复合式反硝化除磷-BAF工艺处理效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水生物处理中产生的大量的剩余污泥不仅对环境造成了巨大压力,而且其处理与处置方法费用高,已成为制约污水行业发展的瓶颈。另外,随着水体富营养化的加剧,氮磷问题一直是国内外污水处理的研究热点,传统的同时脱氮除磷技术存在着碳源不足、菌群竞争、泥龄难以控制等诸多问题。迄今为止,尚无一种集污泥减量与同时脱氮除磷为一体的高效低能耗、无污染的废水处理技术。因此,开发同时脱氮除磷、不降低污水处理效果情况下实现污泥产量最小化的废水生物处理工艺,是解决污水处理问题较理想的途径。
     本课题针对目前污水生物处理中产生的大量的剩余污泥问题以及传统生物脱氮除磷工艺存在脱氮和除磷效果难以同时达到最佳效果的现状,探索融合低污泥产率与脱氮除磷的污水处理工艺。为此,本研究利用反硝化聚磷菌(DPB)在缺氧环境下反硝化吸磷的特点,开发了一种同步脱氮除磷和污泥减量的污水生物处理工艺—复合式反硝化除磷-BAF(CDPR-BAF)工艺。CDPR-BAF工艺是生物膜和活性污泥法相结合的双污泥系统。本工艺设置BAF生物膜作为硝化段,不仅可以为缺氧反硝化提供电子受体,而且使硝化菌和反硝化除磷菌在各自的最佳环境下生长,通过调整污泥龄(SRT)增加反硝化聚磷菌的活性使缺氧吸磷量达到最大,采取降低污泥回流比的方法避免回流污泥中的NO_3~--N对厌氧释磷造成影响。着重研究了复合工艺处理生活污水的脱氮除磷和污泥减量效果,并进一步系统研究了组合工艺的影响因素和过程控制参数,结果表明:
     ①在复合式反硝化除磷-BAF系统中,在SRT=15d、进水COD =185~386 mg/L、NH_4~+-N =18.5~40 mg/L、TN=20.8~44.5 mg/L、TP=5.31~10.6mg/L、BAF出口DO=1~1.5mg/L、污泥回流比和超越污泥比为0.3~0.4条件下,系统对COD、NH_4~+-N、TN、TP的平均去除率分别可达到90.5%、89%、81%和92.3%,出水达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级B标。该系统稳定运行时试验条件下的表观污泥产率为0.16g MLSS/g COD,与传统工艺的0.30 gMLSS/gCOD相比,污泥产量降低了47%。
     ②系统的SRT和MLSS对除污效果有重要的影响,SRT过大,老化衰退的微生物仍然存在于系统中,影响污泥的活性,但SRT也不能过小,否则系统的MLSS无法保证,从而影响处理效果。通过设定不同的污泥龄考察了SRT对系统的除磷效果,结果表明:在SRT为15天的情况下,系统的脱氮除磷一直保持较好的状态,而且系统中的污泥增长也趋于稳定,厌氧池、缺氧池和后曝气池污泥浓度在3674~4705mg/L之间。
     ③通过改变曝气量来调节BAF池DO浓度,可以实现对污染物的最大去除,BAF出口DO浓度为1.5~2mg/L是系统较为适宜的范围,高于此值范围DPB反硝化吸磷量和脱氮量随DO浓度增加而降低。
     ④随着回流比的升高系统对NH_4~+-N的去除率逐渐降低,与去除NH_4~+-N的情况不同,污泥回流比越高则出水TP浓度越低,去除效果越好。所以回流比存在一个最佳范围,由于本工艺是后置反硝化,所以不必为了提高脱氮率而增大污泥回流比,试验条件下污泥回流比为0.3~0.4较佳。
A large quantity of excess sludge generated in biological wastewater treatment has not only caused the tremendous pressure on the environment, and its high cost of treatment and disposal has become a bottleneck restricting water industry. In addition, with increasing eutrophication, nitrogen and phosphorus in wastewater treatment has been the research focus, while the traditional nitrogen and phosphorus removal technology has the problem of carbon insufficiency,bacteria competition, difficulty to control SRT, and many other issues. So far, there is no high-efficiency and low-energy consumption, pollution-free waste water treatment technology with sludge reduction and nitrogen and phosphorus removal. Therefore, development wastewater biological treatment process of nitrogen and phosphorus removal simultaneously, sludge production minimize without reducing the treatment efficiency is better way to solve the sewage problem.
