统计通信信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
检测和滤波是统计信号处理的两个基本内容。噪声中的信号检测是通信、雷达、声纳等应用领域中的经典问题,寻找一个合适的检测统计量是问题的关键,利用高阶统计量有助于提高信号检测性能,CDMA系统已被广泛民用,在民为军用的情况下,针对通信侦察的需求,研究基于高阶统计量直扩码分多址(DS-CDMA)信号检测十分必要。自适应滤波算法是信道均衡、回波对消、系统辨识、参数估计等的重要技术,在实际应用中经常遇到大量的具有显著尖峰脉冲特性的信号和噪声,其服从α稳定分布,采用基于分数低阶统计量理论的自适应滤波算法,能够保证信号处理系统性能不出现退化。
     本文对基于高阶统计量的DS-CDMA信号检测理论与方法、基于分数低阶统计量的自适应滤波算法做比较深入的研究,主要研究成果如下:
     1)推导得到了DS-CDMA信号的四阶累积量及矩的表达式,为提出检测方法提供了理论依据。证明了同步DS-CDMA信号和异步DS-CDMA信号有相同的一至四阶累积量及矩,因此采用同一检测统计量,检测性能相同;指出了接收信号中的噪声分量对四阶矩切片起增强作用,而对四阶累积量切片没有贡献,因此,基于四阶矩切片的检测方法性能优于基于四阶累积量切片的检测方法性能;进一步指出了不同的四阶矩切片抑制高斯白噪声能力不同,(τ,τ,τ)切片与(0,0,τ)切片的四阶矩相同,且他们抑制高斯白噪声能力优于(0,0,0)切片和(0,τ,τ)切片的四阶矩,所以基于前二种四阶矩切片的DS-CDMA信号检测方法性能相同,且优于后二种四阶矩切片的检测方法性能。仿真结果与上述结论一致。
     2)基于上述理论,利用假设检验,提出了基于四阶统计量的时域检测方法和频域检测方法。时域检测方法需要选择合适的延迟量τ,在盲侦察接收中,此方法难以保证检测性能。频域检测方法与τ无关,为了降低估计误差噪声的影响,频域检测方法采用了降噪处理,频域检测方法性能优于τ最佳选择的时域检测方法性能,优于自相关检测法,可用于DS-CDMA盲侦察。
     3)研究了在α稳定分布背景下最小平均P范数类自适应滤波算法。为提高自适应滤波算法性能,提出了基于最小平均P范数准则的自适应数据块滤波算法,包括:定步长数据块最小平均P范数(DBLMP)及其归一化(DBNLMP)算法、变步长数据块归一化最小平均P范数(VDBNLMP)算法和广义数据块归一化最小平均P范数(GDBNLMP)算法。VDBNLMP算法既保持了DBNLMP算法收敛速度比NLMP算法快的优点,又具有稳态失调比NLMP算法小的优点;GDBNLMP算法的收敛速度比“动量”广义NLMP算法快。
     4)研究了在α稳定分布背景下自适应格型滤波算法。提出了基于最小平均P范数准则的自适应广义伯格算法(GBurgAL)和基于最小P范数准则的自适应格型滤波算法(LPL)。GburgAL算法的稳定性和抗脉冲噪声能力比已有的基于最小平均P范数准则的格型算法(LMPL)和基于最小均方准则的格型算法(LMSL)都强;LPL算法比GburgAL算法和最小二乘格型滤波算法(LSL)具有更快的收敛速度和更强的抗脉冲噪声能力,LPL算法性能受参数影响比GburgAL算法小,参数选择简单。因此,LPL算法是目前性能最好的一种格型算法。
The detection and filtering are basic contexts of statistical signal processing. Signal detection in noise is a typical problem of communication, radar, sonar, and other applications areas. To find an appropriate detection statistic is the key problem. Higher-order statistics are helpful to improve detection performance. CDMA system is widely used in civil. When it is used in military, for communication reconnaissance, the detection of DS-CDMA signal based on higher-order statistics is very important. Adaptive filtering algorithms are important technologies in such diverse fields as channel equalization, echo cancellation, system identification, parameter estimation, among others. In practical applications, many signals and noises often accompany spikes and impulsiveness, andα-stable distribution can preferably describe these signals and noises. Adaptive filtering algorithms based on fractional lower-order statistics(FLOS) show better performance inα-stable distribution environment.
     This dissertation deals with mainly concerned on the study of two aspects, which are DS-CDMA signal detection theory and methods based on higher-order statistics, and adaptive filtering algorithms based on fractional lower-order statistics, the main contributions are as follows.
     1)The fourth-order cumulants and moments of DS-CDMA signal are derived, which are fundament of detection methods. It is shown that the first-order to fourth-order cumulants and moments for synchronization DS-CDMA signal and asynchronous DS-CDMA signal are the same. Thus the detection performance using the same statistics for the synchronization DS-CDMA signal and the asynchronous DS-CDMA signal is the same. And it is also shown that the noise is useful to fourth-order moment slices, but useless to fourth-order cumulant slices. Thus, the detection performance of methods based on fourth-order moment slices is better than that of methods based on fourth-order cumulant slices. Different fourth-order moment slices have different noise cancellation capability. The fourth-order moment with slice (τ,τ,τ) is the same as that with slice (0,0,τ), and their noise cancellation capability is superior to the fourth-order moment with slice (0,0,0) and slice (0,τ,τ). Thus, the detection performance of methods based on the former two fourth-order moment slices for DS-CDMA signal is the same, and is better than that of methods based on the latter two fourth-order moment slices.
