涤棉织物的分散染料微胶囊/活性染料一浴法染色工艺初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涤棉混纺织物既具有纤维素纤维吸湿透气的功能,同时又具有聚酯纤维良好的保型性和染色牢度,在各类服装面料中占有重要地位。常规涤棉混纺织物分散/活性染色的主要工艺是分散/活性两浴法和分散/活性一浴两步法染色以及分散/活性一浴一步法染色工艺,这些工艺染色耗时较长,造成生产效率低,水、电、汽消耗大,且需要还原清洗,更为关键的是还原清洗会伤及活性染料,而且大量助剂的使用,使得染色废水色度值高,污水处理困难。
     将纯分散染料微胶囊化,开发涤纶的高温高压无助剂染色技术。利用其优良的缓释功能,对染色速度控制,达到匀染的目的:利用其隔离功能,防止染料对纤维的沾染而形成斑渍。微胶囊的有效隔离性能和控制释放性能,替代了分散染料染色中必不可少的匀染剂和分散剂,不仅省去了助剂,更重要的还是从根本上消除了由于助剂而带来的色度污染以及COD、BOD负荷,使染色废水中仅含有微胶囊,只要简单过滤就可以回收再利用。
     文中采用原位聚合法对分散染料进行双层造壁,通过改变系统调节剂PDA的用量和乳化时间,制备不同粒径的分散染料微胶囊;用激光粒度仪测试微胶囊粒径大小及分布;通过扫描电镜来观测其表面形态;用红外线高温高压染色机对涤纶进行高温高压染色;通过测色配色仪、皂洗牢度机、耐磨擦牢度测试仪测试不同条件制备的分散染料微胶囊对涤纶的染色效果;并选择效果较好的分散染料微胶囊进行涤棉的分散染料微胶囊活性染料一浴法染色工艺的探索。结果表明:PDA用量(占分散染料的质量百分含量)2%~16%制备的分散染料微胶囊易抽滤,烘干后呈粉末状,粒径平均值和中值在4~12μm范围内,粒径分布受乳化时间影响较小。其中PDA用量为8%,乳化10min制备的分散染料微胶囊对涤纶的高温高压无助剂染色效果较好。
     此外,文中结合现行涤棉织物染色工艺分散/活性染料一浴法浸染染色工艺与分散染料微胶囊对涤纶的高温高压无助剂染色工艺的优点,将分散染料微胶囊与雅格素NF活性染料配合使用,通过改变浴比、染色温度、保温时间等工艺参数,研究分散染料微胶囊活性染料涤棉织物的一浴法染色新工艺,并得出最佳染色工艺条件。结果表明:新型一浴法染色工艺在浴比为1:20时,染色织物K/S值较大,且匀染性良好;染色升温曲线于80℃时适当保温,并降低升温速度,以控制活性染料的上染速率,实现均匀上染;于130℃时保温30min后,隔离分散染料微胶囊续染20min,即可获得高品质色牢度的染色织物。
     最后,文中对新型涤棉一浴法染色工艺与常规一浴法染色工艺进行比较,结果表明:新工艺在无需使用分散剂和匀染剂,并且在免除还原清洗的前提下,比常规使用还原清洗工序的染色织物得色更深;干/湿摩擦牢度及60℃下的沾色牢度和变褪色级别更高,且牢度在4级以上;过滤掉微胶囊后染色残液的色度值明显减小,吸光度值只有常规一浴法的一半。
     文中所探索的新型涤棉分散染料微胶囊活性染料一浴法染色工艺可在不需增添专用设备且保证产品质量的前提下,大大降低涤棉混纺织物的染色难度和成本,且节水、节能;在染色废水处理方面,可从源头上基本控制大量染色废水的产生。
Polyester/cotton blends possesses both function of moisture absorption ventilated on cellulose fibre and good type keeping and colorfastness on Polyester fibre, so it plays important role in all kinds of costume material. General polyester/cotton blends disperse/reactive dyeing are two-bath, one-bath-two-step and one-bath-one-step dyeing. These dyeing processes consume long time and need reduction clearing, causing low production efficiency and greatly consume of water, power, and steam. The more pivotal point is that reduction clearing would damage reactive dye. The chroma of dyeing wastewater is very deep and difficult to treat due to slather of auxiliaries.
     The dyeing process of polyester using microencapsulated disperse dyes in the absence of auxiliaries is exploited recent years. Its controlled-release and isolation properties to control the rate of dyeing were used to achieve the purpose of level dyeing and avoid staining fabric. Controlled-release and isolation properties of microencapsulated disperse dyes replace absolutely necessarily dispersing and penetrating agent in the dyeing of disperse dyes. The process not only save the auxiliaries, but also avoid pollution of chroma and burthen of COD, BOD as a result of auxiliaries radically. Since no auxiliaries are involved, the dyeing wastewater can be reused after filtration.
