数值保角变换及其在电磁理论中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保角变换在现代技术的许多领域如在电磁理论、热传输、流体力学、力学、声学等方面有着广泛的应用,具有强大的生命力。本文主要研究保角变换的数值方法,并讨论其在电磁理论中的应用。
     第一章概述研究保角变换在电磁理论中应用的意义,并简要回顾保角变换的研究概况。
     第二章简单介绍保角变换的基本理论及其基本方法。归纳常用解析变换的特点及各种变换的单叶性区域。
     第三章介绍数值保角变换的各种方法。内容包括级数展开法,积分方程法,变分法。在级数展开法中,介绍Kantorovich法和快速傅立叶变换法。在积分方程法中,介绍Lichtenstein法、Theodorsen法和Symm法。在变分法中,介绍基于面积最小化和周长最小化的数值保角变换法。讨论许瓦兹—克里斯托夫变换的数值求解问题。并归纳双连通区域的数值变换。
     第四章介绍电磁问题的数学模型。内容包括平面平行矢量场的复数表示,梯度、散度和旋度的复数表示,静电和静磁问题的复数位、复数场。本章还介绍拉普拉斯方程、泊松方程的保角变换求解及其本征值问题的保角变换解法。
     第五章介绍保角变换法在静电和静磁问题中的应用,详细讨论在平面均匀电场作用下,不同导体边界下的静电位和场的保角变换解法,也讨论静磁问题的求解。
     第六章介绍保角变换法在传输线特征阻抗方面的应用。将复杂截面的传输线用解析或者数值的方法变换为圆环形区域,提出平面分数阶多极子并用于计算特征阻抗,讨论分数阶多极子的选取原则及方法。
     第七章介绍保角变换法在均匀波导截止频率计算中的应用。将复杂截面的波导用解析或者数值的方法变换为圆形区域,由于在圆形区域内边界形状简单,从而可以比较方便地选取全域基函数,这样用矩量法计算复杂截面波导截止频率时在编程处理时可以统一考虑和处理。通过数值例子验证方法的正确性和灵活性。本章还讨论保角变换在波导不连续性方面的应用。
     第八章简要归纳本文的研究重点。讨论用保角变换和其它数值方法结合求解边值问题。
Conformal mapping is a powerful method of analysis with many successful applications in modern technology. Uses conformal mapping, we can solved a wide range of problem in electromagnetics, heat flow, fluid flow, mechanics, and acoustics. This thesis discussed the numerical method of conformal mapping and its applications in the theory of electromagnetics.
     In chapter 1, a brief survey of study of conformal mapping and its applications in the theory of electromagnetics is presented.
     In chapter 2, the classical methods of conformal mapping are briefly introduced firstly, and then a review of the basic properties of analytic functions is presented, those functions of a complex variable which can transform orthogonal grids in one plane to orthogonal grids in another plane. The condition of univalent of some elementary functions is given.
     In chapter 3, the numerical methods of conformal mapping are presented, which contain the method of approximation, method of variational, method of integral equation. In the method of approximation, we describe the method of Kantorovich and method of Fourier transform, in the method of integral equation, we describe the method of Lichtenstein, method of Theodorsen, and method of Symm, in the method of variational, we describe methods based on minimum circumference principle and minimum area principle. Then discussed the numerical determination of the Schwarz-Christoffel transformation and the numerical transformation of doubly connected regions.
     In chapter 4, we present the mathematical models of the electromagnetic theory. First we describe how the Laplace equation, Poisson equation and equation for wave is transformed during conformal mapping. Then we develop the relationship between the potential function in the physical plane and the corresponding potential function in the model plane. Next we present the complex gradient, complex divergence and complex rotation for the planar field. Finally, complex potential function for the electrostatics and magnetostatics problem is discussed.
     In chapter 5, we describe the applications of conformal mapping in electrostatics and magnetostatics problem such as electric fields at points of high intensity, and magnetic fields of stationary structures.
     In chapter 6, we address the use of conformal mapping in the analysis of transmission lines. This chapter presents a fractional multipole model for the calculation of the transmission line characteristic impedance. The model has a higher accuracy in analyzing the potential of a point close to a sharp conducting edge. The validity of this model is conformed by numerical results.