     2)Using above theories and hypothesis test theory detection methods based on fourth-order statistics in time domain and in frequency domain are proposed. It is shown that the performance of detection methods in time domain is dependent on the delayτ, and detection performance is difficult to ensure in communication blind reconnaissance. The performance of detection method in frequency domain is not dependent on the delayτ. To reduce the effect of estimation error of the fourth-order moment slice, de-noise processing is used. The performance of detection method in frequency domain is better than that of methods in time domain, and of the correlation method. The detection method in frequency domain can be used to blind reconnaissance for DS-CDMAsignals.
     3)The least mean P-norm type algorithms inα-stable distribution environment are studied. To improve the performance of adaptive filtering algorithms, adaptive data block filtering algorithms based on the least mean P-norm criterion are proposed, which are fixed step-sized data block least mean P-norm (DBLMP) algorithm and its normalized version (DBNLMP algorithm), variable step-sized data block normalized least mean P-norm (VDBNLMP) and generalized data block normalized least mean P-norm (GDBNLMP) algorithm. And the VDBNLMP algorithm retains the advantage of faster convergence speed which is achieved by the DBNLMP algorithm as compared to the NLMP algorithm. Furthermore, it also has the advantage of smaller steady misadjustment as compared to the NLMP algorithm. The GDBNLMP algorithm converges faster than the“Momentum”-type generalized NLMP (Mom-GNLMP) algorithm.
     4)Adaptive lattice filtering algorithms inα-stable distribution environment are studied. An adaptive generalized Burg algorithm (GBurgAL) based on the least mean p-norm criterion and an adaptive lattice filtering algorithm (LPL) based on the least p-norm criterion are proposed. GBurgAL has better steady misadjustment and stronger resisting impulse noise capability than least mean p-norm lattice(LMPL) algorithms and least mean square lattice(LMSL) algorithms. LPL has faster convergence rate and stronger resisting impulse noise capability than GBurgAL and least square lattice(LSL) algorithm. And the effect of parameters on the performance of LPL is less than that on the performance of GBurgAL, and parameters of LPL are easy to select. Therefore, LPL is the best lattice algorithm at present.
引文
[1] Vantrees H L. Detection, estimation, and modulation theory[M]. New York:John Wiley & Sons, Inc., 2001
    [2]李道本.信号的统计检测与估计理论(第二版) [M].北京:科学出版社,2004
    [3]张贤达.时间序列分析—高阶统计量方法[M].北京:清华大学出版社,1996
    [4]祁玉生,邵世祥.现代移动通信系统[M].北京:人民邮电出版社,1999
    [5]何振亚.自适应信号处理[M].北京:科学出版社,2000
    [6] Machell F W, C. S. Penrod and G. E. Ellis. Statistical characteristic of ocean acoustic moise processed. Topics in Non-Gaussian Signal Processing, Germany: Springer. 1989,29-57.
    [7] Bertocco M, Paglierani P. Nonintrusive measurement of impulsive noise in telephone-type networks. IEEE Transactions on Instrumentation and Measurement. 1998,47(4),864-868
    [8] Wan X, Poor H V. Robust multiuser detection in non-Gaussian channels. IEEE Trans on Signal Processing. 1999,47(2),289-305
    [9] Button M D, Gardiner J G, Glover I A. Measurement of the impulsive noise environments for satellite-mobile radio systems at 1.5GHz. IEEE Transaction on Vehicular Technology. 2002,51(3), 551-560.
    [10] Swami A, Sadler B. TDE, DOA and related parameter estimation problems in impulsive noise. IEEE Signal Processing Workshop on Higher-order statistics. 1997,273-277
    [11] Kidmose P. Adaptive filtering for non-Gaussian processes. International Conference on Acoustics, Speech, and Signal Processing.ICASSP’2000. 1. 424-427
    [12] Qiu T S, Wang H Y, Li X B et al. An AFLC algorithm for latency change estimation of EP under alpha-stable noise conditions. IEEE-EMBC. 2003, 2635-2638
    [13] Matsuba I, Takahashi H. Generalized entropy approach to stable levy distributions with financial application. Elsevier Physics. 2003, 458-468.
    [14] Chuah T C, Sharif B S, Hinton O R. Robust direction of arrival estimation for CDMA signals in impulsive noise. IEE Processing on Communication. 2003,101-107.
    [15] Nikias C. L, Shao M . Signal Processing with Alpha-stable Distribution and Application. New York: John Wiley &Son, Inc,1995
    [16] Shao M, Nikias C. L. Signal processing with fractional lower moments: stable processes and there applications. Proceedings of the IEEE. 1993, 81(7),986-1010.
    [17] Kuruoglu E E. Signal Processing inα-stable Noise Environments: A Least l p-Norm Approach: [Ph. D Dissertation]. University of Cambridge,1998
    [18] Hinedi, S. and Polydoros, A. DS/LPI Autocorrelation Detection in Noise Plus Random-Tone Interference. IEEE Trans on Commu. 1990,38(6), 805-817.
    [19] Urkowitz, H. Energy Detection of Unknown Deterministic. Proceeding of IEEE. 1967,55(4), 523-531.
