与效率提供了可能。这种DNA链替换反应驱动体现出了极佳的离子选择性。我们还可以通过对链段的设计实现其他特征金属离子(如银离子)对DNA链替换反应的驱动。该方法不仅在离子检测上有着一席之地,还具有着构建金属-DNA纳米结构的潜质。由于与当今两大热门领域:离子-DNA相互作用以及DNA链替换反应联系紧密,因此在DNA分子机器领域将大有可为。
Thymine-cytosine-rich DNA is a kind of strongly flexible biopolymer. It can specifically bind with Hg(Ⅱ) or Ag(Ⅰ) ions to generate metal-mediated base pairs (T-Hg-T and C-Ag-C) in hairpin-like structure from a random coil structure. Isothermal titration calorimetry experiments were performed to reveal the detail of whole binding process. The observed negative ΔH was favorable for the specific binding between the Hg(Ⅱ) ion and the T:T mismatched base pair, while negative AS values demonstrate that the oligonucleotide conformation changes from a random coil to a regular, stable hairpin when Hg(Ⅱ) ions are added. Moreover, we found that in the process of hairpin folding from random coil induced by external environment, DNA tended to make the link ring of hairpin a segment of four or five bases.
     Furthermore, we reported the mechanism of the formation of hairpin structure of thymine-cytosine-rich oligonucleotides induced by Hg(Ⅱ) and Ag(Ⅰ) ions. The study also confirmed and extended our understanding of the nature of metal-DNA adducts. Designed thymine-cytosine-rich oligonucleotides can significantly change in structure upon the addition of Hg(Ⅱ) ions, which converts the random coil single-strand to an anti-parallel hairpin-like folded structure. The ITC-derived thermodynamic parameters exhibited two possible pathways:one with the binding in the inner hairpin and another with the binding in the terminal hairpin. These two different binding pathways resulted in identical final products. Obvious results were observed when Ag(Ⅰ) ions were then added, confirming the existence of the spacing C-base loop of the hairpin-like formation of the Hg-DNA complex as well as the interactions between the Ag(Ⅰ) ions and the C:C mismatched base pairs that highly strengthened the structure. The result demonstrates that isothermal titration calorimetry is a powerful tool to study mechanism of DNA folding, induced by ions as well. Excellent agreement was found in coupled CD and UV measurements.
     DNA folding is a very complex process. The same ion, different order will make different results in DNA folding. Under the condition of silver ions, DNA had adopted a new found metallo-basepair, T-Ag-C, which is totally different from the traditional C-Ag-C pair. T-Ag-C formed more metallo-basepairs, which also blocked most of the T bases of the DNA. It greatly promoted the ability of silver ions in combination with DNA, but at the same time, reduced reactivity of DNA on mercury ions. The hairpin structure is not perfect but it is stable.
     In the last chapter, we present for the first time a new concept:metallo-toeholds. We have discovered that metal ions (Hg2+) that specifically interact with mismatched base pairs (T:T) can be employed with metallo-toeholds to intentionally trigger strand displacement in DNA devices. Using this concept, we have developed a mechanism that allows increased control over the kinetics of strand displacement. Using metal ions (Hg2+) as a regulatory factor, the metallo-toeholds allowed effective tuning of the rate of strand displacement. Through additional design of the sequence of the toeholds, we could also regulate the range of reaction rates. Mismatched base pairs between the toehold and displacement domains induced an obstacle between toehold binding and strand displacement, slowing down the reaction. The insertion of Hg2+ions provided the metallo-toeholds with perfect complementary, driving the strand displacement successfully. Too many Hg2+ions presumably led to blocking of the T sites on the toeholds, impeding the reaction. But the blocking system could be emancipated by dithiothreitol (DTT), which can sequestrate Hg2+ions in solution. Strand displacement has already been used as the basis for the operation of many synthetic molecular machines. We expect that this novel concept might be applicable to strategies for the design of molecular machines that function based on toehold-mediated strand displacement reactions in the presence of metal ions.