     In chapter 7, we describe the applications of conformal mapping for the calculation of the cutoff frequencies in uniform waveguide firstly, a conformal mapping is applied to transforms the waveguides section onto the circle, and the variational equation is solved by Galerkin’s method. Comparisons with numerical results found in the literature validate the presented method. Then we discuss the problem of waveguides with discontinuities by conformal mapping.
     Chapter 8 is concluding. We presentation a discussion of the use of conformal mapping in conjunction with other methods of solving boundary value problems.
引文
[1]梁昌洪,谢拥军,官伯然,简明微波 [M],高等教育出版社,2006
    [2]林为干,微波理论与技术 [M],科学出版社,1979
    [3]楼仁海,工程电磁理论 [M],国防工业出版社,1983
    [4]R. E. Collin, Field Theory of Guided Waves, 1960. 导波场论 [M],侯元庆译,上海科学技术出版社,1966
    [5]R. Mittra, Computer Techniques for Elecromagnetics, 1973. 计算机技术在电磁学中的应用 [M],金元松译,人民邮电出版社,1983
    [6]R. F. Harrington, Field Computation by Moment Methods, 1968. 计算电磁场的矩量法 [M], 王尔杰等译,国防工业出版社,1981
    [7]李世智,电磁辐射与散射问题的矩量法 [M],电子工业出版社,1985
    [8]方能航,电磁理论导引 [M],科学出版社,1986
    [9] R. F. Harrington, Time-Harmonic Elecromagnetic Field, 1961. 正弦电磁场 [M],孟侃译,上海科学技术出版社,1964
    [10]黄宏嘉,微波原理 [M],卷 1 和卷 2,科学出版社,1964
    [11]闻国椿, 复变函数应用 [M],首都师范大学出版社,1999
    [12]闻国椿,共形映射与边值问题 [M],高等教育出版社,1985
    [13]闻国椿,戴中维,田茂英,自由边界问题的函数论方法及其在力学中的应用[M],高等教育出版社,1996
    [14]陈方权, 蒋绍惠, 解析函数论基础 [M], 北京师范大学出版社,1987
    [15]董祖引, 复变函数与积分变换 [M], 河海大学出版社,2001
    [16]莫叶, 复变函数论教程 [M], 山东大学出版社,1985
    [17]H. Kober, Dictionary of Conformal representions [M], 2nd ed. New York, Dover, 1957
    [18]黄先春, 保形映照手册 [M], 华中工学院出版社,1985
    [19]R. Schinzinger, and P. A. A. Laura, Conformal mapping methods and applications [M], New York , Elsevier , 1991
    [20]P. Henrici, Applied and computational complex analysis [M], (Vol.1, 2, 3), Wiley Classics Library Edition Published, New York, 1986
    [21]J. W. Dettman, Applied complex variables [M], Macmilan Company, New York.
    [22]路见可,平面弹性问题的复变函数方法[M],武汉大学出版社,1986
    [23]R. H. T. Bates, The Characteristic impedance of the shielded slab line, IEEE Trans. Microwave Theory Tech. [J], vol 4, 1956, 28-34
    [24]W. H. Chang, Analytical IC metal-line capacitance formulas, IEEE Trans. Microwave Theory Tech.[J] , vol 24, 1976, 608-611
    [25]M. Chaudhry, An extended Schwarz Christoffel transformation for analysis and design of high capacity integrated circuit lines and resistors, Ph. D Dissertation [D], University Califrnia, Irvine, 1989.
    [26]M. Chi, P. A. Laura, Approximate method of determining the cutoff frequencies of waveguides of Arbitrary cross section[J], IEEE Trans. Microwave Theory Tech., vol 12, 1964, 248-249.
    [27]Dias, L. Frederic, On the use of the Schwarz Christoffel transformation for the numerical solution of potential flow problems[D], Ph. D Dissertation, University of Wisconsin, Madison, 1986.
    [28]J. P. Dugan, On the shape factor for a hollow square cylinder [J], AIChE J. vol 18, 1972, 1082-1083.