    [20]孟建,胡来招.扩信号检测的相关积累技术.电子对抗技术. 2001,16(2),1-5.
    [21] Hill, D.A. and Bodie, J.B. Carrier Detection of PSK Signals. IEEE Trans on Commu. 2001,49(3),487-496.
    [22] Hill, D.A. and Bodie, J.B. Experimental carrier detection of BPSK and QPSK direct sequence spread spectrum signals. MILCOM 1995 Military Communications Conference Proceedings. 1995,1(1),362-367.
    [23] Hill, D.A. and Bodie, J.B. Carrier detection of unbalanced QPSK direct sequence signals. MILCOM 1999 Military Communications Conference Proceedings. 1999,1(1),437-441.
    [24]谭舒,吕明,成昊.DS/BPSK信号载频估计的互相关积累法.雷达与对抗. 2006, (1).43-47.
    [25] Gardner, W.A. and Spooner, C.M. Signal Interception: Performance Advantages of Cyclic-Feature Detectors. IEEE Trans on Commu. 1992,40(1),149-149.
    [26] Gardner, W.A. The spectral correlation theory of cyclostationary time-series. Signal Processing. 1986,(11),13-36.
    [27] Gardner, W.A. and Spooner, C.M. Detection and Source Location of Weak Cyclostationary Signals: Simplifications of the Maximum Likelihood Receiver. IEEE Trans on Commu. 1992,41(6),905-916.
    [28]陈四根,杨莘元.QPSK信号谱相关性质研究.哈尔滨工程大学学报. 2003,24(2),208-211.
    [29]沈振惠.低信噪比DS-SS/BPSK信号检测与参数估计技术研究.电子科技大学硕士学位论文,2003。
    [30] Burel, G.C. and Berder, B.O. Detection of direct sequence spread spectrum transmissions without prior knowledge. Global Telecommunications GLOBECOM '2001. (l), 236 -239.
    [31]贺广龙.DS/CDMA信号盲检测技术研究.电子科技大学硕士学位论文,2005。
    [32]张建立.直扩信号的检测.无线电工程. 1995,24(2),19-21.
    [33]张天骐,周正中.直扩信号伪码周期的谱检测.电波科学学报. 2001,16(4),518-523.
    [34]张天骐.DS及DS/CDMA信号的估计方法研究.电子科技大学博士学位论文, 2001。
    [35]刘刚,植强.应用增强二次谱估计直扩信号扩谱周期.电子对抗技术. 2003,18(3).26-28.
    [36]刘刚,张超,吕镜清.基于局部统计分析的雷达弱信号检测技术研究.电子对抗. 2002,(3),26-31.
    [37] Reed, D.E. and Wickert, M.A. Spread spectrum signals with low probability of chip rate detection. Selected Areas in Communications, IEEE Journal on. 1989,7(4).595-601.
    [38] Reed, D.E. and Wickert, M.A. Minimization of Detection of symbol-rate spectral lines by delay and Multiply Receivers. IEEE Trans on Commu. 1988,36(1),118-120.
    [39] Kuehls, J.F. and Geraniotis, E. Presence Detection of Binary-Phase-Shift-Keyed and Direct-Sequence Spread-Spectrum Signals Using a Prefilter-Delay-and-Multiply Device. IEEE Jounal on SAIC. 1990, 8(5),915-933.
    [40]邱天爽等.统计信号处理-非高斯信号处理及其应用[M].北京:电子工业出版社,2004。
    [41] Chrysostomos L. N. Higher-order spectra analysis: a nonlinear signal processing frame work. New Jeresy: Prentice Hall,1993
    [42] Shen Zhenhui, Tang Bin. Multiple parameters estimation synchronously for DSSS/PSK signal using fourth-order cumulant 2–D slice. ICCCAS. 2004, (2),867-870.
    [43]韩高莉,田红心.基于高阶累积量的低信噪比直扩信号盲检测的实现.空间电子技术. 2006, (2),24-28.
    [44]资晓军,谢丹,易克初.基于四阶累积量一维切片的直扩信号检测.空间电子技术. 2006, (3),26-30.
    [45]资晓军,谢丹,易克初.基于四阶累积量的二次谱法检测DS_SS伪码周期.电子信息对抗技. 2006,21(1),18-21.
    [46] Zhang Xiaoming, Zhang Zhongzhao. Parameter estimation of DSSS signals in non-cooperative communication system. Journal of Systems Engineering and Electronics. 2007,18(1),4-21.
    [47] Spooner, C.M. and Gardner, W.A. Exploitation of High-order Cyclostationarity for Weak-Signal Detection Time-Delay Estimation. Statistical signal and Array processing conference proceedings, IEEE sixth SP workshop on. 1992,197-201.
    [48] Amod, V. and Georigos B.G.. Nonparametric Polyspectral Estimators for kth-order Cyclostationary Process. IEEE Transactions on Information Theory. 1990,40(1),67-84.
    [49] Wickert, M.A. and Turcotte, R.L. Rate-Line Detection Using Higher-Order Spectra. IEEE Trans on Commu. 1994, (3),2165-2173.
    [50] Wickert, M.A. and Truong, T. Performance of Spectral Line Detection Using Integrated Trispectrum. MILCOM 1998. Military Communications Conference Proceedings. 1998,(2),659-663.