引文
[1]Watson, J.D. and Crick, F.H., Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature,1953,171 (4356):737-738.
    [2]Lillis, B.,Manning, M.,Berney, H.,Hurley, E.,Mathewson, A. and Sheehan, M.M., Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support. Biosensors and Bioelectronics,2006,21 (8):1459-1467.
    [3]Tinland, B., Pluen, A., Sturm, J., and Weill, G., Persistence Length of Single-Stranded DNA. Macromolecules,1997,30 (19):5763-5765.
    [4]Zadeh, J.N.,Steenberg, C.D.,Bois, J.S.,Wolfe, B.R.,Pierce, M.B.,Khan, A.R.,Dirks, R.M. and Pierce, N.A., NUPACK:Analysis and design of nucleic acid systems. Journal of Computational Chemistry,2011,32 (1):170-173.
    [5]Raghuraman, M.K. and Cech, T.R., Effect of monovalent cation-induced telomeric DNA structure on the binding of Oxytricha telomeric protein. Nucleic Acids Research,1990, 18 (15):4543-4552.
    [6]Anderson, C.F.,Record, M.T. and Hart, P.A., Na-23 Nmr-Studies of Cation DNA Interactions. Biophysical Chemistry,1978,7 (4):301-316.
    [7]Bleam, M.L.,Anderson, C.F.L. and Record, M.T., Na-23 Studies of Cation Interactions with Native DNA. Federation Proceedings,1980,39 (6):1608-1608.
    [8]Williamson, J.R.,Raghuraman, M.K. and Cech, T.R., Mono-Valent Cation Induced Structure of Telomeric DNA-the G-Quartet Model. Cell,1989,59 (5):871-880.
    [9]Raghuraman, M.K. and Cech, T.R., Effect of Monovalent Cation-Induced Telomeric DNA-Structure on the Binding of Oxytricha Telomeric Protein. Nucleic Acids Research, 1990,18 (15):4543-4551.
    [10]Braunlin, W.H.,Nordenskiold, L. and Drakenberg, T., A Reexamination of Mg-25(2+) Nmr in DNA Solution-Site Heterogeneity and Cation Competition Effects. Biopolymers, 1991,31 (11):1343-1346.
    [11]Wettig, S.D.,Wood, D.O. and Lee, J.S., Thermodynamic investigation of M-DNA:a novel metal ion-DNA complex. Journal of Inorganic Biochemistry,2003,94 (1-2): 94-99.
    [12]Egli, M., DNA-cation interactions:quo vadis? Chemistry & Biology,2002,9 (3): 277-286.
    [13]Schliepe, J., Berghoff, U., Lippert, B., and Cech, D., Automated Solid Phase Synthesis of Platinated Oligonucleotides via Nucleoside Phosphonates. Angewandte Chemie, International Edition in English,1996,35 (6):646-648.
    [14]Katz, S., The Reversible Reaction of Sodium Thymonucleate and Mercuric Chloride. Journal of the American Chemical Society,1952,74 (9):2238-2245.
    [15]Thomas, C.A., The Interaction of HgC12 with Sodium Thymonucleate. Journal of the American Chemical Society,1954,76 (23):6032-6034.
    [16]Katz, S., The reversible reaction of Hg (Ⅱ) and double-stranded polynucleotides. A step-function theory and its significance. Biochimica et Biophysica Acta,1963,68: 240-253.
    [17]Kosturko, L.D.,Folzer, C. and Stewart, R.F., The crystal and molecular structure of a 2:1 complex of 1-methylthymine-mercury (Ⅱ). Biochemistry,1974,13 (19):3949-3952.
    [18]Davidson, N.,Widholm, J.,Nandi, U.S.Jensen, R.,Olivera, B.M. and Wang, J.C., Preparation and properties of native crab dAT. Proc Natl Acad Sci U S A,1965,53: 111-118.
    [19]Gruenwedel, D.W. and Cruikshank, M.K., Changes in poly[d(T-G).d(C-A)] chirality due to Hg(Ⅱ)-binding:circular dichroism (CD) studies. Journal of Inorganic Biochemistry, 1991,43(1):29-36.