    [29]S. W. Ellacott, On the approximate conformal mapping of multiply connected domains, Nnmerische Mathematik [J], vol 33, 1979, 437-446.
    [30]Fogaras, Calculation of electrical field strength around transformer winding corners, IEEE Trans. Power App. and Syst.[J], vol 87, 1968, 399-405.
    [31]Fornberg, Bengt, A numerical method for conformal mapping, SIAM Jl. Sci. and Stat. Comp.[J], vol 1,1980, 386-400.
    [32]Fornberg, Bengt, A numerical method for conformal mapping of doubly connected regions, SIAM Jl. Sciand Stat. Comp.[J], vol 5, 1985, 771-783
    [33]D. Gaier, N. Papamichael, On the comparison of two numerical methods for conformal mapping, IMA J. of Numerrical Analysis[J], vol 7, 1987, 261-282.
    [34]H. A. Wheeler, Transmission line properties of parallel wind strips by a conformal mapping approximation, IEEE Trans. Microwave Theory and Techn.[J], vol 12, 1964, 280-299.
    [35] H. A. Wheeler, Transmission line properties of parallel strips separated by a dielectric sheet, IEEE Trans. Microwave Theory and Techn.[J], vol 13, 1965, 172-185.
    [36] H. A. Wheeler, Transmission line properties of a strip line between parallel plates, IEEE Trans. Microwave Theory and Techn.[J], vol 26, 1978, 866-876.
    [37] H. A. Wheeler, Transmission line properties of a round wire in a polygon shield, IEEE Trans. Microwave Theory Tech.[J], vol 27, 1979, 717-721.
    [38] H. A. Wheeler, Transmission line conductors of various cross sections, IEEE Trans. Microwave Theory Tech.[J], vol 28, 1980, 73-83.
    [39]R. B. Wu and C. H. Chen, A variational analysis of dielectric waveguides by the conformal mapping technique, IEEE Trans. Microwave Theory Tech.[J], vol 33, 1985, 681-685.
    [40] R. B. Wu and C. H. Chen, A scalar variational conformal mapping technique forweakly guiding dielectric waveguides, IEEE Jl. Quantum Electronics[J], vol 22, 1986, 603-609.
    [41]P. Bjorstad, E. Grosse, Conformal mapping of circular polygons, SIAM J. Sci. Stat. Comput.[J], vol 8, 1987, 19-32.
    [42]I. M. Blankson, An electrostatic problem of two L-shaped, Electrodes, Jl. Of Electrostatics [J], vol 16, 1984, 33-45.
    [43]R. D. Blevins, Formulas for natural frequency and mode shape[M], Van Nnostrand Reinhold Co., New York, 1979.
    [44]F. M. Callier, J. Winken, On diagonally weighted conformal mapping, IEEE Trans. Circuits and Systems [J], vol 32, 1985, 1178-1181.
    [45]P. Caraman, N-dimensional quasiconformal mappings[M], Editura Acaademiei, Bucarest, and Abacus Press, Kent, UK, 1974.
    [46] C. R. Boyd, Characteristic impedance of multifin transmission lines, IEEE Trans. On Microwave Theory and Tech.[J], vol 15, 1967, 487-488.
    [47]S. Chakravarthy, D. Anderson, Numerical conformal mapping, Mathematics of Computation [J], vol 33, 1979, 953-969.
    [48]N. V. Challis, D. M. Bueley, Numerical Methods for Conformal Mapping, IMA J. Numer. Anal.[J], vol 22, 1982, 169-181.
    [49] N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans Antennas Propagat.[J], vol44, no 4, 1996, 554-566.
    [50] K. B. Oldham, J. Spaniner, The fractional calculus[M], Aca. Press, New York and London, 1974.