    [51] Jitendra K.Tugnait. Detection of non-Gaussian signals using integrated polyspectrum. IEEE Trans on Signal Processing. 1994,42(1),3137-3149.
    [52]韩军,刘兴钊.短序列、低信噪比条件下积分三谱计算的改进算法.上海交通大学学报. 2001,35(1),40-43.
    [53] Zhao Zhijin, Xie Tingting, Wu Jia. The study on the detection methods of DSSS/QPSK signal based on a slice of the fourth-order moment. WSEAS Transactions on communications.2006,5(5),826-831.
    [54]赵知劲,邬佳,徐春云等.基于四阶累积量的DSSS/QPSK信号检测方法研究.电子学报. 2007,35(6),1046-1049.
    [55] B. Mandebrot. The variation of certain speculative price. Journal of Business. 1963,36, 394-419.
    [56] Stuck B W, Kleiner B. A statistical analysis of telephone noise. Bell Systems Technical Journal. 1974,53(7),1263-1320.
    [57] Stuck B W. Minimum error dispersion linear filtering of scalar symmetric stable processes. IEEE Transactions on Automatic Control. 1978,23(3),507-509.
    [58] Rupi M, Tsakalides P, Nikias C L et al. Robust constant modulus array based onfractional lower order statistics. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1999,5, 2945-2948.
    [59] Tsihrintzis G A, Nikias C L. Fast estimation of the parameters of alpha-stable impulsive interference. IEEE Trans. on Signal Processing. 1996,44(6), 1490-1503.
    [60] Ma X, Nikias C L. Parameter estimation and blind channel identification in impulsive signal environments. IEEE Trans on Signal Processing. 1995,43(11), 2884-2897.
    [61] Bondenschatz J S, Nikias C L. Maximum-likelihood symmetric alpha-stable parameter estimation. IEEE Trans. on Signal Processing. 1999,47(5), 1382-1384.
    [62] Tsihrintzis G A, Nikias C L. Data-adaptive algorithms for signal detection in sub-Gaussian impulsive interference. IEEE Trans on Signal Processing. 1997,45(7), 1873-1878.
    [63] Tsihrintzis G A, Nikias C L. Data-adaptive algorithms for signal detection in impulsive noise modeled as sub-Gaussian, alpha-stable process. 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing. 1996,238-241.
    [64] Shao M, Nikias C. L. Detection and adaptive estimation of stable processes with fractional lower-order moments. IEEE Sixth SP Workshop on Statistical Signal and Array Processing. 1992, 94-97.
    [65] Tsihrintzis G A, Nikias C L. On the detection of impulsive stochastic transients over background noise. IEEE MILCOM’94. Conference Record. 1994, 37-41.
    [66] Tsihrintzis G A, Nikias C L. Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process. IEEE MILCOM’93. 1993. 658-662.
    [67] Shao M, Nikias C. L. Signal detection in impulsive noise based on stable distributions. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers. 1993, 218-222.
    [68] Tsihrintzis G A, Nikias C L. Evaluation of fractional, lower-order statistics-based detection algorithms on real sea-clutter data. IEE Proceedings on radar, sonar navigation. 1997,144(1), 29-38.
    [69] Tsihrintzis G A, Tsakalides P, Nikias C L. Signal detection in severely heavy-tailed radar clutter. Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers. 1995,865-869.
    [70] Bondenschatz J S, Nikias C L. Symmetric alpha-stable filter theory. IEEE Transactions on Signal Processing. 1997,45(9), 2301-2306.
    [71] Tsakalides P, Nikias C L. Robust adaptive beamforming in alpha-stable noiseenvironments. ICASSP-96. 1996, 5, 2884-2887.
    [72] Tsakalides P, Nikias C L. The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments. IEEE Trans. On Signal Processing. 1996,44(7),1623-1633.
    [73] Tsihrintzis G A, Tureli U, Nikias C L. Fractional lower order statistics-based ambiguity functions for differential delay-Doppler estimation. IEE Processing: Radar, Sonar, and Navigation. 1996,143, 358-365.
    [74] Tsakalides P, Nikias C L. Space-time adaptive processing in stable impulsive interference. Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computer. 1996,1, 389-393.
    [75] Ma X, Nikias C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics. IEEE Trans on Signal Processing. 1996,44(11), 2669-2687.
    [76] Achim, A. Bezerianos, P. Tsakalides. Wavelet-based ultrasound image denoising using an alpah-stable prior probability model. Proc. 2001 IEEE International Conference on Image Processing (ICIP’01), Thessaloniki, Greece. 2001,221-224.
    [77] Georgiou P G, Tsakalides P and C. Kyriakakis. Alpha-stable robust modeling of background noise for enhanced sound source localization. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1999, 6. 3085-3088.
    [78] Georgiou P G, Tsakalides P and C. Kyriakakis. Alpha-stable modeling of noise and robust time-delay estimation in presence of impulsive noise. IEEE Trans. On multimedia. 1999, 1(3), 291-301.
    [79] Shen J, Nikias C L. Arbitrary impulsive interference cancellation in discrete time systems. MILCOM’94. 1994,1, 311-315.
    [80] Tsakalides P, Nikias C L. Robust space-time adptive processing (STAP) in non-Gaussian clutter environments. IEE Proc. Radar, Sonar, Navig. 1999,146(2), 84-93.