    [20]Kuklenyik, Z. and Marzilli, L.G., Mercury(II) Site-Selective Binding to a DNA Hairpin. Relationship of Sequence-Dependent Intra-and Interstrand Cross-Linking to the Hairpin-Duplex Conformational Transition. Inorganic Chemistry,1996,35 (19): 5654-5662.
    [21]Buncel, E., Boone,C., Joly,H., Kumar, R., Norris, A. R., Metal ion-biomolecule interactions. Ⅻ.1H and 13C NMR evidence for the preferred reaction of thymidine over guanosine in exchange and competition reactions with Mercury(II) and Methylmercury(Ⅱ). Journal of Inorganic Biochemistry,1985,25 (1):61-73.
    [22]Ono, A. and Togashi, H., Highly selective oligonucleotide-based sensor for mercury(Ⅱ) in aqueous solutions. Angewandte Chemie, International Edition in English,2004,43 (33):4300-4302.
    [23]Miyake, Y.Togashi, H.,Tashiro, M.,Yamaguchi, H.,Oda, S.,Kudo, M.Tanaka, Y.,Kondo, Y.,Sawa, R.,Fujimoto, T.,Machinami, T. and Ono, A., Mercury(II)-mediated formation of thymine-Hg-Ⅱ-thymine base pairs in DNA duplexes. Journal of the American Chemical Society,2006,128 (7):2172-2173.
    [24]Torigoe, H.,Ono, A. and Kozasa, T., Hg(Ⅱ) ion specifically binds with T:T mismatched base pair in duplex DNA. Chemistry,2010,16 (44):13218-13225.
    [25]Wang, H.,Wang, Y,Jin, J. and Yang, R., Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution. Analytical Chemistry,2008,80 (23):9021-9028.
    [26]Liu, C.W.,Hsieh, Y.T.,Huang, C.C.,Lin, Z.H. and Chang, H.T., Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun (Camb),2008, (19):2242-2244.
    [27]Lin, Y.W.,Ho, H.T.,Huang, C.C. and Chang, H.T., Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon. Nucleic Acids Research, 2008,36 (19):e123.
    [28]Lee, J.S. and Mirkin, C.A., Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Analytical Chemistry,2008,80 (17): 6805-6808.
    [29]Hollenstein, M.,Hipolito, C.,Lam, C.,Dietrich, D. and Perrin, D.M., A highly selective DNAzyme sensor for mercuric ions. Angewandte Chemie, International Edition in English,2008,47 (23):4346-4350.
    [30]He, S.,Li, D.,Zhu, C.,Song, S.,Wang, L.,Long, Y. and Fan, C., Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. Chem Commun (Camb),2008, (40):4885-4887.
    [31]Darbha, G.K.,Singh, A.K.,Rai, U.S.,Yu, E.,Yu, H. and Chandra Ray, P., Selective detection of mercury (Ⅱ) ion using nonlinear optical properties of gold nanoparticles. Journal of the American Chemical Society,2008,130 (25):8038-8043.
    [32]Chiang, C.K.,Huang, C.C.,Liu, C.W. and Chang, H.T., Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. Analytical Chemistry,2008,80 (10):3716-3721.
    [33]Xu, J.P.,Song, Z.G.,Fang, Y.,Mei, J.Jia, L.,Qin, A.J.,Sun, J.Z.Ji, J. and Tang, B.Z., Label-free fluorescence detection of mercury(II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative. Analyst,2010,135 (11):3002-3007.
    [34]Li, Q.,Zhou, X. and Xing, D., Rapid and highly sensitive detection of mercury ion (Hg2+) by magnetic beads-based electrochemiluminescence assay. Biosensors and Bioelectronics,2010,26 (2):859-862.
    [35]Miao, P.,Liu, L.,Li, Y. and Li, G., A novel electrochemical method to detect mercury (Ⅱ) ions. Electrochemistry Communications,2009,11 (10):1904-1907.