    [51]M. Hashimoto, Relationship between high-frequency diffraction and low-frequency from a sharp-wedge, Electromagnetics[J], vol.18, no. 5,1998, 529-553
    [52]H. T. Anastassiu, P. E. Atlamazoglou, D. I. Kaklamani, Application of bicomplex (quatemion) algebra to fundamental electrmagnetics: a low order atternative to the Helmholtz equation. IEEE Trans Antennas and Propagation [J], vol 51, no 8, 2003, 2130
    [53]沈燮昌,复变函数逼近论[M],科学出版社,1998
    [54]任福尧,应用复分析[M],复旦大学出版社,1993
    [55]曹伟杰,保形变换理论及其应用[M],上海科学技术文献出版社,1988
    [56]R. V. Churchill, J. W. Brown 著,陈天士,林维新译,复变数及应用 [M], 晓园出版社(中国台北),1992
    [57]王传荣,复变函数方法[M],厦门大学出版社,1999
    [58]李锐夫,复变函数续论[M],高等教育出版社,1988
    [59]吴炯圻,现代位势理论导引[M],厦门大学出版社,1998
    [60]王梓坤,布朗运动与位势[M],科学出版社,1983
    [61]张鸣镛,位势论[M],北京大学出版社,1998
    [62]刘圣民,电磁场数值方法[M],华中理工大学出版社[M],1991
    [63]陆洪文,李云峰,模形式讲义[M],北京大学出版社,1999
    [64]张南越,陈怀惠, 复变函数论选讲[M],北京大学出版社,1995
    [65]刘书琴,单叶函数[M],西北大学出版社,1988
    [66]V. Namias, Application of the Dirac delta function to electric charge and multipole distributions, American Journal of Physics [J], vol.45, no.7, July, 1977, 624-630
    [67]E. Costamagna, A new approach to standard Schwarz-Christoffel formula calculations, Microwave and Optical Technology Letters[J], vol 32, no 3, February 2002, 196-199.
    [68]E. Costamagna, Numerical inversion of the Schwarz-Christoffel conformal transformation: strip-ling case studies, Microwave and Optical Technology Letters [J], vol 28, no 3, February 2001, 179-183.
    [69]E. Costamagna, Conformal mapping and field singularities in perfectly conducting wedge and rotational symmetry structures, Microwave and Optical Technology Letters[J], vol 24, no 3, February 2000, 191-195.
    [70]E. Costamagna and A. Fanni, Needle electrode fields with space-charge effects, Microwave and Optical Technology Letters [J], vol 26, no 5, September 2000, 321-325.
    [71]E. Costamagna, Error-Masking phenomena during numerical computation of Scharz-Christoffel conformal transformations, Microwave and Optical Technology Letters[J], vol 20, no 4, February 1999, 223-225.
    [72]E. Costamagna, Integration formulas for numerical calculation of the Schwarz-Christoffel conformal transformation, Microwave and Optical Technology Letters[J], vol 15, no 4, July 1997, 219-224.
    [73]E. Costamagna, A. Fanni, P. Gamba, Thick coplanar line quasi-TEM parameter calculations, Microwave and Optical Technology Letters[J], vol 14, no 1, January 1997, 48-52.
    [74]J. Sva?ina, Analytical models of width-limited microstrip lines, Microwave and Optical Technology Letters [J], vol 36, no 1, January 2003, 63-65.
    [75]H. Yang and S. Lee, analysis of a nonconfocal suspended strip in an elliptical cylinder by conformal mapping, Microwave and Optical Technology Letters [J], vol 32, no 2, January 2002. 115-119.
    [76]Jui-Ming Hsu, Mount-Learn Wu, and Ching-Ting Lee, Hybrid approach for quasistatic analysis of shielded strip lines, Microwave and Optical Technology Letters[J], vol 14, no 2, February 1997, 111-115.
    [77] C. Karpuz and A. G?rür, Fast and simple CAD-oriented closed-form formulas fordouble-sided coplanar strip lines, Microwave and Optical Technology Letters[J], vol 22, no 3, August 1999, 215-218.
    [78]A. Gorür, M. Duyar, and C. Karpuz, Analytic formulas for calculating the quasistatic parameters of a multilayer cylindrical coplanar strip line, Microwave and Optical Technology Letters[J], vol 22, no.6, September 1999, 432-436.
    [79]C. J. Reddy and M. D. Deshpende, Analysis of coupled cylindrical striplines filled with muitilayered dielectrics, IEEE Microwave Theory and Tech.[J], vol 36,1996, 1301-1310.