     Aiming at the problem of a great amount of residual sludge in current biological wastewater treatment process and the status that nitrogen and phosphorus removal is difficult to achieve the best results at the same time in the traditional biological nitrogen and phosphorus removal process, wastewater treatment process with integration of low sludge yield, nitrogen and phosphorus removal was explored. Therefore, this study developed a biological wastewater treatment process of simultaneous nitrogen and phosphorus removal and sludge reduction by making use of the characteristics, of which denitrifying phosphorus removal bacteria (DPB) uptake phosphorus in the hypoxic environment, compound denitrifying phosphorus removal-BAF (CDPR-BAF) process. CDPR-BAF process is the two-sludge system on the combination of the biofilm and activated sludge. The process by setting the BAF as a nitrification segment, not only provided electron acceptor for the denitrification in anoxic, but also made nitrifying bacteria and denitrifying phosphorus removing bacteria growth in their optimal environment. By adjusting the sludge age (SRT) increased activity that denitrifying phosphate accumulating bacteria in anoxic uptake P to achieve maximum, adopted the method reducing return sludge ratio to avoid the NO3--N in the return sludge impact on anaerobic phosphorus release. Focus on studied the nitrogen and phosphorus removal efficiency and sludge reduction when using the compound process to treatment domestic wastewater, process control parameters and many effect factors were investigated in advance, the results indicate that:
     ①In CDPR-BAF system, under the condition of SRT=15d, while influent COD =185~386 mg/L、NH_4~+-N =18.5~40 mg/L、TN=20.8~44.5 mg/L、TP=5.31~10.6mg/L、DO of BAF outlet=1~1.5mg/L、sludge recycle ratios=0.3~0.4, the removal rates of COD,NH_4~+-N, TN and TP are 90.5%, 89%, 81% and 92.3% respectively. effluent water quality reaches first-degree B standards of《letting standards of town sewage treatment plant》(GB18918-2002). In this system, sludge yield Ys is 0.16gMLSS/gCOD, which shows that comparing with traditional activated sludge process 0.30gMLSS/gCOD, the effect of sludge reduction in system reaches 47%.
     ②SRT and MLSS effect has an important influence on the decontamination in system. If SRT is too large, aging micro-organisms still present in the system, affecting the activity of the sludge, but the SRT cannot be too short, otherwise the MLSS in system cannot be guaranteed, thus affecting treatment effect. By setting different SRT to investigate the phosphorus removal in system, the results showed that: in the SRT=15 days condition, nitrogen and phosphorus removal of the system has maintained a good state, and the growth sludge of system have stabilized, anaerobic tank, anoxic and post-aeration tank sludge concentration has been between the 3674 ~ 4705 mg/L.
     ③By changing the aeration to adjust DO concentration of BAF can achieve the maximum removal of pollutants, the DO concentration scope of BAF export 1.5 ~ 2 mg/L is more appropriate to the system, if higher than this value range, DPB P uptake and denitrification decreased with the DO concentration increasing.
     ④NH_4~+-N removal rate decreased with the rise of system reflux ratio, and the TP removal is different from NH_4~+-N removal, the higher the sludge recycle,the lower effluent TP concentrations, the better the removal efficiency. Therefore, there is an optimum range reflux ratio, since this process is the post-denitrification, there is no need to increase sludge return ratio to improve nitrogen removal rate, under the experimental conditions the sludge recycle ratio 0.3 to 0.4 was better.