    [36]Wang, Z.,Heon Lee, J. and Lu, Y., Highly sensitive "turn-on" fluorescent sensor for Hg2+in aqueous solution based on structure-switching DNA. Chem Commun (Camb), 2008, (45):6005-6007.
    [37]Tanaka, K.,Yamada, Y. and Shionoya, M., Formation of silver(Ⅰ)-mediated DNA duplex and triplex through an alternative base pair of pyridine nucleobases. Journal of the American Chemical Society,2002,124 (30):8802-8803.
    [38]Ding, W.,Xu, M.,Zhu, H. and Liang, H., Mechanism of the hairpin folding transformation of thymine-cytosine-rich oligonucleotides induced by Hg(Ⅱ) and Ag(Ⅰ) ions. Eur Phys J E Soft Matter,2013,36 (9):9917.
    [39]Ono, A.,Cao, S.,Togashi, H.,Tashiro, M.,Fujimoto, T.,Machinami, T.,Oda, S.,Miyake, Y.,Okamoto, I. and Tanaka, Y., Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem Commun (Camb),2008, (39): 4825-4827.
    [40]Torigoe, H.,Miyakawa, Y.,Ono, A. and Kozasa, T., Thermodynamic properties of the specific binding between Ag+ions and C:C mismatched base pairs in duplex DNA. Nucleosides Nucleotides Nucleic Acids,2011,30 (2):149-167.
    [41]Xiao, Z.,Guo, X. and Ling, L., Sequence-specific recognition of double-stranded DNA with molecular beacon with the aid of Ag(+) under neutral pH environment. Chem Commun (Camb),2013,49 (34):3573-3575.
    [42]Urata, H.,Yamaguchi, E.,Nakamura, Y. and Wada, S., Pyrimidine-pyrimidine base pairs stabilized by silver(Ⅰ) ions. Chem Commun (Camb),2011,47 (3):941-943.
    [43]Ono, A.,Torigoe, H.,Tanaka, Y. and Okamoto, I., Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chemical Society Reviews,2011,40 (12):5855-5866.
    [44]Funai, T.,Miyazaki, Y.,Aotani, M.,Yamaguchi, E.,Nakagawa, O.,Wada, S.,Torigoe, H.,Ono, A. and Urata, H., AgI ion mediated formation of a C-A mispair by DNA polymerases. Angewandte Chemie International Edition,2012,51:1-4.
    [45]Ono, T.,Yoshida, K.,Saotome, Y.,Sakabe, R.,Okamoto, I. and Ono, A., Synthesis of covalently linked parallel and antiparallel DNA duplexes containing the metal-mediated base pairs T-Hg(Ⅱ)-T and C-Ag(Ⅰ)-C. Chem Commun (Camb),2011,47 (5):1542-1544.
    [46]Seeman, N.C., Macromolecular design, nucleic acid junctions, and crystal formation. Journal of Biomolecular Structure and Dynamics,1985,3 (1):11-34.
    [47]Seeman, N.C., Physical models for exploring DNA topology. Journal of Biomolecular Structure and Dynamics,1988,5 (5):997-1004.
    [48]Seeman, N.C., DNA nanotechnology:novel DNA constructions. Annual Review of Biophysics and Biomolecular Structure,1998,27:225-248.
    [49]Seeman, N.C., DNA engineering and its application to nanotechnology. Trends in Biotechnology,1999,17 (11):437-443.
    [50]Zhao, C.,Qu, K.,Song, Y.,Xu, C.,Ren, J. and Qu, X., A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions. Chemistry,2010,16 (27):8147-8154.
    [51]Seeman, N.C., Nanomaterials based on DNA. Annual Review of Biochemistry,2010,79: 65-87.
    [52]Seeman, N.C., Structural DNA nanotechnology:an overview. Methods Mol Biol,2005, 303:143-166.
    [53]Seeman, N.C., Key experimental approaches in DNA nanotechnology. Curr Protoc Nucleic Acid Chem,2002, Chapter 12:Unit 12 11.