    [81] Kannan B, Fitzgerald W J. Beamforming in additiveα-stable noise using fractional lower order statistics (FLOS). The 6th IEEE International Conference on Electronics, Circuits and Systems, Proceedings of ICECS’99. 1999, 3,1755-1758.
    [82] Griffith D. W, Jr., Gonzalez J. G, Arce G. R. Robust time-frequency representations for signal in alpha-stable noise using fractional lower-order statistics. Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. 1997,415-419.
    [83] Kogon S M, Manolakis D G. Signal modeling with self-similar alpha-stable processes: the fractional levy stable motion model. IEEE Trans on SignalProcessing. 1996, 44(4), 1006-1010.
    [84] Azaaoui N, Clavier L, Sabre R. Rath delay model based on Alpha-stable distribution for the 60GHz indoor channel. IEEE GLOBECOM’03. 2003,1638-1643.
    [85] Kuruoglu E E, P. J. W. Rayner, W. J. Fitzgerald. A near optimal receiver for detection inα-stable distribution noise. Ninth IEEE SP Workshop on Statistical Signal and Array Processing. 1998,419-422.
    [86] Kuruoglu E E (2003). Analytical representation for positiveα-stable densities. ICASSP. 2003,6,729-732
    [87] Kuruoglu E E Density parameter estimation of skewedα-stable distribution. IEEE Trans on Signal Processing. 2001,49(10), 2192-2201.
    [88] Kuruoglu E E, Fitzgerald W J, Rayner P. Least-norm estimation of autoregressive model coefficients of symmertric-stable processes. IEEE SIGNAL PRCESSING LETTERS. 1997,4(7), 201-203.
    [89] Kuruoglu E E. Nonlinear least lp-norm filters for nonlinear autoregressiveα-stable processes. Digital Signal Processing. 2002,12:119-142
    [90]吕泽均,肖先赐.一种新的自适应波束形成技术.系统工程与电子技术. 2003, 25(5),542-545.
    [91]吕泽均,肖先赐.基于时延分数阶相关函数时空处理的子空间测向算法.信号处理. 2003,19(1),51-54.
    [92]吕泽均,肖先赐.基于分数阶矩的测向算法研究.电波科学学报. 2002,17(6),561-568.
    [93]吕泽均,肖先赐.在冲击环境中基于子空间的测向算法研究.航空学报. 2003,24(2),174-177.
    [94]冯大政,常冬霞,袁莉.一种自适应全局最小平均P范数算法.电子学报. 2001,29(12A),1848-1851.
    [95]常冬霞,冯大政.脉冲噪声环境的一种递归全局最小平均P范数算法.电子学报. 2002, 31(3),416-428.
    [96]刘建强,冯大政.脉冲噪声中的盲源分离方法.电子与信息学报. 2003,25(7),896-900.
    [97]刘建强,冯大政.脉冲噪声中非平稳源的盲分离方法.电子学报. 2003,31(12),1921-1923.
    [98]张莉,冯大政.一种改进的自适应脉冲对消LMP算法.西安电子科技大学学报(自然科学版). 2003,30(2),183-185.
    [99]周炜,冯大政,刘建强.冲击噪声中的谐波恢复.信号处理. 2005,21(2).163-166.
    [100]邓琳伟,马春华,冯大政.非高斯噪声下的一种自适应IIR滤波算法.火控雷达技术. 34(9),23-27.
    [101]段雪梅,冯大政.一种改进的用于IIR滤波器的递归全局最小P范数算法.制导与引信,2006,28(1),48-52
    [102]周炜,刘建强,冯大政.基于预处理提高角度频率联合估计的稳健性.数据采集与处理. 2006,11. 21(4),375-379.
    [103]周炜,冯大政,刘建强等.一种对称α稳定噪声中的DOA估计新方法.信号处理. 2007,4. 23(2),200-203
    [104]邱天爽,Kong X,郭颖.非高斯分布噪声下诱发电位潜伏期变化的自适应检测.大连理工大学学报. 2002,42(3),371-375.
    [105]邱天爽,Kong X,鲍海平.一种基于脑电信号分析的中枢神经系统损伤检测的韧性自适应方法.中国生物医学工程学报. 2003,22(1),23-29.
    [106]邱天爽,王宏禹,张杨.一种基于非线性变化的EP潜伏期变化自适应检测方法.电子与信息学报. 2002,24(12),1842-1849.
    [107]邱天爽,王宏禹,孙永梅.一种基于分数低阶协方差的自适应EP潜伏期变化检测方法.电子学报. 2004, 32(1),91-95.
    [108]邱天爽,王宏禹,孙永梅.分数低阶alpah稳定分布噪声下EP潜伏期韧性自适应检测.大连理工大学学报. 2003,43(4),505-510.
    [109]孙永梅,邱天爽.脉冲噪声环境下的自适应时间延迟估计新方法.电子与信息学报. 2005,27(6),740-743.
    [110]孙永梅,邱天爽.脉冲噪声环境下的SCOT加权时间延迟估计新方法.通信学报. 2005,26(12),13-18.
    [111]孙永梅,邱天爽.一种基于分数低阶协方差的维纳加权时间延迟估计方法.大连理工大学学报. 2005,44(3),459-463.
    [112] Sun Y M, Qiu T S. Neural Networks Preprocessing Based Adaptive Latency Change Estimation of Evoked Potentials, Lecture Notes in Computer Science. Berlin, Springer. 2005,3489,737-741.