引文
[1]张林生.水的深度处理与回用技术[M].北京:化学工业出版社,2009.
    [2]白润英.两种微型动物减量污泥的初步研究[D].西安:西安建筑科技大学,2004.
    [3]梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技备,2003,4(1):44-52.
    [4]曹秀芹,陈诏.污水处理厂污泥处理存在问题分析[J].北京建筑工程学院学报,2002,18(1): 1-4.
    [5]蒋彬,吕锡武.生物脱氮除磷机理及技术进展[J].安全与环境工程, 2005 ,12( 3):74-77.
    [6]邓荣森.氧化沟污水处理理论与技术[M].北京:化学工业出版社,2006.
    [7]汪大翚,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001.
    [8]袁林江.短程硝化-反硝化生物脱氮[J].中国给水排水,2000, 16(2):29-31.
    [9] Mulder, A. Anaerobic ammonium oxidation[P]. US Patent Documents 427849(507884), 1992.
    [10]王晓莲,彭永臻,王淑宝,等.城市可持续污水生物处理技术[J].水处理技术,2004, 30(2): 106-109.
    [11]王琪.改进A2/O工艺低碳源同步脱氮除磷试验研究[D].武汉:华中科技大学,2006.
    [12]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2003.
    [13]胡玉琴.低溶解氧环境A/O工艺和SBR工艺生物脱氮除磷试验研究[D].重庆:重庆大学, 2007.
    [14]吉芳英,罗固源等.活性污泥外循环SBR系统的生物除磷能力[J].中国给水排水, 2002, 18(5):1-5.
    [15]吉方英.排除厌氧富磷污水ERP-SBR除磷脱氮工艺研究[D].重庆:重庆大学, 2004.
    [16] D. B.Porcella. Comprehensive management of phosphorus water pollution.Socioeconomic environmental studies series, Office of research and development U.S. Environmental Protection Agency, 1974.
    [17]徐洪斌,吕锡武.生物法脱氮除磷技术及其研究进展[J].城市环境与城市生态,2003, 16(6): 195-197.
    [18]任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究[J].给水排水.2002, 6(6): 7-10.
    [19]周斌.改良型A2/O工艺的除磷脱氮运行效果[J].中国给水排水,2001, 17(7):46-48.
    [20]郑兴灿.城市污水生物除磷脱氮工艺方案的选择[J].给水排水,2000, 26(5): 1-4.
    [21]陆轶锋.城市污水生物脱氮除磷常规工艺分析[J].云南环境科学,2002,21(1): 47-49.
    [22] Bruce E. Rittmann. Perry L. McCarty. Environmental biotechnology principles and application.McGraw-Hill, 2001,7:474-475.
    [23]严世煦.水和废水技术研究[M].北京:中国建筑工业出版社,1992.
    [24]张洁,胡卫新,张雁秋.改进型双泥反硝化除磷脱氮工艺[J].环境污染与防治,2005, 27(3):232-235.
    [25] Kuba T, smolders GJF, Van Loosdrecht MCM, et al. Biological phosphorus removal from wastewater by anaerobic–anoxic sequencing batch reactor [J]. Water Sci Tech, 1993, 27(5/6): 241-252.
    [26] T Kuba,M C M van Loosdrecht, J J Heijnen. Phosphorus and nitrogen removal with minimal COD requirement by integration of nitrification in a two sludge system[J]. Water research, l996,30(7):1702-1710.
    [27] Wanner J.New process design for biological nutrient removal[J].Wat Sci Tech., 1992, 25(4/5):445-448.
    [28]王春英,隋军,赵庆良.反硝化聚磷机理试验[J].环境污染治理技术与设备,2002,3(6):65-68.
    [29] Bortone G.Biological anoxic phosphorus removal-the dephanox process[J].Wat Sci Tech.,1996,34(12):119-128.