    [54]Liu, D.S.,Bruckbauer, A.,Abell, C.,Balasubramanian, S.,Kang, D.J.,Klenerman, D. and Zhou, D.J., A reversible pH-driven DNA nanoswitch array. Journal of the American Chemical Society,2006,128 (6):2067-2071.
    [55]Thomas, J.M.,Yu, H.Z. and Sen, D., A mechano-electronic DNA switch. Journal of the American Chemical Society,2012,134 (33):13738-13748.
    [56]Okamoto, A.,Tanaka, K. and Saito, I., DNA logic gates. Journal of the American Chemical Society,2004,126 (30):9458-9463.
    [57]Wang, Z.G.,Elbaz, J. and Willner, I., DNA machines:bipedal walker and stepper. Nano Letters,2011,11(1):304-309.
    [58]Omabegho, T.,Sha, R. and Seeman, N.C., A bipedal DNA Brownian motor with coordinated legs. Science,2009,324 (5923):67-71.
    [59]Qian, L.,Winfree, E. and Bruck, J., Neural network computation with DNA strand displacement cascades. Nature,2011,475 (7356):368-372.
    [60]Qian, L. and Winfree, E., Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. Science,2011,332 (6034):1196-1201.
    [61]Rothemund, P.W., Folding DNA to create nanoscale shapes and patterns. Nature,2006, 440 (7082):297-302.
    [62]Li, B.,Jiang, Y.,Chen, X. and Ellington, A.D., Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. Journal of the American Chemical Society,2012,134(34):13918-13921.
    [63]Zhang, D.Y. and Winfree, E., Control of DNA Strand Displacement Kinetics Using Toehold Exchange. Journal of the American Chemical Society,2009,131 (47): 17303-17314.
    [64]Genot, A.J.,Zhang, D.Y.,Bath, J. and Turberfield, A.J., Remote toehold:a mechanism for flexible control of DNA hybridization kinetics. Journal of the American Chemical Society,2011,133 (7):2177-2182.
    [65]Yurke, B.,Turberfield, A.J.,Mills, A.P.,Simmel, F.C. and Neumann, J.L., A DNA-fuelled molecular machine made of DNA. Nature,2000,406 (6796):605-608.
    [66]Tang, W.,Wang, H.,Wang, D.,Zhao, Y.,Li, N. and Liu, F., DNA tetraplexes-based toehold activation for controllable DNA strand displacement reactions. Journal of the American Chemical Society,2013,135 (37):13628-13631.
    [67]Koch, E., The Differential Calorimetric Study of the Reactivity of Unstable Compounds. Angewandte Chemie International Edition in English,1970,9 (4):288-300.
    [68]Ranjan, N.,Andreasen, K.F.,Kumar, S.,Hyde-Volpe, D. and Arya, D.P., Aminoglycoside binding to Oxytricha nova telomeric DNA. Biochemistry,2010,49 (45):9891-9903.
    [69]Haikarainen, T.,Thanassoulas, A.,Stavros, P.,Nounesis, G.,Haataja, S. and Papageorgiou, A.C., Structural and thermodynamic characterization of metal ion binding in Streptococcus suis Dpr. Journal of Molecular Biology,2011,405 (2):448-460.
    [70]Ma, P.L.,Lavertu, M.,Winnik, F.M. and Buschmann, M.D., New insights into chitosan-DNA interactions using isothermal titration microcalorimetry. Biomacromolecules,2009,10 (6):1490-1499.
    [71]Wiseman, T.,Williston, S.,Brandts, J.F. and Lin, L.N., Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical Biochemistry, 1989,179(1):131-137.
    [72]Trapaidze, A.,Hureau, C.,Bal, W.,Winterhalter, M. and Faller, P., Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine. Journal of Biological Inorganic Chemistry, 2012,17 (1):37-47.
    [73]Burnouf, D.,Ennifar, E.,Guedich, S.,Puffer, B.,Hoffmann, G.,Bec, G.,Disdier, F.,Baltzinger, M. and Dumas, P., kinITC:a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. Journal of the American Chemical Society,2012,134 (1):559-565.