    [80] J. Svacina, New method for analysis of microstrip with finite-width ground plane, Microwave and Optical Technology Letters[J], vol 48, no 2, February 2006, 396-399.
    [81]G. E. Ponchak, E. Dalton, Coupling between microstrip lines with finite-width ground plane embedded in thin-film circuits, IEEE Adv Packaing, [J] vol 28, 2005, 320-327.
    [82]C. E. Smith and R. S. Chang, Microstrip transmission line with finite-width dielectric, IEEE Microwave Theory and Tech.[J], vol 28, 1980, 90-94.
    [83]S. S. Bedair and I. Wolff, Fast accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMICs, IEEE Microwave Theory and Tech.[J], vol 40,1992, 41-48.
    [84]W. Heinrich, Full-wave analysis of conductor losses on MIMMC transmission lines, IEEE Microwave Theory and Tech.[J], vol 38,1990, 1468-1472.
    [85]W. Heinrich, Quasi-TEM description of MMIC coplanar lines including conductor loss effects, IEEE Microwave Theory and Tech.[J], vol 41,1993, 45-52.
    [86]G.Ghione, A CAD-oriented analytical model foe the losses of general asymmetric coplanar lines in hybrid and monolithic MICs, IEEE Microwave Theory and Tech.[J], vol 41, 1993, 1499-1510.
    [87]G. Ghione and C. U.Naldi, Coplanar waveguides for MMIC application: effect of upper shielding, conductor backing, finite extent ground planes, and line toline coupling, IEEE Microwave Theory and Tech.[J], vol 35, 1987, 260-267.
    [88]Xinbao Gong, Ji Yao, and Xilang Zhou, Analytic analysis of a C-shaped microshield broadside-coupled coplanar waveguide with buried ground strip, Microwave and Optical Technology Letters[J], vol 36, no 3, February 2003, 214-216.
    [89]Xilang Zhou, Jinghua Chen, and Zhongqiang Chen, Quasi-TEM analysis of novel coplanar waveguide and coupled structure, Microwave and Optical Technology Letters[J], vol 30, no 1, July 2001, 49-51.
    [90]A. G?rür and C. Karpuz, Analysis of broadside-coupled asymmetric coplanar waveguide with one lateral ground plane, Microwave and Optical TechnologyLetters[J], vol 24, no 5, March 2000, 298-303.
    [91]C. Karpuz and A. G?rür, Quasistatic Analysis of broadside-coupled conductor-backed asymmetric coplanar waveguide with one lateral ground plane using conformal mapping method, Microwave and Optical Technology Letters[J], vol 26, no 3, August 2000, 156-160.
    [92]A. G?rür and C. Karpuz, Effect of finite ground-plane width on quasistatic parameters of asymmetric coplanar waveguides, Microwave and Optical Technology Letters[J], vol 22, no 1, July 1999, 63-68.
    [93]C. Karpuz, M. Duyar, and A. G?rür, Analysis of coplanar-coupled lines on a cylindrical substrate, Microwave and Optical Technology Letters [J], vol.27, no.3, November 2000, 187-190.
    [94]V. Akan and E. Yazgan, A Simple formulation for quasistatic solutions of elliptical, cylindrical and asymmetrical coplanar strip lines, Microwave and Optical Technology Letters[J], vol 41, no 1, April 2004, 18-21.
    [95]Zhiyong Shan, Yanhua Zhang, Xilang Zhou, and JiYao, Analytical analysis of a rectangular shielded multilayer coupled coplanar waveguide, Microwave and Optical Technology Letters[J], vol 41, no 5, June 2004, 392-395.
    [96]Ching-Ting Lee and Mount-Learn Wu, Combination of conformal mapping and Finite-Difference Methods for analysis of supported coplanar waveguides, Microwave and Optical Technology Letters[J], vol 15, no 5, August 1997, 273-277.
    [97]Xilang Zhou, Ji Yao, and Xinbao Gong, Quasistatic analysis of a new CCPW with cylindrical shielding, Microwave and Optical Technology Letters [J], vol 34, no 3, August 2002, 213-215.