    [30] Van Loosdreeht M CM.Up grading of wastewater treatment process for integrated nutrient removal BCFS process[J].Water Sci Tech-nol.,1998,37(9):209-217.
    [31] Brodisch K E U,Joyner S J.The role of microorganisms in biological phosphate removal[J]. Wat Sci Tech.,1983,15:117-125.
    [32]罗宁,罗固源,吉方英,等.新型双泥生物反硝化除磷脱氮系统中微生物的组成[J].给水排水, 2003,29(8):33-35.
    [33] Yasui H, Shibata M. [J].Wat. Sci. Tec.,1994, 30 (9):11 -20.
    [34] Yasui H, Nakamura K, Sakuma S, et al. [J].Wat. Sci.Tech.,1996, 34 (3-4): 395-404.
    [35] Sakai Y, Fukase T, Yasui H, et al. [J].Wat. Sci. Tech.,1997, 36 (11): 163-170.
    [36] Sabya S, Djafera M, Chenb G. [J].Water Research,2002,36 (3): 656-666.
    [37] Rocher M, Goma G, Pilas Begue A. [J].Appl. Microbiol.Biotechnol.,1999, 51 (6): 883-890.
    [38] Tiehm A, Nickel K, Neis U. [J].Wat. Sci. Tech.,1997,36 (11): 121-128.
    [39] Jung J, Xing X H, Matsumoto K. [ J ].Biochemical Engineering Journal,2001, 8 (1): 1-7.
    [40] Jung J, Xing X H, Matsumoto K. [ J ].Biochemical Engineering Journal,2002, 10 (1): 67-72.
    [41] Saby S, Djafer M, Chen GH. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Wat. Res.2003, 37:11-20.
    [42] Katsura K, Miura M, Hasegawa S. [J].J. Japan Society on Water Environment(in Japanese), 1998, 21 (6): 360-366.
    [43]王宝贞,李高奇,王琳.淹没式生物膜法污水处理厂的设计及运行[J].中国给水排水, 2000, 16 (3):16-19.
    [44]迟军,王宝贞,李高奇.广州生活小区污水处理厂设计及运行研究[J].哈尔滨商业大学学报, 2003, 19(2): 183-186.
    [45]晏波,蒋文举,谢嘉.三相好氧生物流化床污水处理技术研究应用进展[J].四川环境, 2001, 20 (3): 5-9.
    [46]肖宏亮,韦朝海,高孔荣.三相流化床生物反应器在降解有机废水方面的应用研究[J].现代化工,1997,(3):15-18.
    [47]任源,吴超飞,吴海珍.新型生物流化床组合工艺处理工业有机废水的工程应用分析[J].环境工程, 2002, 20(1): 7-13.
    [48]程树培.新兴边缘学科环境生物技术[J].环境科学进展,3(5):17-20.
    [49] Stand,et al.Activated sludge yield reduction using chemical uncouplers[J].Water Environ. Res, 1999,71(4):454-458.
    [50] Low,et al.Uncoupling of metabolism to reduce biomass production in activated sludge process[J].Water Res,2000,34(12):3204-3212.
    [51] Chen,etal.Utilization of a metabolic uncoupler 3,3,4,5-tetrachlosalicylanilide(TCS)to reduce sludge growth in activated sludge culture[J].Water Res,2002,36(8):2077-2083.
    [52]王琳,王宝贞.分散式污水处理与回用[M].北京:化学工业出版社,2003.
    [53] Muller E B, Stouthamer AH, Vanverseveld H W, Eikelboom D H. [J].Wat. Res., 1995, (29): 1179~1189.
    [54] Rosenburger S, Kraume M, Szewzyk U. Operation of Different Membrane Bioreactors Experimental Result and Physiological State of the Microorganisms [C]. Proc. IWA Conf. Membrane Technology in Environmental Management, Toyko, 1999.
    [55] Ghyoot W, Vertraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor[J].W aterResearch,2000(1).
    [56]卫藤俊司.净化污水的装置和方法[P], CN ZL96106018. 2,2002-11-06.