    [74]Pagano, B.,Fotticchia, I.,De Tito, S.,Mattia, C.A.,Mayol, L.,Novellino, E.,Randazzo, A. and Giancola, C., Selective Binding of Distamycin A Derivative to G-Quadruplex Structure [d(TGGGGT)](4). J Nucleic Acids,2010,2010.
    [75]Lin, P.H.,Kao, Y.H.,Chang, Y.,Cheng, Y.C.,Chien, C.C. and Chen, W.Y., Daunomycin interaction with DNA:microcalorimetric studies of the thermodynamics and binding mechanism. Biotechnol J,2010,5 (10):1069-1077.
    [76]Freyer, M.W. and Lewis, E.A., Isothermal titration calorimetry:experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol,2008,84:79-113.
    [77]Salim, N.N. and Feig, A.L., Isothermal titration calorimetry of RNA. Methods,2009,47 (3):198-205.
    [78]Lin, P.H.,Yen, S.L.,Lin, M.S.,Chang, Y.,Louis, S.R.,Higuchi, A. and Chen, W.Y., Microcalorimetrics studies of the thermodynamics and binding mechanism between L-tyrosinamide and aptamer. Journal of Physical Chemistry B,2008,112 (21): 6665-6673.
    [79]Bjelic, S. and Jelesarov, I., A survey of the year 2007 literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition,2008,21 (5): 289-312.
    [80]Ou, Z.,Bottoms, C.A.,Henzl, M.T. and Tanner, J.J., Impact of DNA hairpin folding energetics on antibody-ssDNA association. Journal of Molecular Biology,2007,374 (4): 1029-1040.
    [81]Freyer, M.W.,Buscaglia, R.,Cashman, D.,Hyslop, S.,Wilson, W.D.,Chaires, J.B. and Lewis, E.A., Binding of netropsin to several DNA constructs:evidence for at least two different 1:1 complexes formed from an -AATT-containing ds-DNA construct and a single minor groove binding ligand. Biophysical Chemistry,2007,126 (1-3):186-196.
    [82]De, M.,You, C.C.,Srivastava, S. and Rotello, V.M., Biomimetic interactions of proteins with functionalized nanoparticles:a thermodynamic study. Journal of the American Chemical Society,2007,129 (35):10747-10753.
    [83]Bishop, G.R.,Ren, J.,Polander, B.C.,Jeanfreau, B.D.,Trent, J.O. and Chaires, J.B., Energetic basis of molecular recognition in a DNA aptamer. Biophysical Chemistry, 2007,126(1-3):165-175.
    [84]Freyer, M.W.,Buscaglia, R.,Hollingsworth, A.,Ramos, J.,Blynn, M.,Pratt, R.,Wilson, W.D. and Lewis, E.A., Break in the heat capacity change at 303 K for complex binding of netropsin to AATT containing hairpin DNA constructs. Biophysical Journal,2007,92 (7):2516-2522.
    [85]Reymond, C.,Bisaillon, M. and Perreault, J.P., Monitoring of an RNA multistep folding pathway by isothermal titration calorimetry. Biophysical Journal,2009,96 (1):132-140.
    [86]Vander Meulen, K.A. and Butcher, S.E., Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Research,2012,40 (5):2140-2151.
    [87]Torigoe, H.,Miyakawa, Y.,Ono, A. and Kozasa, T., Positive cooperativity of the specific binding between Hg2+ ion and T:T mismatched base pairs in duplex DNA. ThermochimicaActa,2012,532:28-35.
    [88]Yin, Y. and Zhao, X.S., Kinetics and dynamics of DNA hybridization. Accounts of Chemical Research,2011,44 (11):1172-1181.
    [89]Wallace, M.I.,Ying, L.,Balasubramanian, S. and Klenerman, D., Non-Arrhenius kinetics for the loop closure of a DNA hairpin. Proc Natl Acad Sci U S A,2001,98 (10): 5584-5589.