    [113]孙永梅,邱天爽.α稳定分布噪声下自适应信号处理的研究进展.信号处理. 2004, 20(6),618-622.
    [114]唐洪,邱天爽. Alpha稳定分布噪声下中的级联恒模阵列及其稳定性分析.电子与信息学报. 2006,28(8),1439-1442
    [115]唐洪,邱天爽,张文蓉.脉冲噪声环境中自适应阵列信号的跟踪.通信学报. 2005,26(8),22-27.
    [116]查代奉,邱天爽.基于分数阶谱的频域广义白化滤波方法.通信学报. 2005,26(5),24-30.
    [117]查代奉,邱天爽.一种基于分数低阶协方差矩阵的波束形成新方法.通信学报. 2005,26(7).16-20.
    [118]杨志春,邱天爽. Alpha稳定分布下的加权累积最小P范数算法. 2005,大连理工大学网络学刊.
    [119]张安清,邱天爽,章新华.α稳定分布的水声信号处理新方法.电子与信息学报. 2005,27(8),1201-1204.
    [120]查代奉,邱天爽.基于滑动窗与韧性函数的递归最小p范数滤波方法.电子与信息学报. 2007,29(1),54-58
    [121]刘文红;邱天爽;唐洪.脉冲噪声下基于自适应特征值分解的时延估计新方法.大连理工大学学报. 2006,46(6),905-909
    [122]刘文红;邱天爽;胡婷婷等.基于分数低阶矩的非整数时间延迟估计方法.通信学报. 2006,27(12),37-42
    [123]郭莹;邱天爽.基于分数低阶矩的LETDE时延估计算法.通信学报. 2006,27(5),12-17
    [124]郭莹;邱天爽.脉冲噪声环境下基于拉格朗日插值分数延迟滤波器的时延估计方法.电子与信息学报. 2007,29(9),2038-2041
    [125]郭莹;邱天爽;张艳丽等.脉冲噪声环境下基于分数低阶循环相关的自适应时延估计方法.通信学报. 2007,28(3),8-14
    [126]郭莹;邱天爽;张艳丽.基于共变系数的CZT多源时延估计新方法.大连理工大学学报. 2007,47(5),746-750
    [127]刘文红;邱天爽.基于基于零阶统计量的韧性归一化自适应时间延迟估计.信号处理. 2008,24(4),530-533
    [128]郭莹;邱天爽;张艳丽.分数低阶循环统计量及其在脉冲噪声环境下时延估计中的应用.信号处理. 2008,24(3),407-410
    [129]邱天爽;胡婷婷;刘文红等.α稳定分布噪声下基于EM算法的多径时延估计算法.大连理工大学学报. 2008,48(2),277-281
    [130]唐洪;邱天爽.一种脉冲噪声中的韧性恒模算法及其稳定性分析.电子与信息学报. 2006,28(7),1196-1200
    [131]唐洪;邱天爽.一种脉冲噪声中的韧性子空间跟踪方法.大连理工大学学报. 2007,47(2),264-269
    [132]邱天爽;查代奉.基于分数低阶统计量的水下目标定向新方法.系统工程与电子技术. 2006,28(7),941-945
    [133]张安清,邱天爽,章新华.分数低阶矩的信号盲分离方法.通信学报. 2006,27(3),32-36
    [134]查代奉;邱天爽.基于低阶预白化与新型网络传递函数的盲源分离方法.信号处理. 2006,22(2),163-167
    [135]郭莹;邱天爽.基于分数低阶统计量的盲多用户检测算法.电子学报. 2007,35(9),1670-1674
    [136]刘文红,邱天爽,林治钺等.一种韧性的胃电信号传导速率估计方法.,中国生物医学工程学报. 2007,(6)
    [137]郭文强,邱天爽.基于最小分散系数与旋转变换的EP信号自适应盲提取方法.中国生物医学工程学报. 2007,(5)
    [138]查代奉,邱天爽.基于多层小波分解与稳定分布的超声图像散粒噪声抑制新方法.中国生物医学工程学报. 2006,(1)
    [139]查代奉,邱天爽.基于分数低阶矩的非高斯噪声中诱发电位提取新方法.中国生物医学工程学报. 2006,(1)
    [140]邱天爽,杨志春,李小兵.α稳定分布下加权平均最小p范数算法.电子与信息学报. 2007,29(2),410-413
    [141]刘文红,邱天爽,胡婷婷.一种韧性的高分辨率多径时延估计方法.系统工程与电子技术. 2008,30(1),41-45
    [142]郭莹;邱天爽;张艳丽.脉冲噪声环境下一种韧性的时延与多普勒频移联合估计法.电子学报. 2007,35(9),1680-1684
    [143]夏光荣,刘兴钊.对称α-stable与高斯的混合噪声中信号检测的几种新方法.电子与信息学报. 2004,26(9),1504-1508.
    [144]夏光荣,刘兴钊.基于改进经验特征函数的一种混合分布参数估计法.上海交通大学学报. 2004,38增(10),22-25.