    [57]卫藤俊司.取代活性污泥法的新型水处理技术[C].第三届全国环境保护研讨班班暨中日环境保护技术研讨会,北京,2001.
    [58]叶芬霞.解偶联代谢对活性污泥工艺中剩余污泥的减量化作用[D].浙江:浙江大学,2003.
    [59]左宁.除磷脱氮LSP&PNR污泥减量工艺试验研究[D].重庆:重庆大学,2006.
    [60] Mayhew M, Stephenson T. Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency[J]. Water Science and Technology, 1998, 38(8-9): 137-144.
    [61] Hamoda M.F. and Al-attar LM.S. Effects of high sodium chloride concentrations on activated sludge treatment. Wat. Sci. Tech. 1995, 31(9): 61-72.
    [62] Low EW and Chase HA. Reducing production of excess biomass during wastewater treatment.Wat. Res. 1999,33:1119-1132.
    [63]吉芳英,杨琴,罗固源.实验室自配HACH-COD替代试剂[J].给水排水,2003,29(1):23-26.
    [64]国家环境保护总局《水和废水监测分析方法》编委会.水和废水标准分析方法.第四版.北京.中国环境科学出版社,2002.
    [65]郑俊,吴浩,汀程寒.曝气生物滤池污水处理新技术及工程实例[M].北京:化学工业出版社,2002.
    [66] Grady CP,Daigger GT, Lim HC著.废水生物处理[M].北京:化学工业出版社,2003.
    [67]柳会雄.解偶联用于污泥减量化的机理和污泥减量化效果评价研究[D].合肥:合肥工业大学,2006.
    [68] Xiaodi Hao,Joseph J.Heijnen,Mark C.M.van Loosdrecht.Senitivity Analysis of a Biofilm Model Describing a One-Stage Completely Autotrophic Nitrogen Remova(lCANON)Process Biotechnology and Bioengineering.2002.77(3).266-277.
    [69]丁彩娟.反硝化除磷系统基质转化和生物特性初探[D].重庆:重庆大学,2005.
    [70]李勇,黄勇,潘杨.泥龄对生物除磷效率影响的分析[J].苏州城建环保学院学报,2001,14(1):16-21.
    [71] J Fukase T,Shibata M,Miyaji Y.The role of an anaerobic stage on biological phosphorus removal[J].Wat Sci Tech,1985,(17):68-80.
    [72]吴凡松,彭永臻.城市污水处理厂的生物除磷系统设计.中国给水排水.2002, 18(8):56-58.
    [73]王亚宜.反硝化除磷脱氮机理及工艺研究[D].哈尔滨:哈尔滨工业大学,2004.
    [74] Tykesson E,Aspegren H,Henze M,et a1.Use of phosphorus release batch tests for modeling an EBPR pilot plant[J].wat Sei Tech,2001,3(43):115-123.
    [75] Hao X.D., Van Loosdrecht M. C. M., Meijei S. C. F., et a1.Mode1 Based Evaluation of Two BNR Process-UCT And A2N. Wat. Res.2001,35(12): 2851-2860.
    [76]方茜,张朝升,张可方,荣宏伟.溶解氧对反硝化聚磷菌的影响研究[J].中国给水排水, 2008,24(1):35-39.
    [77]贺延龄,陈爱侠.环境微生物学[M].北京:中国轻工业出版社,2001.
    [78]周少奇.城市污泥处理处置与资源化[M].广州:华南理工大学出版社,2001.
    [79] ZENG R J,SAUNDERS A M,YUAN Z G, et a1. Identification and comparison of aerobic and poly phosphate-accumulating organisms[J]. Biotech.Bioeng.,2003,83(2):140-148.
    [80] WACHTMEISTER A,KUBA T,VAN LOOSDRECHT M C M,et al.A sludge characterization for aerobic and denitrifying phosphorus removing sludge[J].Wat.Res.,1997,31(3):471-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700