    [90]Bonnet, G.,Krichevsky, O. and Libchaber, A., Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci U S A,1998,95 (15):8602-8606.
    [91]Jung, J. and Van Orden, A., A three-state mechanism for DNA hairpin folding characterized by multiparameter fluorescence fluctuation spectroscopy. Journal of the American Chemical Society,2006,128 (4):1240-1249.
    [92]Bowman, G.R.,Huang, X.,Yao, Y.,Sun, J.,Carlsson, G.,Guibas, L.J. and Pande, V.S., Structural insight into RNA hairpin folding intermediates. Journal of the American Chemical Society,2008,130 (30):9676-9678.
    [93]Lu, N.,Shao, C.Y. and Deng, Z.X., Colorimetric Hg(2+) detection with a label-free and fully DNA-structured sensor assembly incorporating G-quadruplex halves. Analyst,2009, 134 (9):1822-1825.
    [94]Wang, Y.,Zheng, Y.,Yang, F. and Yang, X., Dual polarisation interferometry for real-time, label-free detection of interaction of mercury(Ⅱ) with mercury-specific oligonucleotides. Chem Commun (Camb),2012,48 (23):2873-2875.
    [95]Oh, B.N.,Park, S.,Ren, J.,Jang, YJ.,Kim, S.K. and Kim, J., Label-free emission assay of mercuric ions using DNA duplexes of poly(dT). Dalton Trans,2011,40 (24):6494-6499.
    [96]Long, F.,Gao, C.,Shi, H.C.,He, M.,Zhu, A.N.,Klibanov, A.M. and Gu, A.Z., Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions. Biosensors and Bioelectronics,2011,26 (10):4018-4023.
    [97]Wen, G.,Liang, A.,Jiang, Z.,Liao, X.,Li, J. and Jiang, H., Resonance scattering spectral detection of ultratrace Hg(II) using herring sperm DNA modified nanogold probe as catalyst. Luminescence,2010,25 (5):373-377.
    [98]Miyachi, H.,Matsui, T.,Shigeta, Y. and Hirao, K., Effects of mercury(Ⅱ) on structural properties, electronic structure and UV absorption spectra of a duplex containing thymine-mercury(Ⅱ)-thymine nucleobase pairs. Physical Chemistry Chemical Physics, 2010,12 (4):909-917.
    [99]Wang, Y. and Liu, B., Amplified Fluorescence Turn-On Assay for Mercury(Ⅱ) Detection and Quantification based on Conjugated Polymer and Silica Nanoparticles. Macromolecular Rapid Communications,2009,30 (7):498-503.
    [100]Liu, J. and Lu, Y., Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angewandte Chemie, International Edition in English,2007,46 (40):7587-7590.
    [101]Zhang, X.B.,Kong, R.M. and Lu, Y., Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem (Palo Alto Calif),2011,4:105-128.
    [102]Xue, X.,Wang, F. and Liu, X., One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the American Chemical Society,2008,130 (11):3244-3245.
    [103]Xu, H. and Hepel, M., "Molecular beacon"-based fluorescent assay for selective detection of glutathione and cysteine. Analytical Chemistry,2011,83 (3):813-819.
    [104]Lin, Z.,Li, X. and Kraatz, H.B., Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+, Ag+, and Hg2+. Analytical Chemistry,2011,83 (17): 6896-6901.
    [105]Freeman, R.,Finder, T. and Willner, I., Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angewandte Chemie, International Edition in English,2009,48 (42): 7818-7821.
    [106]Liu, C.W.,Huang, C.C. and Chang, H.T., Highly selective DNA-based sensor for lead(Ⅱ) and mercury(Ⅱ) ions. Analytical Chemistry,2009,81 (6):2383-2387.
    [107]Torabi, S.-F. and Lu, Y., Small-molecule diagnostics based on functional DNA nanotechnology:a dipstick test for mercury. Faraday Discussions,2011,149:125.
    [108]Liu, D. and Balasubramanian, S., A proton-fuelled DNA nanomachine. Angewandte Chemie, International Edition in English,2003,42 (46):5734-5736.