    [145]何冲,刘中.基于SCREENED Ratio原理的冲击噪声环境下DOA估计算法.电子与信息学报. 2006, 28(5),875-878
    [146]何冲,刘中.冲击噪声环境中最小“几何功率”误差波束形成算法.电子学报. 2008,36(3),510-515
    [147]夏铁骑,万群,游志军等.冲击噪声环境中的联合对角化波达方向矩阵法.电波科学学报. 2008, 23(3),460-465
    [148]夏铁骑,万群,汪学刚等.利用联合对角化分数低阶空时矩阵进行冲击噪声环境下的二维DOA估计.中国科学E辑. 2008,38(8),1310-1318
    [149]夏铁骑,万群,汪学刚.冲击噪声环境下基于任意阵列流形的空时二维DOA估计方法.航空学报. 2008, 29(5),1233-1238
    [150] Marco J Lombardi and Simon J Godsill. On-line Bayesian estimation of signals in symmetricα-stable noise. IEEE Trans on Signal Processing. 2006,Feb,54(2),775-779.
    [151] How J, Hatzinakos D, Venetsanopoulos A N. Detection of narrowband signals in alpha-stable noise environments. IEEE Conference MILCOM. 1994,1, 287-290.
    [152] Brcich R, Zoubir A Estimation and detection in a mixture of symmetric alpha-stable and Gaussian interference. Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. 1999,219-223.
    [153] Hsu Y. Fractional lower order moment based adaptive algorithms. 1996 Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers. 1996,1, 334-338.
    [154] K. L. Blackard, T. S. Rappaport. Measurements and models of the radio frequency impulsive noise for indoor wireless communications. IEEE Journal on Selected Areas in Communications. 1993,11(7), 991-1001.
    [155] T. K Blankship, D. M. Krizman, T. S Rappaport. Measurements and simulation of radio frequency impulsive noise in hospitals and clinics. IEEE Vehicular Technology Conference, Virginia USA. 1997, 1942-1946.
    [156] Guo Wenqiang, Qiu Tianshuang Tang Hong, etc. Performance of RBF neural networks for array processing in impulsive noise environment. Digial Signal Processing. 2008,18,168-178
    [157]黄蕾,张曙光.冲击噪声环境下的快速DOA估计.哈尔滨工程大学学报. 2008. 29(6).599-603
    [158] Fabricius T. Dynamic components of linear stable mixtures from fractional lower order moments. Proceedings of International Conference on Acoustics, Speech and Signal Processing, ICASS,2001,3957-3960.
    [159] Kidmose P. Alpha-stable distribution in signal processing of audio signals. 41st Conference on Simulation and Modeling, Scandinavian Simulation Society, SIMS. 2000, 87-94.
    [160] Kidmose P. Methods for Blind Separation of Linear Mixtures of Signals with Heavy Tail Distributions: [Ph.D dissertation]. Denmark: Technical University of Denmark. 2001
    [161]查代奉.基于稳定分布白噪声的信号处理新方法研究.大连理工大学博士学位论文.2006
    [162] M. Rupi, P. Tsakalides, E. D. Re and C. L. Nikias. Constant modulusblind equalization based on fractional lower-order statistics. Signal Processing. 2004,84(5),881-894.
    [163] Wang X. D, Poor H. P. Robust multiuser detection in non-Gaussian channels. IEEE Trans Signal Processing. 1999,47(2), 289-305.
    [164] Chuah T. C, Sharif B. S, Hinton O. R. Robust CDMA multiuser detection using a neural-network approach. IEEE Trans on Neural Networks. 2001,12(3),1546-1558.
    [165] Chuah T. C, Sharif B. S, Hinton O. R. Robust decorrelating decision-feed back multiusern in non-Gaussian channels. IEEE Trans Signal Processing. 2001,81(11), 1997-2004.
    [166] Hmidat A. M, Sharif B. S et al. Nonlinear space-time multiuser detector for non-Gaussian channel. Computers and Communications Proceedings. 2004,2(28), 610-614.
    [167] Spasojevic P, Georghiades C. N. The slowest descent method and its application to sequence estimation. IEEE Trans on Communication. 2001,49(9), 1592-1640.
    [168] Zha Daifeng. Robust multiuser detection method based on least p-norm state space criterion. Wireless Personal Communications. 2007, 40, 191-204.
    [169] Souryal Michael R, Larsson Erik G, Peric Bojan, etc. Soft-decision metrics for coded orthogonal signaling in symmetric alpha-stable noise. IEEE Trans on Signal Processing. 2008, 56(1) ,266-273.
    [170] Zha Daifeng and Qiu Tianshuang. Underwater sources location in non-Gaussian impulsive noise environments. Digial Signal Processing. 2006,16,149-163
    [171]赵彦平,赵晓晖,顾海军.冲击噪声环境下基于信号子空间的多通道语音增强算法.吉林大学学报. 2007, 37(2),453-457
    [172] Kong X, Qiu T S. Latency change estimation for evoked petentials: a comparision of algorithms. Medical & Biological & Computing. 2001,9(2), 208-224.
    [173] Kong X, Qiu T S. Adaptive estimation of latency change in evoked potentials by direct least mean p-norm time delay estimation. IEEE Transactions on Biomedical Engineering. 1999,46(8), 994-1003.
    [174] Qiu T S, Kong X. Latency change detection in evoked potentials by ditect least mean p norm adaptive time delay estimation. IEEE EMBS’98, Hong Kong, China. 1998,2054-2057.
    [175] Banerjec A, Chellappa H. Tumor detection in digital mammograms. Proceeding of the International Conference on Image Processing. 2000, 432-435.