     In this paper, Microcapsules with a double-layered shell containing disperse dyes were prepared by means of in-situ polymerization. Dye microcapsules in different size were prepared with different system regulator PDA and different emulsion time. The size and distribution of microcapsules were tested by Laser Granularity Analyzer and the surface topography of them was observed by Scan Electron Microscope. Polyester/cotton blends were dyed by infrared high temperature high pressure dyeing machine. The effects of dyeing with disperse dyes microcapsules/reactive dyes dyeing process in one bath were tested by datacolor, soaping and dry/wet rub machine. The tests results show that the dyes microcapsules prepared by PDA whose dosage from 2% to 16% are easy to sieve and appear powder state after drying. The size range of the mean and median value are from 4 to 12μm, and emulsion time has little influence on them. The disperse dyes microcapsules prepared by 8% PDA with 10min emulsion behaves better in dyeing process of polyester without dispersant, level dyeing reagent and reduction clearing. And it is chose to carry out the next research of one bath dyeing process of polyester/cotton blends.
     Combined the advantages of the general disperse/reactive dyes one-bath dyeing of polyester/cotton blends and the polyester dyeing with disperse dyes microcapsules under high temperature high pressure condition without auxiliary reagent, both disperse dyes microcapsules and Argazol NF reactive dye were used to dye polyester/cotton blends in one-bath under different conditions. The optimum dyeing parameters were established by investigating of the bath ratio, dyeing temperature and heat preservation time. The results show that the dyed blends possess higher K/S value and better level dyeing at bath ratio 1:20. The process of dyeing should preserve heat properly at 80℃, and debase the speed of rise temperature controlling dyeing rate of reactive dye to implement level dyeing. At 130℃, preserve temperature for 30min. Then insulate disperse dyes microcapsules, continue to dye for 20min, then high quality color fastness fabric can be obtained.
     Finally, compared with the traditional dyeing process, results show that the new dyeing technology of disperse dyes microcapsules/reactive dyes in one bath dyeing process without dispersant, level dyeing reagent and reduction clearing can impart the polyester/cotton blends deeper color and excellent color fastness: dry/wet rub fastness, staining fastness and colour fading grade at 60℃are more than 4 grade. The chroma of dyeing wastewater is reduced obviously after filtrating microcapsules. And the dyeing waste water absorbency is about half of the absorbency of general dyeing process.
     In the interest of ensuring quality of product and not adding special device, above mentioned new dyeing process of polyester/cotton blends by disperse dyes microcapsules/reactive dyes in one-bath would greatly reduce trouble and save cost during dyeing polyester/cotton blends process. This new process not only save water and power, but also control the wastewater at beginning.
引文
[1] 陈英.染整工艺实验教程[M].北京:中国纺织出版社,2004.
    [2] 林细姣.染整试化验[M].中国纺织出版社,2005,224-236.
    [3] Maeda-S, Kunitou-K, Hihara-T. Mishima-K. One-bath dyeing of polyester/cotton blends with reactive disperse dyes in supercritical carbon dioxide [J]. Textile-Research-Journal, 2004, 74(11): 989-994.
    [4] D. P. Chattopadhyay, T. M. Shaikh. Dyeing of Polyester / Cotton Blends - An Overview [J]. Man-Made Textiles in India, 2002, XLV(12): 456-469.
    [5] 蔡玲.天成 HN 型活性染料涤/棉一浴一步法染色 [J].染料与染色,2006,43(2):25-27.
    [6] 李维勇.涤棉针织物分散/活性染料一浴一步法染色工艺[J].化纤纺织技术,2005,8(1):13-16.
    [7] 孔明,王学元等.涤棉针织物分散、活性染科一浴法染色工艺研究[J].针织工业,2004,10(5):64-66.
    [8] 曹万里,俞广文等.涤棉分散/活性一浴法染色新工艺[J].印染,2005,15(3):26-28.
    [9] 季丛元.分散/活性浸染一浴法生产实践[J]印染,2002,28(8):28-29.
    [10] 刘维群.涤棉针织物一浴一步法染色工艺[J]印染,2004,30(5):16-17.
    [11] 潘云芳.涤棉针织物分散/活性一浴一步法染色工艺[J].印染,2005,31(2):18-20.
    [12] 劳华昌.提高涤棉织物分散/还原染料的耐水渍牢度[J].印染,2005,31(13):22-23.
    [13] Pervin Anis, Hueseyin Aksel Eren. Improving the Fastness Properties of One-Step Dyed Polyester/Cotton Fabrics [J]. AATCC Review, 2003, 3 (4): 20-24.
    [14] 郑庆康,杨晓明.涤棉、毛涤混纺织物分散染料一浴法染色[J].印染助 剂,2002,19(6):14-16.
    [15] 赵欣.涤棉织物分散/活性碱性一浴一步法染色工艺的探讨[J].纺织学报,2003,24(2):60-62.
    [16] Huseyin Aksel Eren. Dye selection for alkaline one-step disperse/Reactive Dyeing of polyester/cotton blends [J]. AATCC Review, 2004, 4(7): 23-27.