    [98]G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, Excitation of coupled slotline mode in finite-ground CPW with unequal ground plane widths, IEEE Microwave Theory and Tech.[J], vol 53, 2005, 713-717.
    [99]V. Akan and E. Yazgan, Quasistatic TEM characteristics of multilayer elliptical and cylindrical coplanar waveguides, Microwave and Optical Technology Letters, vol 42, no 4, August 2004, 317-322.
    [100]Ji-Xiang Zhao, Characteristic parameters for CPWS on a very thin dielectric layer, Microwave and Optical Technology Letters [J], vol 45, no 3, May 2005, 240-241.
    [101]Z. Du, K. Kong, Cad models for asymmetrical, elliptical, cylindrical, and elliptical cone coplanar strip lines, IEEE Microwave Theory and Tech.[J], vol 48, 2000, 312-316.
    [102]E. Carlsson and S. Gevorgian, Conformal mapping of the field and charge distributions in multilayered substrat CPWs, IEEE Microwave Theory and Tech.[J],vol 47,1999, 1544-1552.
    [103]M. Duyar, V. Akan, E. Yazgan, and M. Bayrak, Analytical attenuation calculation of asymmetrical coplanar waveguide with finite-extent ground planes for coplanar, waveguide mode, Microwave and Optical Technology Letters[J], vol 49, no 6, September 2007, 2082-2087.
    [104]C. Karpuz, A. G?rür, and M. Alkan, Quasistatic analysis of cylindrical coplanar strip lines, Microwave and Optical Technology Letters[J], vol 17, no 2, February 1998, 148-151.
    [105]A. G?rür, M. Duyar, and C. Karpuz, Analysis of a cylindrical coupling structure, Microwave and Optical Technology Letters [J], vol 22, no 5, September 1999, 298-301.
    [106] A. G?rür and C. Karpuz, Analytic formulas for conductor-backed asymmetric CPW with one lateral ground plane, Microwave and Optical Technology Letters[J], vol.22, no.2, July 1999, 123-126.
    [107]Zhou Haijing, Lin Weigan, Analysis of a novel family of high-power waveguides, Microwave and Optical Technology Letters[J], vol 22, no 6, September, 1999, 420-423.
    [108]Zhou Xiaojun, Yu Zhiyuan, and Lin Weigan, Characteristics of eccentric coaxial line using conformal mapping and Finite-Difference Time-Domain method, Microwave and Optical Technology Letters[J], vol 16, no 4, November 1997, 249-252.
    [109] Mount-Learn Wu, and Ching-Ting Lee, Quasistatic analysis of arbitrary coplanar waveguide structures by combination of conformal mapping and Finite-Difference Methods, Microwave and Optical Technology Letters[J], vol 16, no 3, October 1997, 149-154.
    [110]H. Yang and S. Lee, A variational calculation of TE and TM cutoff wavenumbers in circular eccentric guides by conformal mapping, Microwave and Optical Technology Letters[J], vol.31, no.5, December 2001, 381-384.
    [111]H. Yang and S. Lee, Avariational calculation for higher order mode cutoff frequencies of a symmetrical strip line by conformal mapping, Microwave and Optical Technology Letters[J], vol 32, no 6, March 2002, 449-452.
    [112]Y. A. Tsarin, Conformal mapping technique in the theory of periodic structures, Microwave and Optical Technology Letters [J], vol 26, no 1, July 2000, 57-61.
    [113]K.Kitazawa and T. Itoh, Propagation characteristics of coplanar type transmission lines with lossy midia, IEEE Microwave Theory and Tech.[J], vol 39, 1991, 1694-1700.
    [114]谢明勤,关于 Faber 多项式的一个注记,应用数学,第 4 卷,第 2 期,91-95页, 1991 年。
    [115]李忠,拟共形映射及其在黎曼曲面论中的应用[M],科学出版社,1988 年。
    [116]杨宗信,有关拟共形映射的几个问题[D], 复旦大学博士论文,2004 年。
    [117]宋颖,拟共形映射中的几个问题[D],山东科技大学硕士论文, 2004 年。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700