    [176] Arikan O, Cetin A. E, Erzin E. Adaptive filtering for non-Gaussian stable process. IEEE Signal Processing Letters. 1994 ,1(11) ,163-165.
    [177] Aydin G, Arikan O, Cetin A. E. Robust adaptive filtering algorithm for alpha-stable random processes. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 1999,46 (2), 198-202.
    [178] Chambers J A, Tanrikulu O, Constantinides A G. Least mean mixed-norm adaptivefiltering. Electronics letters. 1994,30(19),1574-1575.
    [179] Aydin G, Tanrikulu O, Cetin A E O. Robust least mean mixed norm adaptive filtering forα-stable random processed. IEEE International Symposium on Circuits and Systems, ISCAS. 1997,4, 2296-2299.
    [180] Belge M, Miller E L. A sliding window RLS-like adaptive algorithm for filtering alpha-stable noise. IEEE Signal Processing Letters. 2000,7(4), 86-89.
    [181] Zha Daifeng and Qiu Tianshuang. Adaptive mixed-norm filtering algorithm based on SαSG noise model. Digital Signal Processing. 2007,17,475-484
    [182]王卓.α稳定脉冲噪声中的自适应算法研究及应用.大连理工大学硕士学位论文. 2006
    [183] Kahaei M H, Deriche M, Boashash B. Performance analysis of adaptive lattice filters for impulsive signals. Proc. of IEEE Region Ten Conf. on Digital Signal Processing Applications. 1997,77-80
    [184] Kahaei M H, Boashash B, Deriche M. Performance analysis of normalized least mean p-norm lattice algorithm for alpha-stable process. Fifth International Symposium on Signal Processing and its Applications. ISSPA,1999,387-390
    [185] Kalluri S and Arce Gonzalo. Adaptive weighted myriad filter algorithms for robust signal processing inα-stable noise environments. IEEE Trans on Signal Processing. 1998,Feb,46(2) ,322-334.
    [186] S. Cambanis. Complex symmetric stable variables and processes. In Contributions to Statistics: Essays in Honor of Norman L. Johnson, P. Sen, Ed. New York: North-Holland. 1973,63-79.
    [187] Zolotarev V. M. Mellin-Stieltjes transforms in probability theory. Theory of Probability and Applications. 1957,2(4),433-460.
    [188] Cambanis S, Miller G.. Linear problems in pth order and stable processes. SIAM Journal on Applied Mathematics. 1981,41(1),43-69.
    [189] Miller G.. Properties of certain symmetric stable distribution. Journal of Multivariate Analysis. 1978,8, 346-360.
    [190]张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000
    [191] Cline D. B, Brockwell P. J. Linear prediction of ARMA processes with infinite variance. Stochastic Processes and Their Applications. 1985,19, 281-296.
    [192] Qiu T. S, Wang H, Zhang Y, Bao H. Non-linear transform based robust adaptive latency change estimation of evoked potentials. Methods of Information in Medicine. 2002,41(4), 331-336.
    [193] Kong X, Thakor N. V. Adaptive estimation of latency changes in evoked potentials.IEEE Transactions on Biomedical Engineering. 1996,43(2), 189-197.
    [194] Altinkaya M. A, Delic H, Sankur B, Anarim E. Subspace-based frequency estimation of sinusoidal signals in alpha-stable noise. Elsevier Signal Processing. 2002,1870-1827.
    [195] Tsakalides P, Nikias C. L. Broadband beamforming with alpha-stable distributions. Conference Record of the Twenty-Ninth Asilomar Conference on Signal, Systems and Computers.1995, 2,1106-1110.
    [196] Kannan B, Fitzgerald W, Kuruoglu E. E. Joint DOA, frequency and model order estimation in additive alpha-stable noise. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2000,6, 3798-3801.
    [197] Leahy R, Yu Z, Hsu Y. Adaptive filtering of stable processes for active attenuation of impulsive noise. International Conference on Acoustics, Speech, and Signal Processing. 1995, 0-12.
    [198] Goodwin G. C, Sin K. S. Adaptive Filtering, Prediction and Control. Englewood Cliffs, NJ: Prentice-Hall. 1984
    [199]段雪梅.α稳定噪声环境下的自适应滤波算法.西安电子科技大学硕士学位论文.2006
    [200]高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析.电子学报. 2001,29(8).1094-1097。
    [201] Fang Baorong, Zhou Jidong, Li Yimin. Matrix Theory. Peking:Tsinghua University Press. 2004
    [202]高鹰,谢胜利.一种基于相关函数的LMS算法.数据采集与处理. 2004,19(1),1-4。
    [203] Burg J. P. Maximum entropy spectral analysis. Ph.D. dissertation, Dep. Geophysics, Stanford Univ., Stanford, CA. 1975
    [204] Makhoul J. A class of all-zero lattice digital filters: Properties and applications. IEEE Trans. On Acoustics, Speech, and, Signal Processing. 1978,26(4), 304-314.
    [205] Gibson C. J, Haykin S. Learning characteristics of adaptive lattice filtering algorithms. IEEE Trans. ASSP.1980,28(6), 681-691.
    [206] Satorius E. H, Alexander S. T. Channel equalization using adaptive lattice algorithms. IEEE Trans.COM.1979,27(6), 899-905.
    [207] Haykin S. Adaptive filter theory(Fourth edition)[M]. New Jeresy: Prentice Hall,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700