    [17] 杨军.涤棉混纺织物一浴法竭染工艺研究[J].纺织学报,2002,23(2):132-134.
    [18] Sekar N. Developments in Environmentally Friendly Colorations [J]. Colourage, 1998, 3(7): 29-30.
    [19] Yiqi Yang, Shiqi Li. One-Step Dyeing of Polyester/Cotton With Disperse/Reactive Dyes [J]. Textile Chemist and Colorist, 2000, 32(3): 38-45.
    [20] John Bone. Saving Time in Exhaust Dyeing of Polyester/Cotton [J]. AATCC Review, 2001, 1(5): 19-21.
    [21] 邵悠笛,戴瑾瑾.微胶囊技术及其在染整上的应用介绍[J].中国纺织大学学报,1997,23(3):79-84.
    [22] 梁治齐.微胶囊技术及其应用[M].北京:中国轻工出版社,1999.
    [23] 宋健.微胶囊化技术及应用[M].北京:化学工业出版社,2001.
    [24] 王毓明.微胶囊技术[J].涂料工业,1999,2(5):33-35.
    [25] Simon Benita. Microencapsulation[M]. Marcel Dekker Inc., NewYork, 1996, 1-93.
    [26] Luo yan, Chen shuilin. Controlled-releaseproperties of microencapsulated disperse dyes [J]. Journal of Donghua University, 2002, 19(1): 84-87.
    [27] 何瑾馨,邹黎明.微胶囊膜厚对芯料释放速率的影响[J].中国纺织大学学报,1999,25(1):1-4.
    [28] 邹黎明,邵云,杨定超.微胶囊膜厚对渗透性常数的影响[J].纺织学报,1994,15(11):4-7.
    [29] 管蓉,艾照全,李建宗.高分子材料在微胶囊技术中的应用[J]高分子材料科学与工程,1997,13(5):134-138.
    [30] 王戎戎.微胶囊技术在纺织工业中的应用[J].国外纺织技术,1999,5(9):
    [31] 周宏湘.转移印花的发展趋势[J].上海丝绸,1995,2(1):28-31.
    [32] 陈炜.转移印花的新前景[J].国际纺织导报,1997,4(1):52-54.
    [33] 陈邦伟.微胶囊印花[J].纺织装饰科技,1996,11(4):35-36.
    [34] 蒋红,薛莹雯.染料的分子微胶囊包结技术[J].丝绸,2002,6(6):22-24.
    [35] Aggarwal A K, Amit Dayal, Naresh Kumar. Microencapsulation Processes and Applications in Textile Processing[J]. Colourage, 1998, 2(8): 15-24.
    [36] 戴杜雁,张万长,张婉南.对原味聚合法制备微胶囊技术的研究[J].塑料工业,1994,12(2):27-31.
    [37] 王广远.复合凝聚法制备甲拌磷微胶囊剂的研究[J].离子交换与吸附,1998,14(6):554-557.
    [38] 罗艳,陈水林.原位聚合法制备微胶囊过程中的ζ电位[J].印染助剂,2002,17(1):6-10.
    [39] 彭洪修.无皂乳液聚合法合成均一性聚苯乙烯微胶囊[J].华东理工大学学报,2002,28(3):260-263.
    [40] 李卓,陈水林.分散染料微胶囊的制备及其性能研究[J].上海染料,2003,7(1):25-28.
    [41] 冯继红,陈水林,罗艳.分散染料微胶囊高温高压无助剂染色[J].印染,2004,12(21):9-11.
    [42] Zhong Yi, Feng Jihong, Chen Shuilin. Dyeing of Polyester Using Microencapsulated Disperse Dyes in the Absence of Auxiliaries [J]. Coloration Technology, 2005, 121(2): 76-80.
    [43] 罗艳.缓释型微胶囊的研制及其在纺织上的应用[D].上海:东华大学博士学位论文,2001.
    [44] 华东化工学院分析化学教研组编.分析化学[M].高等教育出版社,1989.
    [45] 潘祖仁.高分子化学[M].北京,化学工业出版社,1994,76-77.
    [46] (日) 黑木宣彦著,陈水林译.染色理论化学[M].纺织工业出版社,1981.
    [47] D. Y. Chao. The role of surfactants in synthesizing polyurea microcapsule [J]. Journal of applied polymer science, 1993, 5(47): 645-651.
    [48] 王菊生.染整工艺原理 (第三、四册) [M].纺织工业出版社,1987.
    [49] 宋心远.活性染料染色的新近发展[J].印染,1991,2(3):57-60.
    [50] 罗艳.分散染料微胶囊的制备及其结构、性能的关系[J].印染助剂,2002,19(5):7-10.
    [51] 分散染料微胶囊染色方法.陈水林,罗艳,李卓.专利号:ZL 03116244.4,2005.7.6.
    [52] 雷献玉,陶红,陈仲平.Argazol NF活性染料涤棉一浴法染色[J].印染,2002,11(9):12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700