    [109]Li, D.,Wieckowska, A. and Willner, I., Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angewandte Chemie, International Edition in English,2008,47 (21):3927-3931.
    [110]Porchetta, A.,Vallee-Belisle, A.,Plaxco, K.W. and Ricci, F., Allosterically Tunable, DNA-Based Switches Triggered by Heavy Metals. Journal of the American Chemical Society,2013,135 (36):13238-13241.
    [111]Lee, C.S.,Davis, R.W. and Davidson, N., A physical study by electron microscopy of the terminally reptitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. Journal of Molecular Biology,1970,48 (1):1-22.
    [112]Seeman, N.C., DNA in a material world. Nature,2003,421 (6921):427-431.
    [113]Yang, X.,Vologodskii, A.V.,Liu, B.,Kemper, B. and Seeman, N.C., Torsional control of double-stranded DNA branch migration. Biopolymers,1998,45 (1):69-83.
    [114]Zhang, D.Y. and Winfree, E., Dynamic allosteric control of noncovalent DNA catalysis reactions. Journal of the American Chemical Society,2008,130 (42):13921-13926.
    [115]Zhang, D.Y.,Turberfield, A.J.,Yurke, B. and Winfree, E., Engineering entropy-driven reactions and networks catalyzed by DNA. Science,2007,318 (5853):1121-1125.
    [116]Seelig, G.,Soloveichik, D.,Zhang, D.Y. and Winfree, E., Enzyme-free nucleic acid logic circuits. Science,2006,314 (5805):1585-1588.
    [117]Qian, L. and Winfree, E., A simple DNA gate motif for synthesizing large-scale circuits. Journal of the Royal Society Interface,2011,8 (62):1281-1297.
    [118]Qian, L. and Winfree, E., A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits. DNA Computing,2009,5347:70-89.
    [119]Krishnan, Y. and Simmel, F.C., Nucleic acid based molecular devices. Angewandte Chemie, International Edition in English,2011,50 (14):3124-3156.
    [120]Bath, J. and Turberfield, A.J., DNA nanomachines. Nat Nanotechnol,2007,2 (5): 275-284.
    [121]Yin, P.,Choi, H.M.,Calvert, C.R. and Pierce, N.A., Programming biomolecular self-assembly pathways. Nature,2008,451 (7176):318-322.
    [122]Dirks, R.M. and Pierce, N.A., Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A,2004,101 (43):15275-15278.
    [123]Bath, J.,Green, S.J. and Turberfield, A.J., A free-running DNA motor powered by a nicking enzyme. Angewandte Chemie, International Edition in English,2005,44 (28): 4358-4361.
    [124]Tin, P.,Yan, H.,Daniell, X.G.,Turberfield, A.J. and Reif, J.H., A unidirectional DNA walker that moves autonomously along a track. Angewandte Chemie, International Edition in English,2004,43 (37):4906-4911.
    [125]Tian, Y. and Mao, C.D., Molecular gears:A pair of DNA circles continuously rolls against each other. Journal of the American Chemical Society,2004,126 (37): 11410-11411.
    [126]Song, T. and Liang, H., Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine. Journal of the American Chemical Society, 2012,134 (26):10803-10806.
    [127]Xu, P.P.,Huang, F.J. and Liang, H.J., Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosensors & Bioelectronics,2013,41: 505-510.
    [128]Lakin, M.R.,Youssef, S.,Cardelli, L. and Phillips, A., Abstractions for DNA circuit design. J R Soc Interface,2012,9 (68):470-486.
    [129]Burns, J.R.,Preus, S.,Singleton, D.G. and Stulz, E., A DNA based five-state switch with programmed reversibility. Chem Commun (Camb),2012,48 (90):11088-11090.
    [130]Zhang, D.Y. and Winfree, E., Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic Acids Research,2010,38 (12):4182-4197.
    [131]Soloveichik, D.,Seelig, G. and Winfree, E., DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences of the United States of America,2010,107 (12):5393-5398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700